Pharmacogenomics-Guided Pharmacotherapy in Patients with Major Depressive Disorder or Bipolar Disorder Affected by Treatment-Resistant Depressive Episodes: A Long-Term Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assessment of Pharmacogenes with Drug-PIN Software
2.2. Medication Congruence with Pharmacogenomics Testing
2.3. Psychiatric Assessments
2.4. Statistical Analysis
3. Results
3.1. Sample Description
3.2. Treatment Effects
3.3. Response/Remission Rates at Follow-Up Points
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruggeri, M.; Drago, C.; Mandolini, D.; Francesa Morel, P.; Mencacci, C.; Starace, F. The costs of treatment resistant depression: Evidence from a survey among Italian patients. Expert Rev. Pharm. Outcomes Res. 2021, 26, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gilmer, W.S.; Trivedi, M.H.; Rush, A.J.; Wisniewski, S.R.; Luther, J.; Howland, R.H.; Yohanna, D.; Khan, A.; Alpert, J. Factors associated with chronic depressive episodes: A preliminary report from the STAR-D project. Acta Psychiatr. Scand. 2005, 112, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.A.; Byrne, G.J. Prevalence and correlates of the proposed DSM-5 diagnosis of Chronic Depressive Disorder. J. Affect. Disord. 2012, 139, 172–180. [Google Scholar] [CrossRef]
- Papadimitropoulou, K.; Vossen, C.; Karabis, A.; Donatti, C.; Kubitz, N. Comparative efficacy and tolerability of pharmacological and somatic interventions in adult patients with treatment-resistant depression: A systematic review and network meta-analysis. Curr. Med. Res. Opin. 2017, 33, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef]
- Trivedi, M.H.; Rush, A.J.; Wisniewski, S.R.; Nierenberg, A.A.; Warden, D.; Ritz, L.; Norquist, G.; Howland, R.H.; Lebowitz, B.; McGrath, P.J.; et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: Implications for clinical practice. Am. J. Psychiatry 2006, 163, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Iancu, S.C.; Wong, Y.M.; Rhebergen, D.; van Balkom, A.J.L.M.; Batelaan, N.M. Long-term disability in major depressive disorder: A 6-year follow-up study. Psychol. Med. 2020, 50, 1644–1652. [Google Scholar] [CrossRef]
- Keitner, G.I.; Ryan, C.E.; Solomon, D.A. Realistic expectations and a disease management model for depressed patients with persistent symptoms. J. Clin. Psychiatry 2006, 67, 1412–1421. [Google Scholar] [CrossRef]
- Keller, M.B.; Shapiro, R.W.; Lavori, P.W.; Wolfe, N. Recovery in major depressive disorder: Analysis with the life table and regression models. Arch. Gen. Psychiatry 1982, 39, 905–910. [Google Scholar] [CrossRef]
- Hieronymus, F.; Emilsson, J.F.; Nilsson, S.; Eriksson, E. Consistent superiority of selective serotonin reuptake inhibitors over placebo in reducing depressed mood in patients with major depression. Mol. Psychiatry 2016, 21, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Biernacka, J.M.; Sangkuhl, K.; Jenkins, G.; Whaley, R.M.; Barman, P.; Batzler, A.; Altman, R.B.; Arolt, V.; Brockmöller, J.; Chen, C.H.; et al. The International SSRI Pharmacogenomics Consortium (ISPC): A genome-wide association study of antidepressant treatment response. Transl. Psychiatry 2015, 5, e553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirschfeld, R.M. Efficacy of SSRIs and newer antidepressants in severe depression: Comparison with TCAs. J. Clin. Psychiatry 1999, 60, 326–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papakostas, G.I.; Fava, M.; Thase, M.E. Treatment of SSRI-resistant depression: A meta-analysis comparing within- versus across-class switches. Biol. Psychiatry 2008, 63, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Gaynes, B.N.; Lux, L.; Gartlehner, G.; Asher, G.; Forman-Hoffman, V.; Green, J.; Boland, E.; Weber, R.P.; Randolph, C.; Bann, C.; et al. Defining treatment-resistant depression. Depress. Anxiety 2020, 37, 134–145. [Google Scholar] [CrossRef]
