Artificial Intelligence-Driven Prediction Modeling and Decision Making in Spine Surgery Using Hybrid Machine Learning Models
Abstract
:1. Introduction
2. Relevance of Digitalization in Spine Surgery
2.1. The Need for Structured Decision Making in Spine Surgery
2.2. Database Repositories for Machine Learning Applications in Spine Surgery
3. Hybrid Machine Learning Models for Classification and Prediction Tasks
3.1. Textual Data Conversion Methods for Deep Learning Approaches
3.2. Multi-Input Mixed Data Deep Learning Models
4. Available Artificial Intelligence-Based Models and Classical Statistical Prediction Models Utilized in Spine Surgery
5. Future Perspectives and Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saravi, B.; Li, Z.; Lang, C.N.; Schmid, B.; Lang, F.K.; Grad, S.; Alini, M.; Richards, R.G.; Schmal, H.; Südkamp, N.; et al. The Tissue Renin-Angiotensin System and Its Role in the Pathogenesis of Major Human Diseases: Quo Vadis? Cells 2021, 10, 650. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; March, L.; Zheng, X.; Huang, J.; Wang, X.; Zhao, J.; Blyth, F.M.; Smith, E.; Buchbinder, R.; Hoy, D. Global Low Back Pain Prevalence and Years Lived with Disability from 1990 to 2017: Estimates from the Global Burden of Disease Study 2017. Ann. Transl. Med. 2020, 8, 299. [Google Scholar] [CrossRef] [PubMed]
- Archer, K.R.; Coronado, R.A.; Haug, C.M.; Vanston, S.W.; Devin, C.J.; Fonnesbeck, C.J.; Aaronson, O.S.; Cheng, J.S.; Skolasky, R.L.; Riley, L.H.; et al. A Comparative Effectiveness Trial of Postoperative Management for Lumbar Spine Surgery: Changing Behavior through Physical Therapy (CBPT) Study Protocol. BMC Musculoskelet. Disord. 2014, 15, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, B.I.; Mirza, S.K.; Comstock, B.A.; Gray, D.T.; Kreuter, W.; Deyo, R.A. Reoperation Rates Following Lumbar Spine Surgery and the Influence of Spinal Fusion Procedures. Spine 2007, 32, 382–387. [Google Scholar] [CrossRef]
- Mallappallil, M.; Sabu, J.; Gruessner, A.; Salifu, M. A Review of Big Data and Medical Research. SAGE Open Med. 2020, 8, 2050312120934839. [Google Scholar] [CrossRef] [PubMed]
- Marcus, G. Deep Learning: A Critical Appraisal. arXiv 2018, arXiv:1801.00631. [Google Scholar] [CrossRef]
- Ford, M. Architects of Intelligence: The Truth about AI from the People Building It; Packt Publishing: Birmingham, UK, 2018; ISBN 978-1-78913-126-0. [Google Scholar]
- Cutillo, C.M.; Sharma, K.R.; Foschini, L.; Kundu, S.; Mackintosh, M.; Mandl, K.D. Machine Intelligence in Healthcare—Perspectives on Trustworthiness, Explainability, Usability, and Transparency. NPJ Digit. Med. 2020, 3, 47. [Google Scholar] [CrossRef] [Green Version]
- Saravi, B.; Lang, G.; Ülkümen, S.; Südkamp, N.; Hassel, F. Case-Matched Radiological and Clinical Outcome Evaluation of Interlaminar versus Microsurgical Decompression of Lumbar Spinal Stenosis. Meeting Abstract. German Congress of Orthopaedics and Traumatology (DKOU 2021). 2021. Available online: https://doi.org/10.3205/21DKOU024 (accessed on 11 March 2022).
- Finkelstein, J.A.; Schwartz, C.E. Patient-Reported Outcomes in Spine Surgery: Past, Current, and Future Directions. J. Neurosurg. Spine 2019, 31, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Breakwell, L.M.; Cole, A.A.; Birch, N.; Heywood, C. Should We All Go to the PROM? The First Two Years of the British Spine Registry. Bone Jt. J. 2015, 97, 871–874. [Google Scholar] [CrossRef]
- MacLean, D.L.; Heer, J. Identifying Medical Terms in Patient-Authored Text: A Crowdsourcing-Based Approach. J. Am. Med. Inform. Assoc. 2013, 20, 1120–1127. [Google Scholar] [CrossRef] [Green Version]
- Warby, S.C.; Wendt, S.L.; Welinder, P.; Munk, E.G.S.; Carrillo, O.; Sorensen, H.B.D.; Jennum, P.; Peppard, P.E.; Perona, P.; Mignot, E. Sleep-Spindle Detection: Crowdsourcing and Evaluating Performance of Experts, Non-Experts and Automated Methods. Nat. Methods 2014, 11, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Mavandadi, S.; Dimitrov, S.; Feng, S.; Yu, F.; Sikora, U.; Yaglidere, O.; Padmanabhan, S.; Nielsen, K.; Ozcan, A. Distributed Medical Image Analysis and Diagnosis through Crowd-Sourced Games: A Malaria Case Study. PLoS ONE 2012, 7, e37245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crump, M.J.C.; McDonnell, J.V.; Gureckis, T.M. Evaluating Amazon’s Mechanical Turk as a Tool for Experimental Behavioral Research. PLoS ONE 2013, 8, e57410. [Google Scholar] [CrossRef] [Green Version]
- Bartneck, C.; Duenser, A.; Moltchanova, E.; Zawieska, K. Comparing the Similarity of Responses Received from Studies in Amazon’s Mechanical Turk to Studies Conducted Online and with Direct Recruitment. PLoS ONE 2015, 10, e0121595. [Google Scholar] [CrossRef]
- Wang, C.; Han, L.; Stein, G.; Day, S.; Bien-Gund, C.; Mathews, A.; Ong, J.J.; Zhao, P.-Z.; Wei, S.-F.; Walker, J.; et al. Crowdsourcing in Health and Medical Research: A Systematic Review. Infect. Dis. Poverty 2020, 9, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GDC Data Portal. Available online: Https://Portal.Gdc.Cancer.Gov (accessed on 11 March 2022).
- Phan, N.N.; Chattopadhyay, A.; Lu, T.-P.; Tsai, M.-H. Leveraging Well-Annotated Databases for Deep Learning in Biomedical Research. Transl. Cancer Res. TCR 2020, 9, 7682–7684. [Google Scholar] [CrossRef] [PubMed]
- Kaggle. Available online: https://www.kaggle.com/ (accessed on 11 March 2022).
- GitHub. Available online: https://github.com (accessed on 11 March 2022).
- Nature Scientific Data. Available online: https://www.nature.com/sdata (accessed on 11 March 2022).
- Oxford Academic GigaScience. Available online: https://academic.oup.com/gigascience (accessed on 11 March 2022).
