Association of Permanent Vascular Access Dysfunction with Subsequent Risk of Cardiovascular Disease: A Population-Based Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Group and Outcome Measurement
2.3. Covariates
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Study Patients
3.2. Risk of Cardiovascular Disease
3.3. Risk of Cardiovascular Disease among Patients with and without Vascular Access Occlusion and Subgroup Specific Characteristics
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riella, M.C.; Roy-Chaudhury, P. Vascular access in haemodialysis: Strengthening the Achilles’ heel. Nat. Rev. Nephrol. 2013, 9, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Huijbregts, H.J.; Bots, M.L.; Wittens, C.H.; Schrama, Y.C.; Moll, F.L.; Blankestijn, P.J. Hemodialysis arteriovenous fistula patency revisited: Results of a prospective, multicenter initiative. Clin. J. Am. Soc. Nephrol. 2008, 3, 714–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.; Mokrzycki, M.; Moist, L.; Maya, I.; Vazquez, M.; Lok, C.E.; From the North American Vascular Access Consortium (NAVAC). Standardized definitions for hemodialysis vascular access. Semin. Dial. 2011, 24, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Viecelli, A.K.; O’Lone, E.; Sautenet, B.; Craig, J.C.; Tong, A.; Chemla, E.; Hooi, L.-S.; Lee, T.; Lok, C.; Polkinghorne, K.R.; et al. Vascular Access Outcomes Reported in Maintenance Hemodialysis Trials: A Systematic Review. Am. J. Kidney Dis. 2018, 71, 382–391. [Google Scholar] [CrossRef]
- Dember, L.M.; Beck, G.J.; Allon, M.; Delmez, J.A.; Dixon, B.S.; Greenberg, A.; Himmelfarb, J.; Vazquez, M.A.; Gassman, J.J.; Greene, T.; et al. Effect of clopidogrel on early failure of arteriovenous fistulas for hemodialysis: A randomized controlled trial. JAMA 2008, 299, 2164–2171. [Google Scholar] [CrossRef] [Green Version]
- Mima, A. Hemodialysis vascular access dysfunction: Molecular mechanisms and treatment. Ther. Apher. Dial. 2012, 16, 321–327. [Google Scholar] [CrossRef]
- Roy-Chaudhury, P.; Sukhatme, V.P.; Cheung, A.K. Hemodialysis vascular access dysfunction: A cellular and molecular viewpoint. J. Am. Soc. Nephrol. 2006, 17, 1112–1127. [Google Scholar] [CrossRef]
- Lee, T.; Roy-Chaudhury, P. Advances and new frontiers in the pathophysiology of venous neointimal hyperplasia and dialysis access stenosis. Adv. Chronic Kidney Dis. 2009, 16, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Roy-Chaudhury, P.; Lee, T.C. Vascular stenosis: Biology and interventions. Curr. Opin. Nephrol. Hypertens. 2007, 16, 516–522. [Google Scholar] [CrossRef]
- Lee, T.; Chauhan, V.; Krishnamoorthy, M.; Wang, Y.; Arend, L.; Mistry, M.J.; El-Khatib, M.; Banerjee, R.; Munda, R.; Roy-Chaudhury, P. Severe venous neointimal hyperplasia prior to dialysis access surgery. Nephrol. Dial. Transplant. 2011, 26, 2264–2270. [Google Scholar] [CrossRef]
- Wasse, H.; Huang, R.; Naqvi, N.; Smith, E.; Wang, D.; Husain, A. Inflammation, oxidation and venous neointimal hyperplasia precede vascular injury from AVF creation in CKD patients. J. Vasc. Access 2012, 13, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Roy-Chaudhury, P.; Kelly, B.S.; Zhang, J.; Narayana, A.; Desai, P.; Melhem, M.; Duncan, H.; Heffelfinger, S.C. Hemodialysis vascular access dysfunction: From pathophysiology to novel therapies. Blood Purif. 2003, 21, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.; Foley, R.N. Cardiovascular disease in chronic renal insufficiency. Am. J. Kidney Dis. 2000, 36 (Suppl. S3), S24–S30. [Google Scholar] [CrossRef] [PubMed]