- Berlim, M.T.; Turecki, G. Definition, assessment, and staging of treatment-resistant refractory major depression: A review of current concepts and methods. Can. J. Psychiatry 2007, 52, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Fava, M. Diagnosis and definition of treatment-resistant depression. Biol. Psychiatry 2003, 53, 649–659. [Google Scholar] [CrossRef]
- Sackeim, H.A.; Prudic, J.; Devanand, D.P.; Decina, P.; Kerr, B.; Malitz, S. The impact of medication resistance and continuation pharmacotherapy on relapse following response to electroconvulsive therapy in major depression. J. Clin. Psychopharmacol. 1990, 10, 96–104. [Google Scholar] [CrossRef]
- Thase, M.E.; Rush, A.J. When at first you don’t succeed: Sequential strategies for antidepressant nonresponders. J. Clin. Psychiatry 1997, 58 (Suppl. 13), 23–29. [Google Scholar]
- Ruhé, H.G.; Huyser, J.; Swinkels, J.A.; Schene, A.H. Switching antidepressants after a first selective serotonin reuptake inhibitor in major depressive disorder: A systematic review. J. Clin. Psychiatry 2006, 67, 1836–1855. [Google Scholar] [CrossRef]
- Vergouwen, A.C.; Bakker, A.; Katon, W.J.; Verheij, T.J.; Koerselman, F. Improving adherence to antidepressants: A systematic review of interventions. J. Clin. Psychiatry 2003, 64, 1415–1420. [Google Scholar] [CrossRef]
- Amare, A.T.; Schubert, K.O.; Baune, B.T. Pharmacogenomics in the treatment of mood disorders: Strategies and Opportunities for personalized psychiatry. EPMA J. 2017, 8, 211–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.W.; Chen, X.W.; Sneed, K.B.; Yang, Y.X.; Zhang, X.; He, Z.X.; Chow, K.; Yang, T.; Duan, W.; Zhou, S.F. Clinical association between pharmacogenomics and adverse drug reactions. Drugs 2015, 75, 589–631. [Google Scholar] [CrossRef] [PubMed]
- Tansey, K.E.; Guipponi, M.; Hu, X.; Domenici, E.; Lewis, G.; Malafosse, A.; Wendland, J.R.; Lewis, C.M.; McGuffin, P.; Uher, R. Contribution of common genetic variants to antidepressant response. Biol. Psychiatry 2013, 73, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Chadda, R.K.; Sood, M.; Kaur, H.; Kukreti, R. A preliminary association study between serotonin transporter (5-HTTLPR), receptor polymorphisms (5-HTR1A, 5-HTR2A) and depression symptom-clusters in a north Indian population suffering from Major Depressive Disorder (MDD). Asian J. Psychiatr. 2019, 43, 184–188. [Google Scholar] [CrossRef]
- Illi, A.; Setälä-Soikkeli, E.; Viikki, M.; Poutanen, O.; Huhtala, H.; Mononen, N.; Lehtimäki, T.; Leinonen, E.; Kampman, O. 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport 2009, 20, 1125–1128. [Google Scholar] [CrossRef]
- Marshe, V.S.; Maciukiewicz, M.; Rej, S.; Tiwari, A.K.; Sibille, E.; Blumberger, D.M.; Karp, J.F.; Lenze, E.J.; Reynolds, C.F., 3rd; Kennedy, J.L.; et al. Norepinephrine Transporter Gene Variants and Remission from Depression with Venlafaxine Treatment in Older Adults. Am. J. Psychiatry 2017, 174, 468–475. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Z.; Shi, Y.; Pu, M.; Yuan, Y.; Zhang, X.; Li, L.; Reynolds, G.P. Influence and interaction of genetic polymorphisms in the serotonin system and life stress on antidepressant drug response. J. Psychopharmacol. 2012, 26, 349–359. [Google Scholar] [CrossRef]
- Gaedigk, A.; Simon, S.D.; Pearce, R.E.; Bradford, L.D.; Kennedy, M.J.; Leeder, J.S. The CYP2D6 activity score: Translating genotype information into a qualitative measure of phenotype. Clin. Pharmacol. Ther. 2008, 83, 234–242. [Google Scholar] [CrossRef]