- Osteoarthritis Initiative (OAI) Database. Available online: https://nda.nih.gov/oai (accessed on 11 March 2022).
- Austrian Spinal Cord Injury Study. Available online: https://www.ascis.at (accessed on 11 March 2022).
- Sebastian, A.S. Database Research in Spine Surgery. Clin. Spine Surg. Spine Publ. 2016, 29, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Asher, A.L.; Knightly, J.; Mummaneni, P.V.; Alvi, M.A.; McGirt, M.J.; Yolcu, Y.U.; Chan, A.K.; Glassman, S.D.; Foley, K.T.; Slotkin, J.R.; et al. Quality Outcomes Database Spine Care Project 2012–2020: Milestones Achieved in a Collaborative North American Outcomes Registry to Advance Value-Based Spine Care and Evolution to the American Spine Registry. Neurosurg. Focus 2020, 48, E2. [Google Scholar] [CrossRef]
- SORG. Available online: https://sorg.mgh.harvard.edu (accessed on 11 March 2022).
- Sadilek, A.; Liu, L.; Nguyen, D.; Kamruzzaman, M.; Serghiou, S.; Rader, B.; Ingerman, A.; Mellem, S.; Kairouz, P.; Nsoesie, E.O.; et al. Privacy-First Health Research with Federated Learning. NPJ Digit. Med. 2021, 4, 132. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol. 2019, 10, 1–19. [Google Scholar] [CrossRef]
- Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing Mag. 2020, 37, 50–60. [Google Scholar] [CrossRef]
- Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Nitin Bhagoji, A.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings, R.; et al. Advances and Open Problems in Federated Learning. FNT Mach. Learn. 2021, 14, 1–210. [Google Scholar] [CrossRef]
- Rieke, N.; Hancox, J.; Li, W.; Milletarì, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al. The Future of Digital Health with Federated Learning. NPJ Digit. Med. 2020, 3, 119. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Milletarì, F.; Xu, D.; Rieke, N.; Hancox, J.; Zhu, W.; Baust, M.; Cheng, Y.; Ourselin, S.; Cardoso, M.J.; et al. Privacy-Preserving Federated Brain Tumour Segmentation. In International Workshop on Machine Learning in Medical Imaging; Suk, H.-I., Liu, M., Yan, P., Lian, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 133–141. [Google Scholar]
- Sheller, M.J.; Reina, G.A.; Edwards, B.; Martin, J.; Bakas, S. Multi-Institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation. In International MICCAI Brainlesion Workshop; Springer: Cham, Switzerland, 2018; pp. 92–104. [Google Scholar]
- Wang, F.; Casalino, L.P.; Khullar, D. Deep Learning in Medicine—Promise, Progress, and Challenges. JAMA Intern. Med. 2019, 179, 293. [Google Scholar] [CrossRef] [PubMed]
- Bohr, A.; Memarzadeh, K. The Rise of Artificial Intelligence in Healthcare Applications. In Artificial Intelligence in Healthcare; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–60. ISBN 978-0-12-818438-7. [Google Scholar]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Dreiseitl, S.; Ohno-Machado, L. Logistic Regression and Artificial Neural Network Classification Models: A Methodology Review. J. Biomed. Inform. 2002, 35, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Vans, E.; Shigemizu, D.; Boroevich, K.A.; Tsunoda, T. DeepInsight: A Methodology to Transform a Non-Image Data to an Image for Convolution Neural Network Architecture. Sci. Rep. 2019, 9, 11399. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Zhang, Z. OmicsMapNet: Transforming Omics Data to Take Advantage of Deep Convolutional Neural Network for Discovery. arXiv 2018, arXiv:1804.05283. [Google Scholar]
- van der Maaten, L.; Hinton, G. Visualizing High-Dimensional Data Using t-Sne. 4. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Bazgir, O.; Zhang, R.; Dhruba, S.R.; Rahman, R.; Ghosh, S.; Pal, R. Representation of Features as Images with Neighborhood Dependencies for Compatibility with Convolutional Neural Networks. Nat. Commun. 2020, 11, 4391. [Google Scholar] [CrossRef]
- Freidin, M.B.; Tsepilov, Y.A.; Palmer, M.; Karssen, L.C.; Suri, P.; Aulchenko, Y.S.; Williams, F.M.K.; CHARGE Musculoskeletal Working Group. Insight into the Genetic Architecture of Back Pain and Its Risk Factors from a Study of 509,000 Individuals. Pain 2019, 160, 1361–1373. [Google Scholar] [CrossRef] [PubMed]
- Kanber, B. Sparse Data to Structured Imageset Transformation. arXiv 2020, arXiv:2005.10045. [Google Scholar]
- Pölsterl, S.; Wolf, T.N.; Wachinger, C. Combining 3D Image and Tabular Data via the Dynamic Affine Feature Map Transform. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2021; Volume 12905, pp. 688–698. [Google Scholar] [CrossRef]
- Hao, J.; Kosaraju, S.C.; Tsaku, N.Z.; Song, D.H.; Kang, M. PAGE-Net: Interpretable and Integrative Deep Learning for Survival Analysis Using Histopathological Images and Genomic Data. Pac. Symp. Biocomput. 2020, 25, 355–366. [Google Scholar] [PubMed]
- Mobadersany, P.; Yousefi, S.; Amgad, M.; Gutman, D.A.; Barnholtz-Sloan, J.S.; Velázquez Vega, J.E.; Brat, D.J.; Cooper, L.A.D. Predicting Cancer Outcomes from Histology and Genomics Using Convolutional Networks. Proc. Natl. Acad. Sci. USA 2018, 115, E2970–E2979. [Google Scholar] [CrossRef] [Green Version]
- El-Sappagh, S.; Abuhmed, T.; Riazul Islam, S.M.; Kwak, K.S. Multimodal Multitask Deep Learning Model for Alzheimer’s Disease Progression Detection Based on Time Series Data. Neurocomputing 2020, 412, 197–215. [Google Scholar] [CrossRef]
- Li, S.; Shi, H.; Sui, D.; Hao, A.; Qin, H. A Novel Pathological Images and Genomic Data Fusion Framework for Breast Cancer Survival Prediction. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020, 2020, 1384–1387. [Google Scholar] [CrossRef]