- Wardle, E.N. Premature cardiovascular disease and chronic renal failure. Lancet 2000, 356, 854–855. [Google Scholar] [CrossRef]
- Cheung, A.K.; Sarnak, M.J.; Yan, G.; Berkoben, M.; Heyka, R.; Kaufman, A.; Lewis, J.; Rocco, M.; Toto, R.; Windus, D.; et al. Cardiac diseases in maintenance hemodialysis patients: Results of the HEMO Study. Kidney Int. 2004, 65, 2380–2389. [Google Scholar] [CrossRef] [Green Version]
- Ahmadmehrabi, S.; Tang, W.H.W. Hemodialysis-induced cardiovascular disease. Semin. Dial. 2018, 31, 258–267. [Google Scholar] [CrossRef]
- Cozzolino, M.; Mangano, M.; Stucchi, A.; Ciceri, P.; Conte, F.; Galassi, A. Cardiovascular disease in dialysis patients. Nephrol. Dial. Transplant. 2018, 33 (Suppl. S3), iii28–iii34. [Google Scholar] [CrossRef]
- Kuo, T.H.; Tseng, C.T.; Lin, W.H.; Chao, J.Y.; Wang, W.M.; Li, C.Y.; Wang, M.C. Association Between Vascular Access Dysfunction and Subsequent Major Adverse Cardiovascular Events in Patients on Hemodialysis: A Population-Based Nested Case-Control Study. Medicine 2015, 94, e1032. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, H.; Kim, D.K.; Oh, K.H.; Kim, Y.S.; Ahn, C.; Han, J.S.; Min, S.K.; Min, S.I.; Kim, H.C.; et al. Recurrent Vascular Access Dysfunction as a Novel Marker of Cardiovascular Outcome and Mortality in Hemodialysis Patients. Am. J. Nephrol. 2016, 44, 71–80. [Google Scholar] [CrossRef]
- Monroy-Cuadros, M.; Yilmaz, S.; Salazar-Bañuelos, A.; Doig, C. Risk factors associated with patency loss of hemodialysis vascular access within 6 months. Clin. J. Am. Soc. Nephrol. 2010, 5, 1787–1792. [Google Scholar] [CrossRef] [Green Version]
- Windus, D.W. Permanent vascular access: A nephrologist’s view. Am. J. Kidney Dis. 1993, 21, 457–471. [Google Scholar] [CrossRef]
- Foley, R.N.; Parfrey, P.S.; Sarnak, M.J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 1998, 32 (Suppl. S3), S112–S119. [Google Scholar] [CrossRef] [PubMed]
- Lok, C.E.; Allon, M.; Moist, L.; Oliver, M.J.; Shah, H.; Zimmerman, D. Risk equation determining unsuccessful cannulation events and failure to maturation in arteriovenous fistulas (REDUCE FTM I). J. Am. Soc. Nephrol. 2006, 17, 3204–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldfarb-Rumyantzev, A.S.; Rout, P. Characteristics of elderly patients with diabetes and end-stage renal disease. Semin. Dial. 2010, 23, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Plumb, T.J.; Adelson, A.B.; Groggel, G.C.; Johanning, J.M.; Lynch, T.G.; Lund, B. Obesity and hemodialysis vascular access failure. Am. J. Kidney Dis. 2007, 50, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Kian, K.; Shapiro, J.A.; Salman, L.; Khan, R.A.H.; Merrill, D.; García, L.; Eid, N.; Asif, A.; Aldahan, A.; Beathard, G. High brachial artery bifurcation: Clinical considerations and practical implications for an arteriovenous access. Semin. Dial. 2012, 25, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-Y.; Lin, L.; Hsieh, M.-Y.; Chen, C.-H.; Chen, M.-K.; Wu, C.-C. Thrombophilia Associated with Early Post-angioplasty Thrombosis of Dialysis Vascular Access. Cardiovasc. Interv. Radiol. 2018, 41, 1683–1690. [Google Scholar] [CrossRef]
- Moradi, H.; Sica, D.A.; Kalantar-Zadeh, K. Cardiovascular burden associated with uremic toxins in patients with chronic kidney disease. Am. J. Nephrol. 2013, 38, 136–148. [Google Scholar] [CrossRef] [Green Version]
- MacRae, J.M. Vascular access and cardiac disease: Is there a relationship? Curr. Opin. Nephrol. Hypertens. 2006, 15, 577–582. [Google Scholar] [CrossRef]
