Epigenetic Signatures of Smoking in Five Brain Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. DNA Extraction, DNAm Analysis, and Quality Control
2.3. Statistical Analyses
2.3.1. Between-Tissue Correlation
2.3.2. EWAS in Five Brain Regions
2.3.3. Differentially Methylated Regions
2.3.4. Gene Ontology (GO) Enrichment Analysis
2.3.5. GWAS Enrichment Analysis
3. Results
3.1. Correlation of Methylation Levels
3.2. Epigenome-Wide Association Studies
3.3. Differentially Methylated Regions
3.4. Gene-Ontology Analysis
3.5. GWAS Enrichment Analysis
3.6. Consistency of Smoking-Associated CpG Sites in EWAS Results of Blood and Brain
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reitsma, M.B.; Kendrick, P.J.; Ababneh, E.; Abbafati, C.; Abbasi-Kangevari, M.; Abdoli, A.; Abedi, A.; Abhilash, E.S.; Abila, D.B.; Aboyans, V.; et al. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990–2019: A systematic analysis from the Global Burden of Disease Study 2019. Lancet 2021, 397, 2337–2360. [Google Scholar] [CrossRef]
- World Health Organization. WHO Report on the Global Tobacco Epidemic, 2019: Offer Help to Quit Tobacco Use; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Zong, D.; Liu, X.; Li, J.; Ouyang, R.; Chen, P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenet. Chromatin 2019, 12, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitling, L.P. Current Genetics and Epigenetics of Smoking/Tobacco-Related Cardiovascular Disease. Arter. Thromb. Vasc. Biol. 2013, 33, 1468–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joehanes, R.; Just, A.C.; Marioni, R.E.; Pilling, L.C.; Reynolds, L.M.; Mandaviya, P.R.; Guan, W.; Xu, T.; Elks, C.E.; Aslibekyan, S.; et al. Epigenetic Signatures of Cigarette Smoking. Circ. Cardiovasc. Genet. 2016, 9, 436–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stueve, T.R.; Li, W.-Q.; Shi, J.; Marconett, C.N.; Zhang, T.; Yang, C.; Mullen, D.; Yan, C.; Wheeler, W.; Hua, X.; et al. Epigenome-wide analysis of DNA methylation in lung tissue shows concordance with blood studies and identifies tobacco smoke-inducible enhancers. Hum. Mol. Genet. 2017, 26, 3014–3027. [Google Scholar] [CrossRef]
- Sundar, I.K.; Yin, Q.; Baier, B.S.; Yan, L.; Mazur, W.; Li, D.; Susiarjo, M.; Rahman, I. DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD. Clin. Epigenet. 2017, 9, 38. [Google Scholar] [CrossRef]
- Tsai, P.-C.; Glastonbury, C.; Eliot, M.N.; Bollepalli, S.; Yet, I.; Castillo-Fernandez, J.; Carnero-Montoro, E.; Hardiman, T.; Martin, T.; Vickers, A.; et al. Smoking induces coordinated DNA methylation and gene expression changes in adipose tissue with consequences for metabolic health. Clin. Epigenetics 2018, 10, 126. [Google Scholar] [CrossRef]
- Markunas, C.A.; Semick, S.A.; Quach, B.C.; Tao, R.; Deep-Soboslay, A.; Carnes, M.U.; Bierut, L.J.; Hyde, T.M.; Kleinman, J.E.; Johnson, E.O.; et al. Genome-wide DNA methylation differences in nucleus accumbens of smokers vs. nonsmokers. Neuropsychopharmacology 2021, 46, 554–560. [Google Scholar] [CrossRef]