- Spasov, S.; Passamonti, L.; Duggento, A.; Liò, P.; Toschi, N. Alzheimer’s Disease Neuroimaging Initiative A Parameter-Efficient Deep Learning Approach to Predict Conversion from Mild Cognitive Impairment to Alzheimer’s Disease. Neuroimage 2019, 189, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Shavlokhova, V.; Vollmer, M.; Vollmer, A.; Gholam, P.; Saravi, B.; Hoffmann, J.; Engel, M.; Elsner, J.; Neumeier, F.; Freudlsperger, C. In Vivo Reflectance Confocal Microscopy of Wounds: Feasibility of Intraoperative Basal Cell Carcinoma Margin Assessment. Ann. Transl. Med. 2021, 9, 1716. [Google Scholar] [CrossRef]
- Stead, W.W. Clinical Implications and Challenges of Artificial Intelligence and Deep Learning. JAMA 2018, 320, 1107. [Google Scholar] [CrossRef]
- Huang, S.-C.; Pareek, A.; Seyyedi, S.; Banerjee, I.; Lungren, M.P. Fusion of Medical Imaging and Electronic Health Records Using Deep Learning: A Systematic Review and Implementation Guidelines. NPJ Digit. Med. 2020, 3, 136. [Google Scholar] [CrossRef]
- Manning, T.; Sleator, R.D.; Walsh, P. Biologically Inspired Intelligent Decision Making: A Commentary on the Use of Artificial Neural Networks in Bioinformatics. Bioengineered 2014, 5, 80–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhang, T.; Liu, Z.; Hu, H. A Concatenating Framework of Shortcut Convolutional Neural Networks. arXiv 2017, arXiv:1710.00974. [Google Scholar]
- Vasile, C.M.; Udriștoiu, A.L.; Ghenea, A.E.; Popescu, M.; Gheonea, C.; Niculescu, C.E.; Ungureanu, A.M.; Udriștoiu, Ș.; Drocaş, A.I.; Gruionu, L.G.; et al. Intelligent Diagnosis of Thyroid Ultrasound Imaging Using an Ensemble of Deep Learning Methods. Medicina 2021, 57, 395. [Google Scholar] [CrossRef] [PubMed]
- Udriștoiu, A.L.; Ghenea, A.E.; Udriștoiu, Ș.; Neaga, M.; Zlatian, O.M.; Vasile, C.M.; Popescu, M.; Țieranu, E.N.; Salan, A.-I.; Turcu, A.A.; et al. COVID-19 and Artificial Intelligence: An Approach to Forecast the Severity of Diagnosis. Life 2021, 11, 1281. [Google Scholar] [CrossRef]
- Shavlokhova, V.; Sandhu, S.; Flechtenmacher, C.; Koveshazi, I.; Neumeier, F.; Padrón-Laso, V.; Jonke, Ž.; Saravi, B.; Vollmer, M.; Vollmer, A.; et al. Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study. J. Clin. Med. 2021, 10, 5326. [Google Scholar] [CrossRef]
- Yuan, Z.; Jiang, Y.; Li, J.; Huang, H. Hybrid-DNNs: Hybrid Deep Neural Networks for Mixed Inputs. arXiv 2020, arXiv:2005.08419. [Google Scholar]
- Kharazmi, P.; Kalia, S.; Lui, H.; Wang, Z.J.; Lee, T.K. A Feature Fusion System for Basal Cell Carcinoma Detection through Data-Driven Feature Learning and Patient Profile. Ski. Res. Technol. 2018, 24, 256–264. [Google Scholar] [CrossRef]
- Yap, J.; Yolland, W.; Tschandl, P. Multimodal Skin Lesion Classification Using Deep Learning. Exp. Dermatol. 2018, 27, 1261–1267. [Google Scholar] [CrossRef] [Green Version]
- Purwar, S.; Tripathi, R.K.; Ranjan, R.; Saxena, R. Detection of Microcytic Hypochromia Using Cbc and Blood Film Features Extracted from Convolution Neural Network by Different Classifiers. Multimed. Tools Appl. 2020, 79, 4573–4595. [Google Scholar] [CrossRef]
- Nie, D.; Lu, J.; Zhang, H.; Adeli, E.; Wang, J.; Yu, Z.; Liu, L.; Wang, Q.; Wu, J.; Shen, D. Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages. Sci. Rep. 2019, 9, 1103. [Google Scholar] [CrossRef] [Green Version]
- Hyun, S.H.; Ahn, M.S.; Koh, Y.W.; Lee, S.J. A Machine-Learning Approach Using PET-Based Radiomics to Predict the Histological Subtypes of Lung Cancer. Clin. Nucl. Med. 2019, 44, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, N.; Viviano, J.D.; Voineskos, A.N.; Chakravarty, M.M. Alzheimer’s Disease Neuroimaging Initiative Modeling and Prediction of Clinical Symptom Trajectories in Alzheimer’s Disease Using Longitudinal Data. PLoS Comput. Biol. 2018, 14, e1006376. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Y.; Lan, L.; Lin, B.; Chen, W.; Wang, M.; Li, R.; Yang, Y.; Zhao, B.; Hu, Z.; et al. Prediction of Rupture Risk in Anterior Communicating Artery Aneurysms with a Feed-Forward Artificial Neural Network. Eur. Radiol. 2018, 28, 3268–3275. [Google Scholar] [CrossRef] [PubMed]
- Berjano, P.; Langella, F.; Ventriglia, L.; Compagnone, D.; Barletta, P.; Huber, D.; Mangili, F.; Licandro, G.; Galbusera, F.; Cina, A.; et al. The Influence of Baseline Clinical Status and Surgical Strategy on Early Good to Excellent Result in Spinal Lumbar Arthrodesis: A Machine Learning Approach. JPM 2021, 11, 1377. [Google Scholar] [CrossRef]
- Babaee, M.; Soleimani, P.; Zali, A. A Predictive Model for Assessment of Successful Outcome in Posterior Spinal Fusion Surgery. Int. Clin. Neurosci. J. 2018, 4, 143–151. [Google Scholar] [CrossRef]
- Finkelstein, J.A.; Stark, R.B.; Lee, J.; Schwartz, C.E. Patient Factors That Matter in Predicting Spine Surgery Outcomes: A Machine Learning Approach. J. Neurosurg. Spine 2021, 35, 127–136. [Google Scholar] [CrossRef]
- Hoffman, H.; Lee, S.I.; Garst, J.H.; Lu, D.S.; Li, C.H.; Nagasawa, D.T.; Ghalehsari, N.; Jahanforouz, N.; Razaghy, M.; Espinal, M.; et al. Use of Multivariate Linear Regression and Support Vector Regression to Predict Functional Outcome after Surgery for Cervical Spondylotic Myelopathy. J. Clin. Neurosci. 2015, 22, 1444–1449. [Google Scholar] [CrossRef] [Green Version]
- Janssen, E.R.; Osong, B.; van Soest, J.; Dekker, A.; van Meeteren, N.L.; Willems, P.C.; Punt, I.M. Exploring Associations of Preoperative Physical Performance With Postoperative Outcomes After Lumbar Spinal Fusion: A Machine Learning Approach. Arch. Phys. Med. Rehabil. 2021, 102, 1324–1330.e3. [Google Scholar] [CrossRef]
- Khan, O.; Badhiwala, J.H.; Akbar, M.A.; Fehlings, M.G. Prediction of Worse Functional Status After Surgery for Degenerative Cervical Myelopathy: A Machine Learning Approach. Neurosurgery 2021, 88, 584–591. [Google Scholar] [CrossRef]
