Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Population
2.2. Observation Variables
2.3. The Implementation of the Deep Learning Model
2.4. Statistical Analysis and Model Performance Assessment
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziaeian, B.; Fonarow, G.C. Epidemiology and Aetiology of Heart Failure. Nat. Rev. Cardiol. 2016, 13, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Anker, S.D.; AlHabib, K.F.; Cowie, M.R.; Force, T.L.; Hu, S.; Jaarsma, T.; Krum, H.; Rastogi, V.; Rohde, L.E.; et al. Heart Failure: Preventing Disease and Death Worldwide. ESC Heart Fail. 2014, 1, 4–25. [Google Scholar] [CrossRef] [PubMed]
- Ambrosy, A.P.; Fonarow, G.C.; Butler, J.; Chioncel, O.; Greene, S.J.; Vaduganathan, M.; Nodari, S.; Lam, C.S.; Sato, N.; Shah, A.N. The Global Health and Economic Burden of Hospitalizations for Heart Failure: Lessons Learned from Hospitalized Heart Failure Registries. J. Am. Coll. Cardiol. 2014, 63, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Kapa, S.; Lopez-Jimenez, F.; McKie, P.M.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Enriquez-Sarano, M.; Noseworthy, P.A.; Munger, T.M.; et al. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nat. Med. 2019, 25, 70–74. [Google Scholar] [CrossRef]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. Foundation American College of Cardiology, and Guidelines American Heart Association Task Force on Practice. 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013, 62, e147–e239. [Google Scholar]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017, 136, e137–e161. [Google Scholar] [CrossRef]
- Palermi, S.; Bragazzi, N.L.; Cular, D.; Ardigò, L.P.; Padulo, J. How chest press-based exercises can alleviate the burden of cardiovascular diseases. Hum. Mov. 2021, 22. [Google Scholar] [CrossRef]
- Redfield, M.M.; Rodeheffer, R.J.; Jacobsen, S.J.; Mahoney, D.W.; Bailey, K.R.; Burnett, J.C., Jr. Plasma brain natriuretic peptide to detect preclinical ventricular systolic or diastolic dysfunction: A community-based study. Circulation 2004, 109, 3176–3181. [Google Scholar] [CrossRef]
- Betti, I.; Castelli, G.; Barchielli, A.; Beligni, C.; Boscherini, V.; De Luca, L.; Messeri, G.; Gheorghiade, M.; Maisel, A.; Zuppiroli, A. The Role of N-Terminal Pro-Brain Natriuretic Peptide and Echocardiography for Screening Asymptomatic Left Ventricular Dysfunction in a Population at High Risk for Heart Failure. The Probe-Hf Study. J. Card. Fail. 2009, 15, 377–384. [Google Scholar] [CrossRef]
- Kwon, J.M.; Jeon, K.H.; Kim, H.M.; Kim, M.J.; Lim, S.M.; Kim, K.H.; Song, P.S.; Park, J.; Choi, R.K.; Oh, B.H. Comparing the Performance of Artificial Intelligence and Conventional Diagnosis Criteria for Detecting Left Ventricular Hypertrophy Using Electrocardiography. Europace 2020, 22, 412–419. [Google Scholar] [CrossRef]
- Afrakhteh, S.; Mosavi, M.R.; Khishe, M.; Ayatollahi, A. Accurate Classification of EEG Signals Using Neural Networks Trained by Hybrid Population-Physic-Based Algorithm. Int. J. Autom. Comput. 2020, 17, 108–122. [Google Scholar] [CrossRef]