- Koob, G.; Volkow, N. Neurocircuitry of Addiction. Am. Psychiatr. Assoc. Publ. Textb. Subst. Use Disord. Treat. 2021, 35, 217–238. [Google Scholar]
- Volkow, N.D.; Morales, M. The Brain on Drugs: From Reward to Addiction. Cell 2015, 162, 712–725. [Google Scholar] [CrossRef] [Green Version]
- Balleine, B.W.; Delgado, M.R.; Hikosaka, O. The Role of the Dorsal Striatum in Reward and Decision-Making. J. Neurosci. 2007, 27, 8161–8165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zillich, L.; Frank, J.; Streit, F.; Friske, M.M.; Foo, J.C.; Sirignano, L.; Heilmann-Heimbach, S.; Dukal, H.; Degenhardt, F.; Hoffmann, P.; et al. Epigenome-wide association study of alcohol use disorder in five brain regions. Neuropsychopharmacology 2021, 47, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Lehne, B.; Drong, A.W.; Loh, M.; Zhang, W.; Scott, W.R.; Tan, S.-T.; Afzal, U.; Scott, J.; Jarvelin, M.-R.; Elliott, P.; et al. A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biol. 2015, 16, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Du, P.; Zhang, X.; Huang, C.-C.; Jafari, N.; Kibbe, A.W.; Hou, L.; Lin, S.M. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinform. 2010, 11, 587. [Google Scholar] [CrossRef] [Green Version]
- Houseman, E.A.; Accomando, W.P.; Koestler, D.C.; Christensen, B.C.; Marsit, C.J.; Nelson, H.H.; Wiencke, J.K.; Kelsey, K.T. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012, 13, 86. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, A.E.; Kaminsky, Z.A. FlowSorted.DLPFC.450k: Illumina Human Methylation Data on Sorted Frontal Cortex Cell Populations, R Package Version 1.24.0.; Bioconductor: Seattle, WA, USA, 2020. [Google Scholar]
- Turner, S.; Armstrong, L.L.; Bradford, Y.; Carlson, C.S.; Crawford, D.C.; Crenshaw, A.T.; De Andrade, M.; Doheny, K.F.; Haines, J.L.; Hayes, G.; et al. Quality Control Procedures for Genome-Wide Association Studies. Curr. Protoc. Hum. Genet. 2011, 68, 1.19.1–1.19.18. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. Available online: http://www.jstor.org/stable/2346101 (accessed on 21 February 2022). [CrossRef]
- Pedersen, B.S.; Schwartz, D.A.; Yang, I.V.; Kechris, K.J. Comb-p: Software for combining, analyzing, grouping and correcting spatially correlated p-values. Bioinformatics 2012, 28, 2986–2988. [Google Scholar] [CrossRef] [Green Version]
- Phipson, B.; Maksimovic, J.; Oshlack, A. missMethyl: An R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics 2016, 32, 286–288. [Google Scholar] [CrossRef]
- de Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D. MAGMA: Generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 2015, 11, e1004219. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, Y.; Wedow, R.; Li, Y.; Brazel, D.M.; Chen, F.; Datta, G.; Davila-Velderrain, J.; McGuire, D.; Tian, C.; et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 2019, 51, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Sealock, J.M.; Sanchez-Roige, S.; Clarke, T.