- Khan, O.; Badhiwala, J.H.; Witiw, C.D.; Wilson, J.R.; Fehlings, M.G. Machine Learning Algorithms for Prediction of Health-Related Quality-of-Life after Surgery for Mild Degenerative Cervical Myelopathy. Spine J. 2021, 21, 1659–1669. [Google Scholar] [CrossRef]
- Khor, S.; Lavallee, D.; Cizik, A.M.; Bellabarba, C.; Chapman, J.R.; Howe, C.R.; Lu, D.; Mohit, A.A.; Oskouian, R.J.; Roh, J.R.; et al. Development and Validation of a Prediction Model for Pain and Functional Outcomes After Lumbar Spine Surgery. JAMA Surg. 2018, 153, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Lewandrowski, K.-U.; Muraleedharan, N.; Eddy, S.A.; Sobti, V.; Reece, B.D.; Ramírez León, J.F.; Shah, S. Artificial Intelligence Comparison of the Radiologist Report With Endoscopic Predictors of Successful Transforaminal Decompression for Painful Conditions of the Lumber Spine: Application of Deep Learning Algorithm Interpretation of Routine Lumbar Magnetic Resonance Imaging Scan. Int. J. Spine Surg. 2020, 14, S75–S85. [Google Scholar] [CrossRef] [PubMed]
- McGirt, M.J.; Sivaganesan, A.; Asher, A.L. Prediction Model for Outcome after Low-Back Surgery: Individualized Likelihood of Complication, Hospital Readmission, Return to Work, and 12-Month Improvement in Functional Disability. Neurosurg. Focus. 2015, 39, E13. [Google Scholar] [CrossRef] [Green Version]
- Merali, Z.G.; Witiw, C.D.; Badhiwala, J.H.; Wilson, J.R.; Fehlings, M.G. Using a Machine Learning Approach to Predict Outcome after Surgery for Degenerative Cervical Myelopathy. PLoS ONE 2019, 14, e0215133. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.; Scheer, J.K.; Smith, J.S. Potential of Predictive Computer Models for Preoperative Patient Selection to Enhance Overall Qualityadjusted Life Years Gained at 2-Year Follow-up: A Simulation in 234 Patients with Adult Spinal Deformity. Neurosurg. Focus. 2017, 43, E2. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, C.F.; Andersen, M.Ø.; Carreon, L.Y.; Eiskjær, S. Applied Machine Learning for Spine Surgeons: Predicting Outcome for Patients Undergoing Treatment for Lumbar Disc Herniation Using PRO Data. Glob. Spine J. 2020, 11, 219256822096764. [Google Scholar] [CrossRef]
- Siccoli, A.; de Wispelaere, M.P.; Schröder, M.L. Machine Learning– Based Preoperative Predictive Analytics for Lumbar Spinal Stenosis. Neurosurg. Focus 2019, 46, 5. [Google Scholar] [CrossRef] [Green Version]
- Staartjes, V.E.; de Wispelaere, M.P.; Vandertop, W.P. Deep Learning-Based Preoperative Predictive Analytics for Patient-Reported Outcomes Following Lumbar Discectomy: Feas9ibility of Center-Specific Modeling. Spine J. 2019, 19, 853–861. [Google Scholar] [CrossRef]
- Staartjes, V.E.; Stumpo, V.; Ricciardi, L.; Maldaner, N.; Eversdijk, H.A.J.; Vieli, M.; Ciobanu-Caraus, O.; Raco, A.; Miscusi, M.; Perna, A.; et al. FUSE-ML: Development and External Validation of a Clinical Prediction Model for Mid-Term Outcomes after Lumbar Spinal Fusion for Degenerative Disease. Eur. Spine J. 2022. [Google Scholar] [CrossRef]
- Wirries, A.; Geiger, F.; Hammad, A.; Oberkircher, L.; Blümcke, I.; Jabari, S. Artificial Intelligence Facilitates Decision-Making in the Treatment of Lumbar Disc Herniations. Eur. Spine J. 2021, 30, 2176–2184. [Google Scholar] [CrossRef]
- André, A.; Peyrou, B.; Carpentier, A.; Vignaux, J.-J. Feasibility and Assessment of a Machine Learning-Based Predictive Model of Outcome After Lumbar Decompression Surgery. Glob. Spine J. 2020, 11, 219256822096937. [Google Scholar] [CrossRef] [PubMed]
- Arvind, V.; Kim, J.S.; Oermann, E.K. Predicting Surgical Complications in Adult Patients Undergoing Anterior Cervical Discectomy and Fusion Using Machine Learning. Neurospine 2018, 15, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Bekelis, K.; Desai, A.; Bakhoum, S.F.; Missios, S. A Predictive Model of Complications after Spine Surgery: The National Surgical Quality Improvement Program (NSQIP) 2005–2010. Spine J. 2014, 14, 1247–1255. [Google Scholar] [CrossRef]
- Han, S.S.; Azad, T.D.; Suarez, P.A.; Ratliff, J.K. A Machine Learning Approach for Predictive Models of Adverse Events Following Spine Surgery. Spine J. 2019, 19, 1772–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karhade, A.V.; Bongers, M.E.R.; Groot, O.Q.; Cha, T.D.; Doorly, T.P.; Fogel, H.A.; Hershman, S.H.; Tobert, D.G.; Srivastava, S.D.; Bono, C.M.; et al. Development of Machine Learning and Natural Language Processing Algorithms for Preoperative Prediction and Automated Identification of Intraoperative Vascular Injury in Anterior Lumbar Spine Surgery. Spine J. 2021, 21, 1635–1642. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Arvind, V.; Oermann, E.K. Predicting Surgical Complications in Patients Undergoing Elective Adult Spinal Deformity Procedures Using Machine Learning. Spine Deform. 2018, 6, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Merrill, R.K.; Arvind, V.; Kaji, D.; Pasik, S.D.; Nwachukwu, C.C.; Vargas, L.; Osman, N.S.; Oermann, E.K.; Caridi, J.M.; et al. Examining the Ability of Artificial Neural Networks Machine Learning Models to Accurately Predict Complications Following Posterior Lumbar Spine Fusion. Spine 2018, 43, 853–860. [Google Scholar] [CrossRef]
- Massaad, E.; Williams, N.; Hadzipasic, M.; Patel, S.S.; Fourman, M.S.; Kiapour, A.; Schoenfeld, A.J.; Shankar, G.M.; Shin, J.H. Performance Assessment of the Metastatic Spinal Tumor Frailty Index Using Machine Learning Algorithms: Limitations and Future Directions. Neurosurg. Focus 2021, 50, E5. [Google Scholar] [CrossRef]