- Hicks, J.K.; Swen, J.J.; Gaedigk, A. Challenges in CYP2D6 phenotype assignment from genotype data: A critical assessment and call for standardization. Curr. Drug Metab. 2014, 15, 218–232. [Google Scholar] [CrossRef]
- Mrazek, D.A.; Biernacka, J.M.; O’Kane, D.J.; Black, J.L.; Cunningham, J.M.; Drews, M.S.; Snyder, K.A.; Stevens, S.R.; Rush, A.J.; Weinshilboum, R.M. CYP2C19 variation and citalopram response. Pharm. Genom. 2011, 21, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kraus, C.; Kadriu, B.; Lanzenberger, R.; Zarate, C.A., Jr.; Kasper, S. Prognosis and improved outcomes in major depression: A review. Transl. Psychiatry 2019, 9, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertilsson, L. Metabolism of antidepressant and neuroleptic drugs by cytochrome p450s: Clinical and interethnic aspects. Clin. Pharmacol. Ther. 2007, 82, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Kirchheiner, J.; Nickchen, K.; Bauer, M.; Wong, M.L.; Licinio, J.; Roots, I.; Brockmöller, J. Pharmacogenetics of antidepressants and antipsychotics: The contribution of allelic variations to the phenotype of drug response. Mol. Psychiatry 2004, 9, 442–473. [Google Scholar] [CrossRef] [PubMed]
- Tomalik-Scharte, D.; Lazar, A.; Fuhr, U.; Kirchheiner, J. The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharm. J. 2008, 8, 4–15. [Google Scholar] [CrossRef]
- Lin, J.H.; Yamazaki, M. Role of P-glycoprotein in pharmacokinetics: Clinical implications. Clin. Pharm. 2003, 42, 59–98. [Google Scholar] [CrossRef]
- Singh, A.B.; Bousman, C.A.; Ng, C.H.; Byron, K.; Berk, M. ABCB1 polymorphism predicts escitalopram dose needed for remission in major depression. Transl. Psychiatry 2012, 2, e198. [Google Scholar] [CrossRef] [Green Version]
- Blázquez, A.; Gassó, P.; Mas, S.; Plana, M.T.; Lafuente, A.; Lázaro, L. One-Year Follow-up of Children and Adolescents with Major Depressive Disorder: Relationship between Clinical Variables and Abcb1 Gene Polymorphisms. Pharmacopsychiatry 2016, 49, 248–253. [Google Scholar] [CrossRef]
- Greden, J.F.; Parikh, S.V.; Rothschild, A.J.; Thase, M.E.; Dunlop, B.W.; DeBattista, C.; Conway, C.R.; Forester, B.P.; Mondimore, F.M.; Shelton, R.C.; et al. Impact of pharmacogenomics on clinical outcomes in major depressive disorder in the GUIDED trial: A large, patient- and rater-blinded, randomized, controlled study. J. Psychiatr. Res. 2019, 111, 59–67. [Google Scholar] [CrossRef]
- Altar, C.A.; Carhart, J.; Allen, J.D.; Hall-Flavin, D.; Winner, J.; Dechairo, B. Clinical Utility of Combinatorial Pharmacogenomics-Guided Antidepressant Therapy: Evidence from Three Clinical Studies. Mol. Neuropsychiatry 2015, 1, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Winner, J.G.; Carhart, J.M.; Altar, C.A.; Goldfarb, S.; Allen, J.D.; Lavezzari, G.; Parsons, K.K.; Marshak, A.G.; Garavaglia, S.; Dechairo, B.M. Combinatorial pharmacogenomic guidance for psychiatric medications reduces overall pharmacy costs in a 1 year prospective evaluation. Curr. Med. Res. Opin. 2015, 31, 1633–1643. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; (DSM-5); American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Guy, W. ECDEU Assessment Manual for Psychopharmacology; Department of Health, Education, and Welfare: Rockville, MD, USA, 1976. [Google Scholar]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thase, M.E.; Parikh, S.V.; Rothschild, A.J.; Dunlop, B.W.; DeBattista, C.; Conway, C.R.; Forester, B.P.; Mondimore, F.M.; Shelton, R.C.; Macaluso, M.; et al. Impact of Pharmacogenomics on Clinical Outcomes for Patients Taking Medications with Gene-Drug Interactions in a Randomized Controlled Trial. J. Clin. Psychiatry 2019, 80, 22039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, K.; Dieperink, E.; Anderson, J.; Boundy, E.; Ferguson, L.; Helfand, M. Rapid evidence review of the comparative effectiveness, harms, and cost-effectiveness of pharmacogenomics-guided antidepressant treatment versus usual care for major depressive disorder. Psychopharmacology 2017, 234, 1649–1661. [Google Scholar] [CrossRef]