- Mehbodniya, A.; Lazar, A.J.P.; Webber, J.; Sharma, D.K.; Jayagopalan, S.; Singh, P.; Rajan, R.; Pandya, S.; Sengan, S. Fetal health classification from cardiotocographic data using machine learning. Expert Syst. 2021, e12899. [Google Scholar] [CrossRef]
- Pandya, S.; Thakur, A.; Saxena, S.; Jassal, N.; Patel, C.; Modi, K.; Shah, P.; Joshi, R.; Gonge, S.; Kadam, K.; et al. A Study of the Recent Trends of Immunology: Key Challenges, Domains, Applications, Datasets, and Future Directions. Sensors 2021, 21, 7786. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Ahirrao, S.; Pandya, S.; Kotecha, K.; Rathod, S. Smart Cardiac Framework for an Early Detection of Cardiac Arrest Condition and Risk. Front. Public Health 2021, 9, 762303. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gong, C.; Khishe, M.; Mohammadi, M.; Rashid, T.A. Pulmonary Diffuse Airspace Opacities Diagnosis from Chest X-ray Images Using Deep Convolutional Neural Networks Fine-Tuned by Whale Optimizer. Wirel. Pers. Commun. 2021, 1–20. [Google Scholar] [CrossRef]
- Khishe, M.; Caraffini, F.; Kuhn, S. Evolving Deep Learning Convolutional Neural Networks for Early COVID-19 Detection in Chest X-ray Images. Mathematics 2021, 9, 1002. [Google Scholar] [CrossRef]
- Khan, S.H.; Sohail, A.; Khan, A.; Lee, Y.-S. COVID-19 Detection in Chest X-ray Images Using a New Channel Boosted CNN. Diagnostics 2022, 12, 267. [Google Scholar] [CrossRef]
- Alam, N.A.; Ahsan, M.; Based, A.; Haider, J.; Kowalski, M. COVID-19 Detection from Chest X-Ray Images Using Feature Fusion and Deep Learning. Sensors 2021, 21, 1480. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef]
- Galloway, C.D.; Valys, A.V.; Shreibati, J.B.; Treiman, D.L.; Petterson, F.L.; Gundotra, V.P.; Albert, D.E.; Attia, Z.I.; Carter, R.E.; Asirvatham, S.J.; et al. Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia from the Electrocardiogram. JAMA Cardiol. 2019, 4, 428–436. [Google Scholar] [CrossRef]
- Lin, C.S.; Lin, C.; Fang, W.H.; Hsu, C.J.; Chen, S.J.; Huang, K.H.; Lin, W.S.; Tsai, C.S.; Kuo, C.C.; Chau, T.; et al. A Deep-Learning Algorithm (ECG12Net) for Detecting Hypokalemia and Hyperkalemia by Electrocardiography: Algorithm Development. JMIR Med. Inform. 2020, 8, e15931. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Chau, T.; Shang, H.-S.; Fang, W.-H.; Lee, D.-J.; Lee, C.-C.; Tsai, S.-H.; Wang, C.-H.; Lin, S.-H. Point-of-care artificial intelligence-enabled ECG for dyskalemia: A retrospective cohort analysis for accuracy and outcome prediction. NPJ Digit. Med. 2022, 5, 8. [Google Scholar] [CrossRef]
- Liu, W.-C.; Lin, C.-S.; Tsai, C.-S.; Tsao, T.-P.; Cheng, C.-C.; Liou, J.-T.; Lin, W.-S.; Cheng, S.-M.; Lou, Y.-S.; Lee, C.-C.; et al. A deep learning algorithm for detecting acute myocardial infarction. EuroIntervention 2021, 17, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Kwon, J.-M.; Kim, K.-H.; Medina-Inojosa, J.R.; Jeon, K.-H.; Cho, S.; Lee, S.Y.; Park, J.; Oh, B.-H. Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography. Sci. Rep. 2020, 10, 20495. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.C.; Lin, C.; Lin, C.S.; Tsai, M.C.; Chen, S.J.; Tsai, S.H.; Lin, W.S.; Lee, C.C.; Tsao, T.P.; Cheng, C.C. An Artificial Intelligence-Based Alarm Strategy Facilitates Management of Acute Myocardial Infarction. J. Pers. Med. 2021, 11, 1149. [Google Scholar] [CrossRef]