- Ratliff, J.K.; Balise, R.; Veeravagu, A. Predicting Occurrence of Spine Surgery Complications Using “Big Data” Modeling of an Administrative Claims Database. J. Bone Jt. Surg. 2016, 98, 824–834. [Google Scholar] [CrossRef]
- Shah, A.A.; Devana, S.K.; Lee, C.; Bugarin, A.; Lord, E.L.; Shamie, A.N.; Park, D.Y.; van der Schaar, M.; SooHoo, N.F. Machine Learning-Driven Identification of Novel Patient Factors for Prediction of Major Complications after Posterior Cervical Spinal Fusion. Eur. Spine J. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Veeramani, A.; Zhang, A.S.; Blackburn, A.Z.; Etzel, C.M.; DiSilvestro, K.J.; McDonald, C.L.; Daniels, A.H. An Artificial Intelligence Approach to Predicting Unplanned Intubation Following Anterior Cervical Discectomy and Fusion. Glob. Spine J. 2022, 11, 21925682211053590. [Google Scholar] [CrossRef]
- Wang, K.Y.; Ikwuezunma, I.; Puvanesarajah, V.; Babu, J.; Margalit, A.; Raad, M.; Jain, A. Using Predictive Modeling and Supervised Machine Learning to Identify Patients at Risk for Venous Thromboembolism Following Posterior Lumbar Fusion. Glob. Spine J. 2021, 11, 21925682211019360. [Google Scholar] [CrossRef]
- Wong, D.J.N.; Oliver, C.M.; Moonesinghe, S.R. Predicting Postoperative Morbidity in Adult Elective Surgical Patients Using the Surgical Outcome Risk Tool (SORT). Br. J. Anaesth. 2017, 119, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, A.A.; Karhade, A.V.; Bono, C.M. Development of a Machine Learning Algorithm for Prediction of Failure of Nonoperative Management in Spinal Epidural Abscess. Spine J. 2019, 19, 1657–1665. [Google Scholar] [CrossRef]
- Aldebeyan, S.; Aoude, A.; Fortin, M. Predictors of Discharge Destination after Lumbar Spine Fusion Surgery. Spine 2016, 41, 1535–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, A.; Ngufor, C.; Kerezoudis, P. Can Machine Learning Algorithms Accurately Predict Discharge to Nonhome Facility and Early Unplanned Readmissions Following Spinal Fusion? Analysis of a National Surgical Registry. J. Neurosurg. Spine 2019, 31, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Ogink, P.; Thio, Q. Development of Machine Learning Algorithms for Prediction of Discharge Disposition after Elective Inpatient Surgery for Lumbar Degenerative Disc Disorders. Neurosurg. Focus. 2018, 45, E6. [Google Scholar] [CrossRef] [Green Version]
- Karnuta, J.M.; Golubovsky, J.L.; Haeberle, H.S. Can a Machine Learning Model Accurately Predict Patient Resource Utilization Following Lumbar Spinal Fusion? Spine J. 2019, 20, 329–336. [Google Scholar] [CrossRef]
- Ogink, P.T.; Karhade, A.V.; Thio, Q.C.B.S.; Gormley, W.B.; Oner, F.C.; Verlaan, J.J.; Schwab, J.H. Predicting Discharge Placement after Elective Surgery for Lumbar Spinal Stenosis Using Machine Learning Methods. Eur. Spine J. 2019, 28, 1433–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogink, P.T.; Karhade, A.V.; Thio, Q.C.B.S. Development of a Machine Learning Algorithm Predicting Discharge Placement after Surgery for Spondylolisthesis. Eur. Spine J. 2019, 28, 1775–1782. [Google Scholar] [CrossRef]
- Stopa, B.M.; Robertson, F.C.; Karhade, A.V.; Chua, M.; Broekman, M.L.D.; Schwab, J.H.; Smith, T.R.; Gormley, W.B. Predicting Nonroutine Discharge after Elective Spine Surgery: External Validation of Machine Learning Algorithms. J. Neurosurg. Spine 2019, 31, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.S.; Canseco, J.A.; Chang, M.; Levy, H.A.; Nicholson, K.; Karamian, B.A.; Mangan, J.; Fang, T.; Vaccaro, A.R.; Kepler, C.K. A Novel Scoring System to Predict Length of Stay After Anterior Cervical Discectomy and Fusion. J. Am. Acad. Orthop. Surg. 2021, 29, 758–766. [Google Scholar] [CrossRef]
- Zhang, A.S.; Veeramani, A.; Quinn, M.S.; Alsoof, D.; Kuris, E.O.; Daniels, A.H. Machine Learning Prediction of Length of Stay in Adult Spinal Deformity Patients Undergoing Posterior Spine Fusion Surgery. J. Clin. Med. 2021, 10, 4074. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, B.S.; Yamaguchi, J.T.; Garcia, R. Using Machine Learning to Predict 30-Day Readmissions after Posterior Lumbar Fusion: An NSQIP Study Involving 23,264 Patients [Published Ahead of Print. Neurosurg. Spine 2019, 32, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Kalagara, S.; Eltorai, A.E.M.; Durand, W.M.; DePasse, J.M.; Daniels, A.H. Machine Learning Modeling for Predicting Hospital Readmission Following Lumbar Laminectomy. J. Neurosurg. Spine 2018, 30, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Karhade, A.V.; Lavoie-Gagne, O.; Agaronnik, N.; Ghaednia, H.; Collins, A.K.; Shin, D.; Schwab, J.H. Natural Language Processing for Prediction of Readmission in Posterior Lumbar Fusion Patients: Which Free-Text Notes Have the Most Utility? Spine J. 2022, 22, 272–277. [Google Scholar] [CrossRef]
- Kuris, E.O.; Veeramani, A.; McDonald, C.L.; DiSilvestro, K.J.; Zhang, A.S.; Cohen, E.M.; Daniels, A.H. Predicting Readmission After Anterior, Posterior, and Posterior Interbody Lumbar Spinal Fusion: A Neural Network Machine Learning Approach. World Neurosurg. 2021, 151, e19–e27. [Google Scholar] [CrossRef]
- Nunes, A.A.; Pinheiro, R.P.; Costa, H.R.T.; Defino, H.L.A. Predictors of Hospital Readmission within 30 Days after Surgery for Thoracolumbar Fractures: A Mixed Approach. Health Plan. Manag. 2022, 11, 2192568220969373. [Google Scholar] [CrossRef]
- Karhade, A.V.; Thio, Q.C.B.S.; Ogink, P.T. Predicting 90-Day and 1-Year Mortality in Spinal Metastatic Disease: Development and Internal Validation. Neurosurgery 2019, 85, 671–681. [Google Scholar] [CrossRef]
- Karhade, A.V.; Thio, Q.C.B.S.; Ogink, P.T. Development of Machine Learning Algorithms for Prediction of 30-Day Mortality after Surgery for Spinal Metastasis. Neurosurgery 2019, 85, 83–91. [Google Scholar] [CrossRef]