-K.; Levey, D.F.; Cheng, Z.; Li, B.; Polimanti, R.; Kember, R.L.; Smith, R.V.; et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat. Neurosci. 2020, 23, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Polimanti, R.; Psychiatric Genomics Consortium Substance Use Disorders Workgroup; Walters, R.K.; Johnson, E.C.; McClintick, J.N.; Adkins, A.E.; Adkins, D.E.; Bacanu, S.-A.; Bierut, L.J.; Bigdeli, T.B.; et al. Leveraging genome-wide data to investigate differences between opioid use vs. opioid dependence in 41,176 individuals from the Psychiatric Genomics Consortium. Mol. Psychiatry 2020, 25, 1673–1687. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.C.; Demontis, D.; Thorgeirsson, E.T.; Walters, R.K.; Polimanti, R.; Hatoum, A.S.; Sanchez-Roige, S.; Paul, E.S.; Wendt, F.R.; Clarke, T.-K.; et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 2020, 7, 1032–1045. [Google Scholar] [CrossRef]
- Maas, S.C.E.; BIOS Consortium; Vidaki, A.; Wilson, R.; Teumer, A.; Liu, F.; Van Meurs, J.B.J.; Uitterlinden, A.G.; Boomsma, D.I.; De Geus, E.J.C.; et al. Validated inference of smoking habits from blood with a finite DNA methylation marker set. Eur. J. Epidemiol. 2019, 34, 1055–1074. [Google Scholar] [CrossRef] [Green Version]
- Braun, P.R.; Han, S.; Hing, B.; Nagahama, Y.; Gaul, L.N.; Heinzman, J.T.; Grossbach, A.J.; Close, L.; Dlouhy, B.J.; Howard, M.; et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl. Psychiatry 2019, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Horvath, S.; Zhang, Y.; Langfelder, P.; Kahn, R.S.; Boks, M.P.; Van Eijk, K.; Van den Berg, L.H.; Ophoff, R.A. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 2012, 13, R97. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Bao, Y.-L.; Zhang, Y.; Wu, Y.; Yu, C.-L.; Huang, Y.-X.; Sun, Y.; Zheng, L.-H.; Li, Y.-X. Knockdown of TSP50 inhibits cell proliferation and induces apoptosis in P19 cells. IUBMB Life 2010, 62, 825–832. [Google Scholar] [CrossRef]
- Oliver, V.F.; Jaffe, A.E.; Song, J.; Wang, G.; Zhang, P.; Branham, K.E.; Swaroop, A.; Eberhart, C.G.; Zack, D.J.; Qian, J.; et al. Differential DNA methylation identified in the blood and retina of AMD patients. Epigenetics 2015, 10, 698–707. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Li, L.; Hu, D.; Zhang, X. LINC00612/miR-31-5p/Notch1 Axis Regulates Apoptosis, Inflammation, and Oxidative Stress in Human Pulmonary Microvascular Endothelial Cells Induced by Cigarette Smoke Extract. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 2049–2060. [Google Scholar] [CrossRef]