- Polkinghorne, K.R.; McDonald, S.P.; Atkins, R.C.; Kerr, P.G. Vascular access and all-cause mortality: A propensity score analysis. J. Am. Soc. Nephrol. 2004, 15, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Ravani, P.; Palmer, S.C.; Oliver, M.J.; Quinn, R.R.; MacRae, J.; Tai, D.J.; Pannu, N.I.; Thomas, C.; Hemmelgarn, B.R.; Craig, J.; et al. Associations between hemodialysis access type and clinical outcomes: A systematic review. J. Am. Soc. Nephrol. 2013, 24, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Ishani, A.; Collins, A.J.; Herzog, C.A.; Foley, R.N. Septicemia, access and cardiovascular disease in dialysis patients: The USRDS Wave 2 study. Kidney Int. 2005, 68, 311–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cozzolino, M.; Galassi, A.; Pivari, F.; Ciceri, P.; Conte, F. The Cardiovascular Burden in End-Stage Renal Disease. Contrib. Nephrol. 2017, 191, 44–57. [Google Scholar] [PubMed]
- Tanner, N.C.; Da Silva, A. Medical adjuvant treatment to increase patency of arteriovenous fistulae and grafts. Cochrane Database Syst. Rev. 2015, Cd002786. [Google Scholar] [CrossRef]
- Tanner, N.; da Silva, A. Medical Adjuvant Treatment to Improve the Patency of Arteriovenous Fistulae and Grafts: A Systematic Review and Meta-analysis. Eur. J. Vasc. Endovasc. Surg. 2016, 52, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Saran, R.; Dykstra, D.M.; Wolfe, R.A.; Gillespie, B.; Held, P.J.; Young, E.W. Association between vascular access failure and the use of specific drugs: The Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 2002, 40, 1255–1263. [Google Scholar] [CrossRef]
- Birch, N.; Fillaus, J.; Florescu, M.C. The effect of statin therapy on the formation of arteriovenous fistula stenoses and the rate of reoccurrence of previously treated stenoses. Hemodial. Int. 2013, 17, 586–593. [Google Scholar] [CrossRef]
- Pisoni, R.; Barker-Finkel, J.; Allo, M. Statin therapy is not associated with improved vascular access outcomes. Clin. J. Am. Soc. Nephrol. 2010, 5, 1447–1450. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Kwon, H.; Chang, J.W.; Kim, M.-J.; Ganbold, K.; Han, Y.; Kwon, T.-W.; Cho, Y.-P. Effects of patient age on patency of chronic hemodialysis vascular access. BMC Nephrol. 2019, 20, 422. [Google Scholar] [CrossRef] [Green Version]
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; et al. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003, 108, 2154–2169. [Google Scholar] [CrossRef]
Occlusion/Dysfunction (N = 197) | Non-Occlusion/Dysfunction (N = 100) | p-Value | |||
---|---|---|---|---|---|
n | % | n | % | ||
Age | 0.009 | ||||
20–40 | 31 | 15.7 | 6 | 6.0 | |
40–65 | 113 | 57.4 | 53 | 53.0 | |
≥65 | 53 | 26.9 | 41 | 41.0 | |
Mean ± SD | 56.2 ± 15.2 | 62.3 ± 15.7 | 0.001 | ||
Gender | 0.588 | ||||
Female | 107 | 54.3 | 51 | 51.0 | |
Male | 90 | 45.7 | 49 | 49.0 | |
Hypertension | 115 | 58.4 | 59 | 59.0 | 0.918 |
Hyperlipidemia | 31 | 15.7 | 7 | 7.0 | 0.033 |
Diabetes | 57 | 28.9 | 23 | 23.0 | 0.276 |
Heart failure | 33 | 16.8 | 6 | 6.0 | 0.010 |
COPD | 18 | 9.1 | 7 | 7.0 | 0.531 |
Autoimmune disease † | 12 | 6.1 | 1 | 1.0 | 0.067 |
Asthma † | 6 | 3.0 | 3 | 3.0 | 1 |
Chronic liver disease | 45 | 22.8 | 20 | 20.0 | 0.576 |
Hyperparathyroidism | 17 | 8.6 | 3 | 3.0 | 0.067 |
Warfarin | 15 | 7.6 | 1 | 1.0 | 0.017 |
Corticosteroids | 67 | 34.0 | 29 | 29.0 | 0.383 |
Statin | 33 | 16.8 | 8 | 8.0 | 0.039 |
Aspirin | 29 | 14.7 | 9 | 9.0 | 0.163 |