- Karhade, A.V.; Shah, A.A.; Bono, C.M. Development of Machine Learning Algorithms for Prediction of Mortality in Spinal Epidural Abscess. Spine J. 2019, 19, 1950–1959. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Karhade, A.V.; Park, H.Y.; Sheppard, W.L.; Macyszyn, L.J.; Everson, R.G.; Shamie, A.N.; Park, D.Y.; Schwab, J.H.; Hornicek, F.J. Updated External Validation of the SORG Machine Learning Algorithms for Prediction of Ninety-Day and One-Year Mortality after Surgery for Spinal Metastasis. Spine J. 2021, 21, 1679–1686. [Google Scholar] [CrossRef]
- Yang, J.-J.; Chen, C.-W.; Fourman, M.S.; Bongers, M.E.R.; Karhade, A.V.; Groot, O.Q.; Lin, W.-H.; Yen, H.-K.; Huang, P.-H.; Yang, S.-H.; et al. International External Validation of the SORG Machine Learning Algorithms for Predicting 90-Day and One-Year Survival of Patients with Spine Metastases Using a Taiwanese Cohort. Spine J. 2021, 21, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.-H. A Machine Learning Algorithm for Predicting Prolonged Postoperative Opioid Prescription after Lumbar Disc Herniation Surgery. An External Validation Study Using 1,316 Patients from a Taiwanese Cohort. Spine J. 2022. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Ogink, P.T.; Thio, Q.C.B.S. Development of Machine Learning Algorithms for Prediction of Prolonged Opioid Prescription after Surgery for Lumbar Disc Herniation. Spine J. 2019, 19, 1764–1771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fatemi, P.; Medress, Z.; Azad, T.D.; Veeravagu, A.; Desai, A.; Ratliff, J.K. A Predictive-Modeling Based Screening Tool for Prolonged Opioid Use after Surgical Management of Low Back and Lower Extremity Pain. Spine J. 2020, 20, 1184–1195. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Li, W.; Tang, Z.-R.; Wang, H.; Pei, H.; Yuan, B. Development and Validation of a Novel Predictive Model and Web Calculator for Evaluating Transfusion Risk after Spinal Fusion for Spinal Tuberculosis: A Retrospective Cohort Study. BMC Musculoskelet. Disord. 2021, 22, 825. [Google Scholar] [CrossRef]
- Durand, W.M.; DePasse, J.M.; Daniels, A.H. Predictive Modeling for Blood Transfusion After Adult Spinal Deformity Surgery: A Tree-Based Machine Learning Approach. Spine 2018, 43, 1058–1066. [Google Scholar] [CrossRef]
- Papić, M.; Brdar, S.; Papić, V. Return to Work after Lumbar Microdiscectomy—Personalizing Approach through Predictive Modeling. Stud Health Technol. Inform. 2016, 224, 181–183. [Google Scholar]
- Pasha, S.; Shah, S.; Newton, P.; Harms Study Group. Machine Learning Predicts the 3D Outcomes of Adolescent Idiopathic Scoliosis Surgery Using Patient-Surgeon Specific Parameters. Spine 2021, 46, 579–587. [Google Scholar] [CrossRef]
- de Vries, B.C.S.; Hegeman, J.H.; Nijmeijer, W.; Geerdink, J.; Seifert, C.; Groothuis-Oudshoorn, C.G.M. Comparing Three Machine Learning Approaches to Design a Risk Assessment Tool for Future Fractures: Predicting a Subsequent Major Osteoporotic Fracture in Fracture Patients with Osteopenia and Osteoporosis. Osteoporos. Int. 2021, 32, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Varghese, V.; Krishnan, V.; Kumar, G.S. Evaluating Pedicle-Screw Instrumentation Using Decision-Tree Analysis Based on Pullout Strength. Asian Spine J. 2018, 12, 611–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.-Y.; Yu, L.-C.; Chen, H.-C. Comparison of Models for the Prediction of Medical Costs of Spinal Fusion in Taiwan Diagnosisrelated Groups by Machine Learning Algorithms. Healthc. Inform. Res. 2018, 24, 29. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Canseco, J.A.; Nicholson, K.J.; Patel, N.; Vaccaro, A.R. The Role of Machine Learning in Spine Surgery: The Future Is Now. Front. Surg. 2020, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Schwab, J.H.; Bedair, H.S. Development of Machine Learning Algorithms for Prediction of Sustained Postoperative Opioid Prescriptions after Total Hip Arthroplasty. J. Arthroplast. 2019, 34, 2272–2277. [Google Scholar] [CrossRef]
- Harada, G.K.; Siyaji, Z.K.; Mallow, G.M.; Hornung, A.L.; Hassan, F.; Basques, B.A.; Mohammed, H.A.; Sayari, A.J.; Samartzis, D.; An, H.S. Artificial Intelligence Predicts Disk Re-Herniation Following Lumbar Microdiscectomy: Development of the “RAD” Risk Profile. Eur. Spine J. 2021, 30, 2167–2175. [Google Scholar] [CrossRef]
- Karhade, A.V.; Ogink, P.T.; Thio, Q.C.B.S. Machine Learning for Prediction of Sustained Opioid Prescription after Anterior Cervical Discectomy and Fusion. Spine J. 2019, 19, 976–983. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Liu, W.; Xu, C.; Li, W.; Zhang, K.; Su, S.; Li, R.; Hu, Z.; Liu, Q.; et al. Machine Learning Applications for the Prediction of Bone Cement Leakage in Percutaneous Vertebroplasty. Front. Public Health 2021, 9, 812023. [Google Scholar] [CrossRef]
- Maki, S.; Furuya, T.; Yoshii, T.; Egawa, S.; Sakai, K.; Kusano, K.; Nakagawa, Y.; Hirai, T.; Wada, K.; Katsumi, K.; et al. Machine Learning Approach in Predicting Clinically Significant Improvements After Surgery in Patients with Cervical Ossification of the Posterior Longitudinal Ligament. Spine 2021, 46, 1683–1689. [Google Scholar] [CrossRef]
- Passias, P.G.; Vasquez-Montes, D.; Poorman, G.W. Predictive Model for Distal Junctional Kyphosis after Cervical Deformity Surgery. Spine J. 2018, 18, 2187–2194. [Google Scholar] [CrossRef]