- Song, X.-L.; Zhang, F.-F.; Wang, W.-J.; Li, X.-N.; Dang, Y.; Li, Y.-X.; Yang, Q.; Shi, M.-J.; Qi, X.-Y. LncRNA A2M-AS1 lessens the injury of cardiomyocytes caused by hypoxia and reoxygenation via regulating IL1R2. Genes Genom. 2020, 42, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Liang, C.-L.; Liu, H.; Zeng, Y.-Q.; Hou, S.; Huang, S.; Lai, X.; Dai, Z. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget 2017, 8, 268–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwyer, J.B.; McQuown, S.C.; Leslie, F.M. The dynamic effects of nicotine on the developing brain. Pharmacol. Ther. 2009, 122, 125–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosoff, D.B.; Smith, G.D.; Mehta, N.; Clarke, T.-K.; Lohoff, F.W. Evaluating the relationship between alcohol consumption, tobacco use, and cardiovascular disease: A multivariable Mendelian randomization study. PLOS Med. 2020, 17, e1003410. [Google Scholar] [CrossRef]
- Lewis, S.J.; Cherry, N.M.; Niven, R.M.; Barber, P.V.; Wilde, K.; Povey, A.C. Cotinine levels and self-reported smoking status in patients attending a bronchoscopy clinic. Biomarkers 2003, 8, 218–228. [Google Scholar] [CrossRef]
- Nagamatsu, S.T.; Pietrzak, R.H.; Xu, K.; Krystal, J.H.; Gelernter, J.; Montalvo-Ortiz, J.L. Dissecting the Epigenomic Differences between Smoking and Nicotine Dependence in a Veteran Cohort. medRxiv 2021. [Google Scholar]
- Heinz, A.; Kiefer, F.; Smolka, M.N.; Endrass, T.; Beste, C.; Beck, A.; Liu, S.; Genauck, A.; Romund, L.; Banaschewski, T.; et al. Addiction Research Consortium: Losing and regaining control over drug intake (ReCoDe)—From trajectories to mechanisms and interventions. Addict. Biol. 2020, 25, e12866. [Google Scholar] [CrossRef] [Green Version]
NSWTRC | UTHealth | |||||
---|---|---|---|---|---|---|
Characteristic | Smokers | Non-Smokers | p | Smokers | Non-Smokers | p |
n | 50 | 30 | 7 | 5 | ||
Age (years) | 56.14 (9.00) | 57.83 (10.50) | 0.47 | 54.86 (9.48) | 50.20 (10.80) | 0.46 |
Sex (M/F) | 40/10 | 18/12 | 0.09 | 6/1 | 5/0 | 1.00 |
PMI (hours) | 32.17 (15.22) | 34.20 (18.09) | 0.61 | 31.00 (10.96) | 33.62 (9.69) | 0.67 |
AUD (% cases) | 72.00 | 20.00 | 1.89 × 10−5 | 71.43 | 40.00 | 0.62 |
Chr | CpG | Gene | Dir 1 | N Probes | Z P | Z Sidak p | Start | End | |
---|---|---|---|---|---|---|---|---|---|
ACC | 3 | cg02834909 | PRSS50 | + | 5 | 1.72 × 10−8 | 7.48 × 10−5 | 46,759,438 | 46,759,589 |
BA9 | 3 | cg22909901 | MCF2L2; B3GNT5 | + | 2 | 3.71 × 10−8 | 3.19 × 10−4 | 182,981,632 | 182,981,708 |
6 | cg23161317 | ZNF192P1 | − | 6 | 3.17 × 10−9 | 1.20 × 10−5 | 28,129,313 | 28,129,486 | |
6 | cg23681866 | HCG4B | − | 5 | 1.48 × 10−9 | 6.66 × 10−6 | 29,895,116 | 29,895,261 | |
CN | 1 | cg10703826 | TBX15 | − | 7 | 5.96 × 10−10 | 2.03 × 10−6 | 119,532,044 | 119,532,234 |
12 | cg26114124 | LINC00612; A2M-AS1 | − | 8 | 3.02 × 10−12 | 5.60 × 10−9 | 9,217,510 | 9,217,860 | |
16 | cg06751612 | PIEZO1; LOC100289580 | + | 2 | 1.96 × 10−7 | 4.38 × 10−3 | 88,798,826 | 88,798,855 | |
5 | cg11916729 | SCGB3A1 | + | 6 | 2.81 × 10−7 | 1.82 × 10−3 | 180,018,465 | 180,018,565 | |
PUT | 12 | cg02883147 | LINC00612; A2M-AS1 | − | 5 | 9.86 × 10−9 | 3.58 × 10−5 | 9,217,669 | 9,217,860 |
19 | cg24716275 | ZNF264 | − | 6 | 7.80 × 10−10 | 4.17 × 10−6 | 57,702,371 | 57,702,501 | |
VS | 3 | cg00817731 | PRSS50 | + | 5 | 1.71 × 10−7 | 7.52 × 10−4 | 46,759,438 | 46,759,589 |
4 | cg08064687 | INPP4B | − | 2 | 7.43 × 10−9 | 8.65 × 10−5 | 143,326,485 | 143,326,542 | |