- Berlim, M.T.; Turecki, G. What is the meaning of treatment resistant/refractory major depression (TRD)? A systematic review of current randomized trials. Eur. Neuropsychopharmacol. 2007, 17, 696–707. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Klein-Fedyshin, M.; Stevenson, J.M. Serotonin Transporter Gene Polymorphisms and Selective Serotonin Reuptake Inhibitor Tolerability: Review of Pharmacogenetic Evidence. Pharmacotherapy 2017, 37, 1089–1104. [Google Scholar] [CrossRef]
- Maron, E.; Tammiste, A.; Kallassalu, K.; Eller, T.; Vasar, V.; Nutt, D.J.; Metspalu, A. Serotonin transporter promoter region polymorphisms do not influence treatment response to escitalopram in patients with major depression. Eur. Neuropsychopharmacol. 2009, 19, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Dombrovski, A.Y.; Mulsant, B.H.; Ferrell, R.E.; Lotrich, F.E.; Rosen, J.I.; Wallace, M.; Houck, P.R.; Mazumdar, S.; Pollock, B.G. Serotonin transporter triallelic genotype and response to citalopram and risperidone in dementia with behavioral symptoms. Int. Clin. Psychopharmacol. 2010, 25, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Murphy, G.M., Jr.; Hollander, S.B.; Rodrigues, H.E.; Kremer, C.; Schatzberg, A.F. Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch. Gen. Psychiatry 2004, 61, 1163–1169. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, S.P. The promise of psychiatric pharmacogenomics. Biol. Psychiatry 2015, 77, 29–35. [Google Scholar] [CrossRef]
- Veldic, M.; Ahmed, A.T.; Blacker, C.J.; Geske, J.R.; Biernacka, J.M.; Borreggine, K.L.; Moore, K.M.; Prieto, M.L.; Vande Voort, J.L.; Croarkin, P.E.; et al. Cytochrome P450 2C19 Poor Metabolizer Phenotype in Treatment Resistant Depression: Treatment and Diagnostic Implications. Front. Pharm. 2019, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP Working Group: Testing for cytochrome P450 polymorphisms in adults with nonpsychotic depression treated with selective serotonin reuptake inhibitors. Genet. Med. 2007, 9, 819–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, P.; Shiekh, M.; Mehra, V.; Vrbicky, K.; Layle, S.; Olson, M.C.; Maciel, A.; Cullors, A.; Garces, J.A.; Lukowiak, A.A. Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: A randomized clinical trial demonstrating clinical utility. J. Psychiatr. Res. 2018, 96, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Pérez, V.; Salavert, A.; Espadaler, J.; Tuson, M.; Saiz-Ruiz, J.; Sáez-Navarro, C.; Bobes, J.; Baca-García, E.; Vieta, E.; Olivares, J.M.; et al. Efficacy of prospective pharmacogenetic testing in the treatment of major depressive disorder: Results of a randomized, double-blind clinical trial. BMC Psychiatry 2017, 17, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.B. Improved Antidepressant Remission in Major Depression via a Pharmacokinetic Pathway Polygene Pharmacogenetic Report. Clin. Psychopharmacol. Neurosci. 2015, 13, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall-Flavin, D.K.; Winner, J.G.; Allen, J.D.; Jordan, J.J.; Nesheim, R.S.; Snyder, K.A.; Drews, M.S.; Eisterhold, L.L.; Biernacka, J.M.; Mrazek, D.A. Using a pharmacogenomic algorithm to guide the treatment of depression. Transl. Psychiatry 2012, 2, e172. [Google Scholar] [CrossRef] [Green Version]