- Wang, H.; Tang, Z.-R.; Li, W.; Fan, T.; Zhao, J.; Kang, M.; Dong, R.; Qu, Y. Prediction of the Risk of C5 Palsy after Posterior Laminectomy and Fusion with Cervical Myelopathy Using a Support Vector Machine: An Analysis of 184 Consecutive Patients. J. Orthop. Surg. Res. 2021, 16, 332. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.Y.L.; Harada, G.; Lee, R.; Gandhi, S.D.; Dziedzic, A.; Espinoza-Orias, A.; Parnianpour, M.; Louie, P.K.; Basques, B.; An, H.S.; et al. Preoperative Paraspinal Neck Muscle Characteristics Predict Early Onset Adjacent Segment Degeneration in Anterior Cervical Fusion Patients: A Machine-learning Modeling Analysis. J. Orthop. Res. 2021, 39, 1732–1744. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Hassanzadeh, T.; Essam, D.; Sarker, R. 2D to 3D Evolutionary Deep Convolutional Neural Networks for Medical Image Segmentation. IEEE Trans. Med. Imaging 2021, 40, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Koumakis, L. Deep Learning Models in Genomics; Are We There Yet? Comput. Struct. Biotechnol. J. 2020, 18, 1466–1473. [Google Scholar] [CrossRef]
- Massaad, E.; Fatima, N.; Hadzipasic, M.; Alvarez-Breckenridge, C.; Shankar, G.M.; Shin, J.H. Predictive Analytics in Spine Oncology Research: First Steps, Limitations, and Future Directions. Neurospine 2019, 16, 669–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, A.; Jones, A.J.; Goddard, P.R. The Influence of Clinical Information on the Reporting of CT by Radiologists. Br. J. Radiol. 2000, 73, 1052–1055. [Google Scholar] [CrossRef]
- Cohen, M.D. Accuracy of Information on Imaging Requisitions: Does It Matter? J. Am. Coll. Radiol. 2007, 4, 617–621. [Google Scholar] [CrossRef]
- Boonn, W.W.; Langlotz, C.P. Radiologist Use of and Perceived Need for Patient Data Access. J. Digit Imaging 2009, 22, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Austin, C.C.; Brown, S.; Fong, N.; Humphrey, C.; Leahey, A.; Webster, P. Research Data Repositories: Review of Current Features, Gap Analysis, and Recommendations for Minimum Requirements. IASSIST Q. 2016, 39, 24. [Google Scholar] [CrossRef]
- Antani, S.; Long, L.R.; Thoma, G.R. Content-Based Image Retrieval for Large Biomedical Image Archives. Stud. Health Technol. Inform. 2004, 107, 829–833. [Google Scholar] [PubMed]
- Raza, K.; Singh, N.K. A Tour of Unsupervised Deep Learning for Medical Image Analysis. Curr. Med. Imaging 2021, 17, 1059–1077. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. In Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press (US): Washington, DC, USA, 2011; ISBN 978-0-309-22222-8.
- Caballé-Cervigón, N.; Castillo-Sequera, J.L.; Gómez-Pulido, J.A.; Gómez-Pulido, J.M.; Polo-Luque, M.L. Machine Learning Applied to Diagnosis of Human Diseases: A Systematic Review. Appl. Sci. 2020, 10, 5135. [Google Scholar] [CrossRef]
- Machluf, Y.; Tal, O.; Navon, A.; Chaiter, Y. From Population Databases to Research and Informed Health Decisions and Policy. Front. Public Health 2017, 5, 230. [Google Scholar] [CrossRef] [PubMed]
- Hengstler, M.; Enkel, E.; Duelli, S. Applied Artificial Intelligence and Trust—The Case of Autonomous Vehicles and Medical Assistance Devices. Technol. Forecast. Soc. Change 2016, 105, 105–120. [Google Scholar] [CrossRef]
- Wang, W.; Siau, K. Trusting Artificial Intelligence in Healthcare. In Proceedings of the AMCIS, AMCIS 2018, New Orleans, LA, USA, 16–18 August 2018. [Google Scholar]
Author (Year) | Number of Datapoints | Algorithm | Intervention/Diagnosis | Outcome |
---|---|---|---|---|
Aldebeyan et al. (2016) [99] | 15.092 | MLOR | lumbar spine fusion surgery | discharge disposition |
Andre et al. (2020) [85] | 60 | ANN | lumbar decompression | complications |
Arvind et al. (2018) [86] | 20.879 | ANN, LOR, RF, SVM | cervical discectomy and fusion | complications |
Babaee et al. (2018) [69] | 480 | MLP, RBF, LOR | posterior spinal fusion surgery | PROMs |
Bekelis et al. (2014) [87] | 2732 | MLOR | corpectomy; spinal fusion | complications; LOS |
Berjano et al. (2021) [68] | 1243 | RF | spinal lumbar arthrodesis | PROMs |
Dong et al. (2021) [121] | 152 | SVM, DTL, MLP, NB, k-NN, RF | spinal fusion | blood transfusion |
Durand et al. (2018) [122] | 1029 | RF, DTL | spinal deformity | blood transfusion |
Finkelstein et al. (2021) [70] | 122 | LASSO, bootstrapping | spinal decompression/fusion surgery | PROMs |
Goyal et al. (2019) [100] | 59.145 | ANN, GLM, GLMnet, GBM, NB, pLDA | spinal fusion | discharge disposition; readmission |
Han et al. (2019) [88] | 1.106.234 | LASSO-R; LOR | spine surgery (various diagnoses and procedures) | complications |
Harada et al. (2021) [130] | 2630 | XGBoost | lumbar microdiscectomy | disc re-herniation |
Hoffmann et al. (2015) [71] | 27 | MLIR; SVR | cervical spondylotic myelopathy | PROMs |
Hopkins et al. (2019) [108] | 23.263 | ANN | spinal fusion surgery | 30-day hospital readmission |
Hu et al. (2022) [118] | 1316 | SORG-algorithm (SGB) | lumbar disc herniation | prolonged postoperative opioid prescription |
Janssen et al. (2021) [72] | 77 | RF | lumbar spinal fusion | PROMs |
Kalagara et al. (2018) [109] | 26.869 | GBM | lumbar laminectomy | readmission |
Karhade et al. (2019) [131] | 2737 | ANN, elastic-net-LOR, SGB, SVM, RF | cervical discectomy and fusion | sustained opioid prescription |
Karhade et al. (2018) [101] | 26.364 | ANN, BN, DTL, SVM | lumbar disc surgery | discharge disposition |
Karhade et al. (2019) [115] | 1053 | ANN, elastic-net-LOR, SGB, SVM, RF | spinal epidural abscess | in-hospital and 90-day post-charge mortality |
Karhade et al. (2019) [114] | 1790 | ANN, DTL, BN, SVM | spinal metastasis surgery | 30-day-mortality |
Karhade et al. (2019) [113] | 732 | ANN, elastic-net-LOR, SGB, SVM, RF | spinal metastatic disease management | 90-day-mortality and 1-year-mortality |
Karnuta et al. (2019) [102] | 3807 | NB | lumbar spinal fusion | discharge disposition and LOS |