6 | cg14654363 | - | − | 8 | 1.00 × 10−9 | 4.28 × 10−6 | 28,601,365 | 28,601,520 | |
6 | cg27596495 | HCRTR2 | + | 4 | 1.37 × 10−8 | 6.00 × 10−5 | 55,039,232 | 55,039,383 | |
7 | cg06036947 | ADAP1 | − | 2 | 5.34 × 10−8 | 4.60 × 10−4 | 949,758 | 949,835 | |
7 | cg07972322 | C7orf49; TMEM140 | − | 5 | 4.84 × 10−10 | 1.23 × 10−6 | 134,832,770 | 134,833,032 |
CpG Site | Gene | Blood * (n = 15,907) | ACC (n = 38) | BA9 (n = 72) | CN (n = 68) | PUT (n = 68) | VS (n = 65) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | pval | β | pval | β | pval | β | pval | β | pval | β | pval | ||
cg05575921 | AHRR | −0.180 | 4.55 × 10−26 | −0.310 | 0.038 | −0.158 | 0.163 | −0.247 | 0.059 | −0.220 | 0.033 | −0.030 | 0.827 |
cg03636183 | F2RL3 | −0.095 | 1.12 × 10−20 | −0.117 | 0.118 | −0.010 | 0.834 | −0.056 | 0.198 | −0.016 | 0.619 | −0.080 | 0.116 |
cg09935388 | GFI1 | −0.083 | 3.14 × 10−17 | −0.162 | 0.345 | −0.183 | 0.132 | 0.163 | 0.206 | −0.060 | 0.595 | 0.142 | 0.369 |
cg12876356 | GFI1 | −0.057 | 1.49 × 10−15 | 0.022 | 0.838 | −0.041 | 0.516 | 0.028 | 0.640 | 0.025 | 0.705 | 0.028 | 0.730 |
cg12803068 | MYO1G | 0.063 | 9.06 × 10−23 | 0.075 | 0.556 | −0.045 | 0.598 | 0.101 | 0.163 | 0.082 | 0.292 | 0.014 | 0.810 |
cg13039251 | PDZD2 | 0.030 | 1.36 × 10−15 | 0.060 | 0.673 | −0.051 | 0.519 | 0.109 | 0.217 | 0.118 | 0.186 | −0.014 | 0.894 |
cg01940273 | - | −0.082 | 2.03 × 10−34 | −0.015 | 0.895 | −0.035 | 0.569 | −0.008 | 0.903 | 0.007 | 0.885 | −0.013 | 0.851 |
cg15693572 | - | 0.053 | 3.85 × 10−11 | −0.120 | 0.297 | 0.068 | 0.478 | 0.113 | 0.227 | −0.009 | 0.912 | −0.030 | 0.800 |
cg21566642 | - | −0.126 | 4.22 × 10−25 | −0.205 | 0.202 | −0.176 | 0.018 | 0.039 | 0.707 | −0.147 | 0.119 | 0.048 | 0.628 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zillich, L.; Poisel, E.; Streit, F.; Frank, J.; Fries, G.R.; Foo, J.C.; Friske, M.M.; Sirignano, L.; Hansson, A.C.; Nöthen, M.M.; et al. Epigenetic Signatures of Smoking in Five Brain Regions. J. Pers. Med. 2022, 12, 566. https://doi.org/10.3390/jpm12040566
Zillich L, Poisel E, Streit F, Frank J, Fries GR, Foo JC, Friske MM, Sirignano L, Hansson AC, Nöthen MM, et al. Epigenetic Signatures of Smoking in Five Brain Regions. Journal of Personalized Medicine. 2022; 12(4):566. https://doi.org/10.3390/jpm12040566
Chicago/Turabian StyleZillich, Lea, Eric Poisel, Fabian Streit, Josef Frank, Gabriel R. Fries, Jerome C. Foo, Marion M. Friske, Lea Sirignano, Anita C. Hansson, Markus M. Nöthen, and et al. 2022. "Epigenetic Signatures of Smoking in Five Brain Regions" Journal of Personalized Medicine 12, no. 4: 566. https://doi.org/10.3390/jpm12040566
APA StyleZillich, L., Poisel, E., Streit, F., Frank, J., Fries, G. R., Foo, J. C., Friske, M. M., Sirignano, L., Hansson, A. C., Nöthen, M. M., Witt, S. H., Walss-Bass, C., Spanagel, R., & Rietschel, M. (2022). Epigenetic Signatures of Smoking in Five Brain Regions. Journal of Personalized Medicine, 12(4), 566. https://doi.org/10.3390/jpm12040566