- Hall-Flavin, D.K.; Winner, J.G.; Allen, J.D.; Carhart, J.M.; Proctor, B.; Snyder, K.A.; Drews, M.S.; Eisterhold, L.L.; Geske, J.; Mrazek, D.A. Utility of integrated pharmacogenomic testing to support the treatment of major depressive disorder in a psychiatric outpatient setting. Pharm. Genom. 2013, 23, 535–548. [Google Scholar] [CrossRef] [Green Version]
- Callegari, C.; Isella, C.; Caselli, I.; Poloni, N.; Ielmini, M. Pharmacogenetic Tests in Reducing Accesses to Emergency Services and Days of Hospitalization in Bipolar Disorder: A 2-Year Mirror Analysis. J. Pers. Med. 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Niculescu, A.B.; Le-Niculescu, H.; Levey, D.F.; Phalen, P.L.; Dainton, H.L.; Roseberry, K.; Niculescu, E.M.; Niezer, J.O.; Williams, A.; Graham, D.L.; et al. Precision medicine for suicidality: From universality to subtypes and personalization. Mol. Psychiatry 2017, 22, 1250–1273. [Google Scholar] [CrossRef]
- Oedegaard, K.J.; Alda, M.; Anand, A.; Andreassen, O.A.; Balaraman, Y.; Berrettini, W.H.; Bhattacharjee, A.; Brennand, K.J.; Burdick, K.E.; Calabrese, J.R.; et al. The Pharmacogenomics of Bipolar Disorder study (PGBD): Identification of genes for lithium response in a prospective sample. BMC Psychiatry 2016, 16, 129. [Google Scholar] [CrossRef] [Green Version]
- Routhieaux, M.; Keels, J.; Tillery, E.E. The use of pharmacogenetic testing in patients with schizophrenia or bipolar disorder: A systematic review. Ment. Health Clin. 2018, 8, 294–302. [Google Scholar] [CrossRef]
Patients with TRD | |
---|---|
PGT | TAU |
Baseline: Psychiatric and psychometric assessment Assessment of pharmacogenomics interaction Clinical guidelines-based treatment | Baseline: Psychiatric and psychometric assessment Clinical guidelines-based treatment |
6 month follow-up: Psychiatric and psychometric assessment | 6 month follow-up: Psychiatric and psychometric assessment |
Variable | PGT Group (n = 53) | TAU Group (n = 52) | 1-Way ANOVA Pearson χ² | p |
---|---|---|---|---|
Mean age, years (SD) | 45.21 (16.26) | 50.79 (14.12) | F = 3.52 | 0.063 |
Sex, women/men ratio | 31/22 | 24/28 | χ² = 1.602 | 0.206 |
Diagnosis (BD/MDD) | 26/27 | 31/21 | χ² = 1.179 | 0.278 |
Mean baseline HDRS score (SD) | 25.36 (5.2) | 25.98 (5.34) | F = 0.437 | 0.51 |
Mean baseline CGI-S score (SD) | 4.96 (0.78) | 5.08 (0.74) | F = 0.596 | 0.442 |
Mean baseline CGI-I score (SD) | 3.64 (0.79) | 3.46 (0.67) | F = 1.589 | 0.21 |
Mean baseline CGI-EI score (SD) | 11.89 (2.57) | 8.92 (3.46) | F = 24.917 | <0.001 |
Previous Drug Treatment | TAU | PGT |
---|---|---|
Benzodiazepines | 75% | 50.9% |
Antidepressants | 86.5% | 67.9% |
Atypical antipsychotics | 73.1% | 56.6% |
Typical antipsychotics | 21.2% | 17% |
Antiepileptics | 69.2% | 39.6% |
Lithium | 63.5% | 41.5% |
Baseline Drug Treatment | TAU | PGT |
Benzodiazepines | 53.8% | 45.3% |
Antidepressants | 75% | 60.4% |
Atypical antipsychotics | 53.8% | 60.4% |
Typical antipsychotics | 9.6% | 6.4% |
Antiepileptics | 44.2% | 35.8% |
Lithium | 59.6% | 47.2% |
Descriptive Statistics | Group | Mean | SD | n | ||
---|---|---|---|---|---|---|
HDRS mean score, baseline | TAU | 25.9808 | 4.40361 | 52 | ||
PGT | 25.3585 | 5.20390 | 53 | |||
Total | 25.6667 | 4.81118 | 105 | |||
HDRS mean score, 6 month FU | TAU | 16.7692 | 4.25932 | 52 | ||
PGT | 14.7736 | 7.05375 | 53 | |||
Total | 15.7619 | 5.89740 | 105 | |||
CGI-S, baseline | TAU | 5.0769 | 0.73688 | 52 | ||
PGT | 4.9623 | 0.78354 | 53 | |||
Total | 5.0190 | 0.75931 | 105 | |||