- Liu, W.T.; Lin, C.S.; Tsao, T.P.; Lee, C.C.; Cheng, C.C.; Chen, J.T.; Tsai, C.S.; Lin, W.S.; Lin, C.A. Deep-Learning Algorithm-Enhanced System Integrating Electrocardiograms and Chest X-Rays for Diagnosing Aortic Dissection. Can. J. Cardiol. 2021, 38, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Lee, D.-J.; Lee, C.-C.; Chen, S.-J.; Tsai, S.-H.; Kuo, F.-C.; Chau, T.; Lin, S.-H. Artificial Intelligence–Assisted Electrocardiography for Early Diagnosis of Thyrotoxic Periodic Paralysis. J. Endocr. Soc. 2021, 5, bvab120. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.-W.; Lin, C.-S.; Tsao, T.-P.; Lee, C.-C.; Chen, J.-T.; Tsai, C.-S.; Lin, W.-S.; Lin, C. Detecting Digoxin Toxicity by Artificial Intelligence-Assisted Electrocardiography. Int. J. Environ. Res. Public Health 2021, 18, 3839. [Google Scholar] [CrossRef]
- Kwon, J.-M.; Cho, Y.; Jeon, K.-H.; Cho, S.; Kim, K.-H.; Baek, S.D.; Jeung, S.; Park, J.; Oh, B.-H. A deep learning algorithm to detect anaemia with ECGs: A retrospective, multicentre study. Lancet Digit. Health 2020, 2, e358–e367. [Google Scholar] [CrossRef]
- Lin, C.S.; Lee, Y.T.; Fang, W.H.; Lou, Y.S.; Kuo, F.C.; Lee, C.C.; Lin, C. Deep Learning Algorithm for Management of Diabetes Mellitus Via Electrocardiogram-Based Glycated Hemoglobin (ECG-HbA1c): A Retrospective Cohort Study. J. Pers. Med. 2021, 11, 725. [Google Scholar] [CrossRef]
- Zhu, H.; Cheng, C.; Yin, H.; Li, X.; Zuo, P.; Ding, J.; Lin, F.; Wang, J.; Zhou, B.; Li, Y.; et al. Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: A cohort study. Lancet Digit. Health 2020, 2, e348–e357. [Google Scholar] [CrossRef]
- Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein, A.A.; Erickson, B.J.; et al. An Artificial Intelligence-Enabled Ecg Algorithm for the Identification of Patients with Atrial Fibrillation During Sinus Rhythm: A Retrospective Analysis of Outcome Prediction. Lancet 2019, 394, 861–867. [Google Scholar] [CrossRef]
- Raghunath, S.; Cerna, A.E.U.; Jing, L.; Vanmaanen, D.P.; Stough, J.; Hartzel, D.N.; Leader, J.B.; Kirchner, H.L.; Stumpe, M.C.; Hafez, A.; et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat. Med. 2020, 26, 886–891. [Google Scholar] [CrossRef]
- Kwon, J.-M.; Kim, K.-H.; Jeon, K.-H.; Kim, H.M.; Kim, M.J.; Lim, S.-M.; Song, P.S.; Park, J.; Choi, R.K.; Oh, B.-H. Development and Validation of Deep-Learning Algorithm for Electrocardiography-Based Heart Failure Identification. Korean Circ. J. 2019, 49, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Lee, B.; Kwon, J.-M.; Lee, Y.; Park, H.; Oh, B.-H.; Jeon, K.-H.; Park, J.; Kim, K.-H. Artificial Intelligence Algorithm for Screening Heart Failure with Reduced Ejection Fraction Using Electrocardiography. ASAIO J. 2020, 67, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Friedman, P.A.; Noseworthy, P.A.; Lopez-Jimenez, F.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Munger, T.M.; Asirvatham, S.J.; Scott, C.G.; et al. Age and Sex Estimation Using Artificial Intelligence from Standard 12-Lead ECGs. Circ. Arrhythmia Electrophysiol. 2019, 12, e007284. [Google Scholar] [CrossRef] [PubMed]