Karhade et al. (2021) [89] | 1035 | XGBoost (NLP algorithm) | anterior lumbar spine surgery | complications |
Karhade et al. (2022) [110] | 708 | XGBoost (NLP algorithm) | posterior lumbar fusion | readmission |
Khan et al. (2021) [74] | 193 | SVM, GAM (LogitBoost), MARS (earth), GBM, DTL, RF, LOR, PLS | degenerative cervical myelopathy | PROMs |
Khan et al. (2021) [73] | 757 | SVM, GAM (LogitBoost), MARS (earth), GBM, DTL, RF, LOR, PLS | degenerative cervical myelopathy | PROMs |
Khor et al. (2018) [75] | 1583 | MLOR | lumbar spine surgery | PROMs |
Kim et al. (2018) [90] | 4073 | ANN, LOR | adult spinal deformity | complications |
Kim et al. (2018) [91] | 22.629 | ANN, LOR | lumbar spine fusion | complications |
Kuo et al. (2018) [127] | 532 | ANN, SVM, DTL, BN | spinal fusion | cost prediction |
Kuris et al. (2021) [111] | 63.533 | ANN | posterior lumbar interbody fusion | readmission |
Lewandrowski et al. (2020) [76] | 383 | ANN, LOR | lumbar spinal decompression | PROMs |
Li et al. (2021) [132] | 385 | LOR, GBM, XGBoost, RF, DTL, MLP | osteoporotic vertebral compression fracture | bone cement leakage |
Maki et al. (2021) [133] | 478 | GBM, XGBoost, RF, LOR | cervical ossification of the posterior longitudinal ligament | PROMs |
Massaad et al. (2022) [92] | 484 | k-means clustering analysis, LOR | spinal metastases surgery | complications, LOS, mortality |
McGirt et al. (2015) [77] | 1803 | BN, LOR | lumbar spine surgery | PROMs |
Merali et al. (2019) [78] | 757 | ANN, LOR, DTL, RF, SVM | degenerative cervical myelopathy | PROMs |
Nunes et al. (2022) [112] | 215.999 | ANN, Cox-Regression, XGBoost, DTL, NB, RF | thoracolumbar fractures | 30-day readmission |
Ogink et al. (2019) [104] | 9338 | ANN, DTL, BN, SVM | Spondylolisthesis | discharge disposition |
Ogink et al. (2019) [103] | 28.600 | ANN, DTL, BN, SVM | lumbar spinal stenosis | discharge disposition |
Oh et al. (2017) [79] | 234 | DTL | adult spinal deformity | PROMs |
Papić et al. (2016) [123] | 153 | DTL, SVM, MLP | lumbar microdiscectomy | return to work |
Pasha et al. (2021) [124] | 371 | EL | adult idiopathic scoliosis | 3D spinal alignment |
Passias et al. (2018) [134] | 101 | DTL | cervical deformity surgery | distal junctional kyphosis |
Pedersen et al. (2020) [80] | 1968 | ANN, DTL, RF, SVM | lumbar disc herniation | PROMs |
Ratliff et al. (2016) [93] | 279.135 | LASSO, LOR | spine surgery (various diagnoses and procedures) | complications |
Russo et al. (2021) [106] | 1516 | MLOR, LASSO | cervical discectomy | LOS |
Shah et al. (2019) [98] | 367 | ANN, RF, SVM, SGB, elastic-net-LOR | spinal epidural abscess | complications |
Shah et al. (2021) [116] | 298 | SORG-algorithm (SGB) | spinal metastasis surgery | 90-day and 1-year mortality |
Shah et al. (2021) [94] | 6822 | LOR, RF, GBM, XGBoost | posterior cervical spinal fusion | complications |
Siccoli et al. (2019) [81] | 635 | ANN, RF, XGBoost, DTL, GLM, k-NN | lumbar spinal stenosis | PROMs, reoperations, LOS |
Staartjes et al. (2019) [82] | 422 | ANN, LOR | lumbar discectomy | PROMs |
Staartjes et al. (2022) [83] | 817 | GLM, elastic-net-LOR, k-NN | lumbar spinal fusion | PROMs |
Stopa et al. (2019) [105] | 144 | ANN | lumbar disc surgery | discharge disposition, LOS |
Veeramani et al. (2022) [95] | 54.502 | ANN, LOR, MVR, DTL, RF, GBM, XGBoost | anterior cervical discectomy and fusion | complications |
de Vries et al. (2021) [125] | 7578 | ANN, RF, Cox-regression | fracture patients with osteopenia and osteoporosis | future fracture |
Wang et al. (2021) [96] | 13.500 | XGBoost | posterior lumbar fusion | complications |
Wang et al. (2021) [135] | 184 | SVM | posterior laminectomy and fusion with cervical myelopathy | complications |
Wong et al. (2020) [136] | 1164 | SVM | anterior cervical discectomy and fusion | complications |
Wirries et al. (2021) [84] | 60 | ANN | lumbar disc herniation | PROMs |
Yang et al. (2021) [117] | 427 | SORG-algorithm (SGB) | spinal metastasis surgery | 90-day and 1-year mortality |
Zhang et al. (2021) [107] | 1281 | LOR, DTL, RF, XGBoost, GM | spinal fusion surgery | LOS |
Zhang et al. (2020) [120] | 19.317 | ANN, LASSO, LOR, RF, SGB | thoracic or lumbar spine surgery (low back pain) | prolonged opioid use |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saravi, B.; Hassel, F.; Ülkümen, S.; Zink, A.; Shavlokhova, V.; Couillard-Despres, S.; Boeker, M.; Obid, P.; Lang, G.M. Artificial Intelligence-Driven Prediction Modeling and Decision Making in Spine Surgery Using Hybrid Machine Learning Models. J. Pers. Med. 2022, 12, 509. https://doi.org/10.3390/jpm12040509
Saravi B, Hassel F, Ülkümen S, Zink A, Shavlokhova V, Couillard-Despres S, Boeker M, Obid P, Lang GM. Artificial Intelligence-Driven Prediction Modeling and Decision Making in Spine Surgery Using Hybrid Machine Learning Models. Journal of Personalized Medicine. 2022; 12(4):509. https://doi.org/10.3390/jpm12040509
Chicago/Turabian StyleSaravi, Babak, Frank Hassel, Sara Ülkümen, Alisia Zink, Veronika Shavlokhova, Sebastien Couillard-Despres, Martin Boeker, Peter Obid, and Gernot Michael Lang. 2022. "Artificial Intelligence-Driven Prediction Modeling and Decision Making in Spine Surgery Using Hybrid Machine Learning Models" Journal of Personalized Medicine 12, no. 4: 509. https://doi.org/10.3390/jpm12040509
APA StyleSaravi, B., Hassel, F., Ülkümen, S., Zink, A., Shavlokhova, V., Couillard-Despres, S., Boeker, M., Obid, P., & Lang, G. M. (2022). Artificial Intelligence-Driven Prediction Modeling and Decision Making in Spine Surgery Using Hybrid Machine Learning Models. Journal of Personalized Medicine, 12(4), 509. https://doi.org/10.3390/jpm12040509