CGI-S, 6 month FU | TAU | 3.5577 | 0.95821 | 52 | ||
PGT | 2.8868 | 1.47623 | 53 | |||
Total | 3.2190 | 1.28588 | 105 | |||
CGI-I, baseline | TAU | 3.4615 | 0.67043 | 52 | ||
PGT | 3.6415 | 0.78677 | 53 | |||
Total | 3.5524 | 0.73355 | 105 | |||
CGI-I, 6 month FU | TAU | 2.2115 | 0.97692 | 52 | ||
PGT | 2.3585 | 1.09359 | 53 | |||
Total | 2.2857 | 1.03510 | 105 | |||
CGI efficacy index, baseline | TAU | 8.9231 | 3.45756 | 52 | ||
PGT | 11.8868 | 2.56950 | 53 | |||
Total | 10.4190 | 3.37349 | 105 | |||
CGI efficacy index, 6 month FU | TAU | 5.6154 | 4.21554 | 52 | ||
PGT | 6.3585 | 3.92279 | 53 | |||
Total | 5.9905 | 4.06792 | 105 | |||
Tests of Within-Subjects Contrasts | ||||||
Source | Mean Square | F | p | Partial Eta Squared | Observed Power | |
Time | HDRS | 5143.210 | 400.789 | <0.001 | 0.796 | 1.000 |
CGI-S | 169.584 | 284.763 | <0.001 | 0.734 | 1.000 | |
CGI-I | 84.205 | 121.724 | <0.001 | 0.542 | 1.000 | |
CGI-EI | 1024.639 | 135.280 | <0.001 | 0.568 | 1.000 | |
Time × Group (PGT vs. TAU) | HDRS | 24.753 | 1.929 | 0.168 | 0.018 | 0.280 |
CGI-S | 4.061 | 6.818 | 0.01 | 0.062 | 0.735 | |
CGI-I | 0.014 | 0.021 | 0.886 | 0.000 | 0.052 | |
CGI-EI | 64.715 | 8.544 | 0.004 | 0.077 | 0.825 | |
Time × Organic comorbidities | HDRS | 9.960 | 0.768 | 0.383 | 0.007 | 0.768 |
CGI-S | 0.988 | 1.580 | 0.212 | 0.015 | 0.238 | |
CGI-I | 2.931 | 4.418 | 0.038 | 0.041 | 0.549 | |
CGI-EI | 30.719 | 3.886 | 0.051 | 0.036 | 3.886 | |
Time × Diagnosis | HDRS | 22.745 | 1.770 | 0.186 | 0.017 | 1.770 |
CGI-S | 0.003 | 0.005 | 0.945 | 0.000 | 0.051 | |
CGI-I | 0.062 | 0.09 | 0.765 | 0.001 | 0.06 | |
CGI-EI | 14.436 | 1.791 | 0.184 | 0.017 | 1.791 |
Response at Follow-Up | Remission at Follow-Up | |
---|---|---|
All patients (rate) | 27.6% | 15.2% |
TAU | 17.3% | 3.8% |
PGT | 37.7% | 26.4% |
Pearson chi-squared | 5.479 | 10.351 |
p | 0.019 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Casale, A.; Pomes, L.M.; Bonanni, L.; Fiaschè, F.; Zocchi, C.; Padovano, A.; De Luca, O.; Angeletti, G.; Brugnoli, R.; Girardi, P.; et al. Pharmacogenomics-Guided Pharmacotherapy in Patients with Major Depressive Disorder or Bipolar Disorder Affected by Treatment-Resistant Depressive Episodes: A Long-Term Follow-Up Study. J. Pers. Med. 2022, 12, 316. https://doi.org/10.3390/jpm12020316
Del Casale A, Pomes LM, Bonanni L, Fiaschè F, Zocchi C, Padovano A, De Luca O, Angeletti G, Brugnoli R, Girardi P, et al. Pharmacogenomics-Guided Pharmacotherapy in Patients with Major Depressive Disorder or Bipolar Disorder Affected by Treatment-Resistant Depressive Episodes: A Long-Term Follow-Up Study. Journal of Personalized Medicine. 2022; 12(2):316. https://doi.org/10.3390/jpm12020316
Chicago/Turabian StyleDel Casale, Antonio, Leda Marina Pomes, Luca Bonanni, Federica Fiaschè, Clarissa Zocchi, Alessio Padovano, Ottavia De Luca, Gloria Angeletti, Roberto Brugnoli, Paolo Girardi, and et al. 2022. "Pharmacogenomics-Guided Pharmacotherapy in Patients with Major Depressive Disorder or Bipolar Disorder Affected by Treatment-Resistant Depressive Episodes: A Long-Term Follow-Up Study" Journal of Personalized Medicine 12, no. 2: 316. https://doi.org/10.3390/jpm12020316
APA StyleDel Casale, A., Pomes, L. M., Bonanni, L., Fiaschè, F., Zocchi, C., Padovano, A., De Luca, O., Angeletti, G., Brugnoli, R., Girardi, P., Preissner, R., Borro, M., Gentile, G., Pompili, M., & Simmaco, M. (2022). Pharmacogenomics-Guided Pharmacotherapy in Patients with Major Depressive Disorder or Bipolar Disorder Affected by Treatment-Resistant Depressive Episodes: A Long-Term Follow-Up Study. Journal of Personalized Medicine, 12(2), 316. https://doi.org/10.3390/jpm12020316