- Moller, C.S.; Byberg, L.; Sundstrom, J.; Lind, L. T wave abnormalities, high body mass index, current smoking and high lipoprotein (a) levels predict the development of major abnormal Q/QS patterns 20 years later. A population-based study. BMC Cardiovasc. Disord. 2006, 6, 10. [Google Scholar] [CrossRef]
- Ishikawa, J.; Hirose, H.; Schwartz, J.E.; Ishikawa, S. Minor Electrocardiographic ST-T Change and Risk of Stroke in the General Japanese Population. Circ. J. 2018, 82, 1797–1804. [Google Scholar] [CrossRef] [PubMed]
- Healy, C.F.; Lloyd-Jones, D.M. Association of Traditional Cardiovascular Risk Factors with Development of Major and Minor Electrocardiographic Abnormalities: A Systematic Review. Cardiol. Rev. 2016, 24, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Bhatt, K.; Dubey, A.K.; Roy, A.; Singh, S.; Naik, N.; Seth, S.; Bhargava, B. Acute electrocardiographic changes during smoking: An observational study. BMJ Open 2013, 3, e002486. [Google Scholar] [CrossRef] [PubMed]
- Boles, U.; Almuntaser, I.; Brown, A.; Murphy, R.R.; Mahmud, A.; Feely, J. Ventricular Activation Time as a Marker for Diastolic Dysfunction in Early Hypertension. Am. J. Hypertens. 2010, 23, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Dilaveris, P.E.; Gialafos, E.J.; Andrikopoulos, G.K.; Richter, D.J.; Papanikolaou, V.; Poralis, K.; Gialafos, J.E. Clinical and electrocardiographic predictors of recurrent atrial fibrillation. Pacing Clin. Electrophysiol. 2000, 23, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Tamura, A.; Torigoe, K.; Kawano, Y.; Shinozaki, K.; Kotoku, M.; Kadota, J. Abnormal P-wave terminal force in lead V1 is associated with cardiac death or hospitalization for heart failure in prior myocardial infarction. Hearth Vessel. 2012, 28, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Vaidean, G.D.; Manczuk, M.; Magnani, J.W. Atrial electrocardiography in obesity and hypertension: Clinical insights from the Polish-Norwegian Study (PONS). Obesity 2016, 24, 2608–2614. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, C.S.; Luo, Y.S.; Lee, Y.T.; Lin, C. Electrocardiogram-Based Heart Age Estimation by a Deep Learning Model Provides More Information on the Incidence of Cardiovascular Disorders. Front. Cardiovasc. Med. 2022, 9, 754909. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Kapa, S.; Yao, X.; Lopez-Jimenez, F.; Ms, T.L.M.; Pellikka, P.A.; Carter, R.E.; Shah, N.D.; Friedman, P.A.; Noseworthy, P.A. Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction. J. Cardiovasc. Electrophysiol. 2019, 30, 668–674. [Google Scholar] [CrossRef]
- Palermi, S.; Serio, A.; Vecchiato, M.; Sirico, F.; Gambardella, F.; Ricci, F.; Iodice, F.; Radmilovic, J.; Russo, V.; D’Andrea, A. Potential role of an athlete-focused echocardiogram in sports eligibility. World J. Cardiol. 2021, 13, 271–297. [Google Scholar] [CrossRef]
- Kini, V.; Mehta, N.; Mazurek, J.A.; Ferrari, V.; Epstein, A.J.; Groeneveld, P.W.; Kirkpatrick, J.N. Focused Cardiac Ultrasound in Place of Repeat Echocardiography: Reliability and Cost Implications. J. Am. Soc. Echocardiogr. 2015, 28, 1053–1059. [Google Scholar] [CrossRef]