No. of Cardiovascular Disease | Observed Person-Years | Incidence Density (per 1000 Person-Years) | Crude HR | 95% CI | Adjusted HR † | 95% CI | |
---|---|---|---|---|---|---|---|
Occlusion/dysfunction | |||||||
No | 5 | 508 | 9.8 | 1 | 1 | ||
Yes | 31 | 1062 | 29.2 | 2.92 | 1.13–7.54 | 3.05 | 1.14–8.20 |
Age | |||||||
20–40 | 4 | 214 | 18.7 | 1 | 1 | ||
40–65 | 23 | 863 | 26.7 | 1.46 | 0.50–4.22 | 1.42 | 0.44–4.53 |
≥65 | 9 | 493 | 18.3 | 1.01 | 0.31–3.27 | 1.78 | 0.49–6.50 |
Gender | |||||||
Female | 17 | 847 | 20.1 | 1 | 1 | ||
Male | 19 | 723 | 26.3 | 1.32 | 0.69–2.54 | 1.04 | 0.50–2.13 |
Hypertension | 23 | 855 | 26.9 | 1.51 | 0.76–3.00 | 1.79 | 0.85–3.78 |
Hyperlipidemia | 7 | 182 | 38.6 | 1.87 | 0.82–4.27 | 3.33 | 1.07–10.36 |
Diabetes | 6 | 401 | 15.0 | 0.59 | 0.25–1.43 | 0.40 | 0.15–1.06 |
Heart failure | 6 | 193 | 31.1 | 1.43 | 0.60–3.44 | 0.92 | 0.34–2.48 |
COPD | 3 | 120 | 25.0 | 1.13 | 0.35–3.68 | 0.55 | 0.11–2.65 |
Autoimmune disease | 3 | 73 | 41.1 | 1.78 | 0.55–5.83 | 1.84 | 0.47–7.24 |
Asthma | 2 | 30 | 67.8 | 3.43 | 0.82–14.33 | 3.61 | 0.55–23.69 |
Chronic liver disease | 6 | 341 | 17.6 | 0.72 | 0.30–1.74 | 0.61 | 0.24-1.56 |
Warfarin | 4 | 90 | 44.6 | 2.06 | 0.73–5.82 | 0.97 | 0.29-3.19 |
Corticosteroids | 4 | 466 | 8.6 | 0.30 | 0.11–0.85 | 0.24 | 0.08–0.71 |
Statin | 4 | 199 | 20.1 | 0.86 | 0.31–2.45 | 0.36 | 0.09–1.49 |
Aspirin | 10 | 169 | 59.1 | 3.30 | 1.58–6.87 | 2.94 | 1.24–6.98 |
Occlusion/Dysfunction | Non-Occlusion/Dysfunction | HR | 95% CI | |||
---|---|---|---|---|---|---|
N | No. of Cardiovascular Disease | N | No. of Cardiovascular Disease | |||
Age | ||||||
20–65 | 144 | 25 | 59 | 2 | 4.37 | 1.03–18.51 |
≥65 | 53 | 6 | 41 | 3 | 1.75 | 0.44–6.99 |
p for interaction = 0.321 | ||||||
Gender | ||||||
Female | 107 | 14 | 51 | 3 | 2.18 | 0.62–7.60 |
Male | 90 | 17 | 49 | 2 | 4.19 | 0.96–18.22 |
p for interaction = 0.286 | ||||||
Warfarin | ||||||
No | 182 | 27 | 99 | 5 | 2.74 | 1.05–7.14 |
Yes | 15 | 4 | 1 | 0 | NA | NA |
Corticosteroids | ||||||
No | 130 | 27 | 71 | 5 | 2.60 | 0.996–6.77 |
Yes | 67 | 4 | 29 | 0 | NA | NA |
Statin | ||||||
No | 164 | 28 | 92 | 4 | 3.54 | 1.24–10.11 |
Yes | 33 | 3 | 8 | 1 | 0.89 | 0.09–8.65 |
p for interaction = 0.285 | ||||||
Aspirin | ||||||
No | 168 | 22 | 91 | 4 | 2.64 | 0.91–7.71 |
Yes | 29 | 9 | 9 | 1 | 2.55 | 0.32–20.13 |
p for interaction = 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, T.-W.; Wu, S.-W.; Chiou, J.-Y.; Wang, Y.-H.; Liao, Y.-C.; Wei, C.-C. Association of Permanent Vascular Access Dysfunction with Subsequent Risk of Cardiovascular Disease: A Population-Based Cohort Study. J. Pers. Med. 2022, 12, 598. https://doi.org/10.3390/jpm12040598
Hung T-W, Wu S-W, Chiou J-Y, Wang Y-H, Liao Y-C, Wei C-C. Association of Permanent Vascular Access Dysfunction with Subsequent Risk of Cardiovascular Disease: A Population-Based Cohort Study. Journal of Personalized Medicine. 2022; 12(4):598. https://doi.org/10.3390/jpm12040598
Chicago/Turabian StyleHung, Tung-Wei, Sheng-Wen Wu, Jeng-Yuan Chiou, Yu-Hsun Wang, Yu-Chan Liao, and Cheng-Chung Wei. 2022. "Association of Permanent Vascular Access Dysfunction with Subsequent Risk of Cardiovascular Disease: A Population-Based Cohort Study" Journal of Personalized Medicine 12, no. 4: 598. https://doi.org/10.3390/jpm12040598
APA StyleHung, T. -W., Wu, S. -W., Chiou, J. -Y., Wang, Y. -H., Liao, Y. -C., & Wei, C. -C. (2022). Association of Permanent Vascular Access Dysfunction with Subsequent Risk of Cardiovascular Disease: A Population-Based Cohort Study. Journal of Personalized Medicine, 12(4), 598. https://doi.org/10.3390/jpm12040598