- Kozak, P.M.; Trumbo, S.P.; Christensen, B.W.; Leverenz, D.L.; Shotwell, M.S.; Kingeter, A.J. Addition of price transparency to an education and feedback intervention reduces utilization of inpatient echocardiography by resident physicians. Int. J. Cardiovasc. Imaging 2019, 35, 1259–1263. [Google Scholar] [CrossRef]
- Attia, I.Z.; Tseng, A.S.; Benavente, E.D.; Medina-Inojosa, J.R.; Clark, T.G.; Malyutina, S.; Kapa, S.; Schirmer, H.; Kudryavtsev, A.V.; Noseworthy, P.A.; et al. External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction. Int. J. Cardiol. 2021, 329, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Vaid, A.; Johnson, K.W.; Badgeley, M.A.; Somani, S.S.; Bicak, M.; Landi, I.; Russak, A.; Zhao, S.; Levin, M.A.; Freeman, R.S.; et al. Using Deep-Learning Algorithms to Simultaneously Identify Right and Left Ventricular Dysfunction from the Electrocardiogram. JACC Cardiovasc. Imaging 2021, 15, 395–410. [Google Scholar] [CrossRef] [PubMed]
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C. 2017 AHA/ACC/HRS Guideline for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Circulation 2018, 138, e272–e391. [Google Scholar] [PubMed]
- Srinivasan, N.T.; Schilling, R.J. Sudden Cardiac Death and Arrhythmias. Arrhythmia Electrophysiol. Rev. 2018, 7, 111–117. [Google Scholar] [CrossRef]
- Bacharova, L.; Michalak, K.; Kyselovic, J.; Klimas, J. Relation Between QRS Amplitude and Left Ventricular Mass in the Initial Stage of Exercise-Induced Left Ventricular Hypertrophy in Rats. Clin. Exp. Hypertens. 2005, 27, 533–541. [Google Scholar] [CrossRef]
- Leivo, J.; Anttonen, E.; Jolly, S.S.; Dzavik, V.; Koivumäki, J.; Tahvanainen, M.; Koivula, K.; Nikus, K.; Wang, J.; Cairns, J.A.; et al. The high-risk ECG pattern of ST-elevation myocardial infarction: A substudy of the randomized trial of primary PCI with or without routine manual thrombectomy (TOTAL trial). Int. J. Cardiol. 2020, 319, 40–45. [Google Scholar] [CrossRef]
- Tamura, T.; Onodera, T.; Said, S.; Gerdes, A. Correlation of Myocyte Lengthening to Chamber Dilation in the Spontaneously Hypertensive Heart Failure (SHHF) Rat. J. Mol. Cell. Cardiol. 1998, 30, 2175–2181. [Google Scholar] [CrossRef]
- Pluteanu, F.; Nikonova, Y.; Holzapfel, A.; Herzog, B.; Scherer, A.; Preisenberger, J.; Plačkić, J.; Scheer, K.; Ivanova, T.; Bukowska, A.; et al. Progressive impairment of atrial myocyte function during left ventricular hypertrophy and heart failure. J. Mol. Cell. Cardiol. 2018, 114, 253–263. [Google Scholar] [CrossRef]
- Myerburg, R.J.; Junttila, M.J. Sudden Cardiac Death Caused by Coronary Heart Disease. Circulation 2012, 125, 1043–1052. [Google Scholar] [CrossRef]
- Khishe, M.; Mosavi, M.R. Chimp Optimization Algorithm. Expert Syst. Appl. 2020, 149, 113338. [Google Scholar] [CrossRef]
Used Variables | EF Related Variables † | Full Echocardiography Data † | Full Characteristic Data † | ||||
---|---|---|---|---|---|---|---|
ECHO-EF | ECG-EF | ECHO-EF + ECG-EF | Model 1 ※ | Model 1 + ECG-EF | Model 2 ※ | Model 2 + ECG-EF | |
Primary outcomes | |||||||
EF recovery | 0.497 | 0.566 ** | 0.569 ** | 0.569 | 0.592 * | 0.613 | 0.624 |
EF reduction | 0.750 | 0.803 *** | 0.811 *** | 0.812 | 0.832 *** | 0.817 | 0.834 *** |
MACE | 0.611 | 0.661 *** | 0.664 *** | 0.705 | 0.714 *** | 0.723 | 0.730 *** |
CV death | 0.705 | 0.773 *** | 0.777 *** | 0.830 | 0.840 ** | 0.845 | 0.852 ** |
HF death | 0.745 | 0.825 *** | 0.821 *** | 0.869 | 0.878 * | 0.892 | 0.897 |
All-cause mortality | 0.591 | 0.648 *** | 0.650 *** | 0.712 | 0.718 *** | 0.748 | 0.752 *** |
Secondary outcomes | |||||||
Arrhythmia death | 0.654 | 0.824 ** | 0.822 ** | 0.897 | 0.906 | 0.904 | 0.912 |
MI death | 0.792 | 0.793 | 0.822 ** | 0.861 | 0.862 | 0.876 | 0.876 |
Stroke death | 0.596 | 0.702 *** | 0.701 *** | 0.792 | 0.809 * | 0.813 | 0.826 * |
New-onset MI | 0.720 | 0.770 *** | 0.778 *** | 0.821 | 0.829 ** | 0.833 | 0.841 ** |
New-onset Stroke | 0.565 | 0.613 *** | 0.615 *** | 0.657 | 0.664 *** | 0.686 | 0.691 *** |
New-onset DM | 0.550 | 0.606 *** | 0.605 *** | 0.648 | 0.653 ** | 0.652 | 0.657 *** |
New-onset HTN | 0.567 | 0.631 *** | 0.633 *** | 0.694 | 0.699 *** | 0.705 | 0.709 *** |
New-onset CKD | 0.585 | 0.630 *** | 0.635 *** | 0.678 | 0.685 *** | 0.714 | 0.717 ** |
LVD Definition | AUCs | Sensitivity | Specificity | Future Outcomes | |
---|---|---|---|---|---|
Attia, et al., (2019) [4] | EF ≤ 35% | 0.932 | 86.3% | 85.7% | EF reduction ≤ 35% |
Kwon, et al., (2019) [35] | EF ≤ 40% | 0.843 (Internal) | 90.0% | 60.4% | N/A |
0.889 (External) | |||||
Attia, et al., (2019) [47] | EF ≤ 35% | 0.911 (<1 year) | 81.5% | 86.3% | N/A |
EF ≤ 35% | 0.918 (<1 month) | 82.5% | 86.8% | ||
Cho, et al., (2020) [36] | EF ≤ 40% | 0.913 (Internal) | 90.5% | 75.6% | N/A |
0.961 (External) | 91.5% | 91.1% | |||
Attia, et al., (2021) [51] | EF ≤ 35% | 0.820 | 26.9% | 97.4% | N/A |
Vaid, et al., (2021) [52] | EF ≤ 40% | 0.94 (Internal) | 89% | 83% | EF reduction ≤ 35% Survival rate |
0.94 (External) | 87% | 85% | |||
EF ≤ 35% | 0.95 (Internal) | 94% | 83% | ||
0.95 (External) | 88% | 87% | |||
This study | EF ≤ 50% | 0.885 | 72.1% | 88.0% | EF reduction ≤ 35% MACEs CV death CV complications |
EF ≤ 35% | 0.947 | 86.9% | 89.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-Y.; Lin, C.-S.; Fang, W.-H.; Lou, Y.-S.; Cheng, C.-C.; Lee, C.-C.; Lin, C. Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis. J. Pers. Med. 2022, 12, 455. https://doi.org/10.3390/jpm12030455
Chen H-Y, Lin C-S, Fang W-H, Lou Y-S, Cheng C-C, Lee C-C, Lin C. Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis. Journal of Personalized Medicine. 2022; 12(3):455. https://doi.org/10.3390/jpm12030455
Chicago/Turabian StyleChen, Hung-Yi, Chin-Sheng Lin, Wen-Hui Fang, Yu-Sheng Lou, Cheng-Chung Cheng, Chia-Cheng Lee, and Chin Lin. 2022. "Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis" Journal of Personalized Medicine 12, no. 3: 455. https://doi.org/10.3390/jpm12030455
APA StyleChen, H. -Y., Lin, C. -S., Fang, W. -H., Lou, Y. -S., Cheng, C. -C., Lee, C. -C., & Lin, C. (2022). Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis. Journal of Personalized Medicine, 12(3), 455. https://doi.org/10.3390/jpm12030455