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Abstract: Both provider- and protocol-driven electrolyte replacement have been linked to the over-
prescription of ubiquitous electrolytes. Here, we describe the development and retrospective valida-
tion of a data-driven clinical decision support tool that uses reinforcement learning (RL) algorithms
to recommend patient-tailored electrolyte replacement policies for ICU patients. We used electronic
health records (EHR) data that originated from two institutions (UPHS; MIMIC-IV). The tool uses a
set of patient characteristics, such as their physiological and pharmacological state, a pre-defined set
of possible repletion actions, and a set of clinical goals to present clinicians with a recommendation
for the route and dose of an electrolyte. RL-driven electrolyte repletion substantially reduces the
frequency of magnesium and potassium replacements (up to 60%), adjusts the timing of interventions
in all three electrolytes considered (potassium, magnesium, and phosphate), and shifts them towards
orally administered repletion over intravenous replacement. This shift in recommended treatment
limits risk of the potentially harmful effects of over-repletion and implies monetary savings. Overall,
the RL-driven electrolyte repletion recommendations reduce excess electrolyte replacements and
improve the safety, precision, efficacy, and cost of each electrolyte repletion event, while showing
robust performance across patient cohorts and hospital systems.

Keywords: electrolytes; electronic health records; artificial intelligence; machine learning; reinforcement
learning; decision support systems; retrospective studies; MIMIC-IV

1. Introduction

The process of evaluating clinical data in the intensive care unit (ICU) to make diag-
nostic or therapeutic decisions is highly demanding, repetitive, and often requires over
100 decisions per day on average per provider [1,2]. This approach is almost always re-
active and often not patient-centric [3-7]. The high stakes and pace of ICU operations
put a strain on providers, leading to the frequent reliance on cognitive shortcuts [2,6-9].
Prior experience and legal or ethical expectations further influence clinical decision making,
along with the dynamics between different care providers and the availability of personnel,
resources, or procedural constraints [10,11]. The delegation of the decision-making pro-
cess to standardized protocols is often employed with the hope of improving outcomes
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and reducing variability [12,13]. However, protocols are inherently inflexible and prone
to bias in their formulation, often contributing to poor adherence in practice [14]. Their
clinical benefits may be overestimated, while the risks or expected frequency of unintended
side effects may be underestimated [15-18]. Taking the aforementioned problems into the
context of the current practice of electrolyte replacements, there is a clear need for more
data-driven and patient-specific approaches [5].

The management of serum electrolyte levels is omnipresent in the ICU, but they have
a narrow therapeutic range. Even small fluctuations outside the reference range may result
in severe clinical consequences, for example, cardiac arrest. Electrolyte imbalances arise
through the highly complex pathological processes of illness, pre-existing conditions, or
administered medications [19,20]. Furthermore, the relationship between the target values
of electrolyte levels and their clinical benefit is complex [21]. A provider-directed approach
to electrolyte repletion can therefore often lead to unaddressed episodes of low electrolyte
levels, high rates of superfluous replacements, and a poorly allocated use of provider time
and expenditures, while creating risk to the patient [17,22-24].

Artificial intelligence (Al), or machine learning methods, such as reinforcement learn-
ing, presents a pathway for adaptive guidance of healthcare delivery; they are well-suited to
leverage information from the data-rich ICU environment [25]. The reinforcement learning
framework potentially enables the planning and management of patient care within the
dynamic processes of critical illness, incorporating both patients’ needs and healthcare
workflow constraints. Such a system is well-suited to the data-rich ICU setting, to adjust
recommendations based on ever-changing patient characteristics.

Here, we built and retrospectively evaluated an artificial intelligence (AI) engine in-
tended to provide a clinician-in-the-loop decision support system for electrolyte repletion,
focusing on the management of potassium, magnesium, and phosphate levels in hospital-
ized, critically ill patients. To date, machine learning methods have been applied to the
closely related problem of fluid resuscitation for management of hypotension in critically
ill patients [26,27]. These works suggest that machine learning methods can be used to
retrospectively analyze and learn from clinician behavior.

We used reinforcement learning (RL), an Al approach, to address differences be-
tween patients’ current and target physiological characteristics in a dynamic way [28,29].
Specifically, we adapted RL methods to govern intravenous potassium, magnesium, and
phosphate repletion, with the objective of minimizing variation in electrolyte levels and
managing repletion costs. This manuscript describes the formulation and methodology of
the RL framework, the data preprocessing and training procedure used, and application in
silico with assessment of performance. Finally, we validate the methodology on a second
dataset, as implementation of Al in one system may fail when applied to a different setting
than the one used for initial training and in the in silico trial.

2. Materials and Methods

The Institutional Review Board of the University of Pennsylvania approved this
study (#823822).

2.1. Dataset and Cohort Selection

The data used in this retrospective study were drawn from electronic health records
(EHR) from critical care units between 2010 and 2015 across three major hospitals in the
University of Pennsylvania Health System (UPHS). A total of 459,173 unique critical care
admissions were made available for analysis.

We extracted three (overlapping) sub-cohorts, selecting for data from all adult patients
(over the age of 18) with a hospital visit of a duration between one and eight days from
UPHS. We filtered the data to include patients with at least one recorded value of all key
vitals and labs (summarized in Table 1), including weight at the time of admission, which
was recorded more sparsely in the dataset. A total of 13,234 hospital visits were used, each
with a minimum of one instance of either potassium, magnesium, or phosphate repletion
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over the course of the visit: 7870 with potassium, 8342 with magnesium, and 1768 with
phosphate replacements (Figure 1) [30].

Table 1. Selected 52 clinical features from patient EHRs based on their influence on electrolyte levels.
We also included imputed measurements at each 6 h interval for a number of key vitals and labs.

Features
Static Age, Gender, Weight, Floor/ICU
Vitals Heart rate, Respiratory rate, Temperature, O, saturation pulse oximetry

(Sp0O3), Urine output, Non-invasive blood pressure (systolic, diastolic)

Labs—Raw K, Mg, P, Ma, Chloride, Anion gap, Creatinine, Hemoglobin, Glucose, Blood
abs—ha Urea Nitrogen, WBC Count

Labs—Indicator Ca (Ionized), Glucose, CPK, LDH, ALT, AST, PTH
K-1V, K-PO, Mg-1V, Mg-PO, P-1V, P-PO, Ca-1V, Ca-PO, Loop diuretics,

Drugs Thiazides, Acetazolamide, Spironolactone, Fluids, Vasopressors, 3-blockers,
Ca-blockers, Dextrose, Insulin, Kayexalate, TPN, PN, PO nutrition
Procedures Packed-cell transfusion, Dialysis
[ N = 459,173 visits ]

[——> Age < 18: N = 50,945
VisiT g

Length of stay < 1day: N = 37,733
EXCLUSIONS Length of stay > 8 days: N = 76,196

[ N =190,939 visits j

HR 190,305
RR 190,267

SP02 189,101
TEMP 189,056
BPSYS 188,930
BPDIA 188,929
WEIGHT 28,380
URINE 24,322
> No available measures of a key vital: N = 166,617
MISSINGNESS k 24309

CaT 23,364
EXCLUSIONS Mg 17,631

P 13,287

Na 13,287

Hgb 13,263
Chloride 13,251
AnionGap 13,246
BUN 13,246
WBC 13,238
Creatinine 13,234

[—————> No available measures of a key lab: N = 11,088
N = 13,234 visits, comprising:

Nk = 7,870 with potassium repletion

Numg = 8,342 with magnesium repletion

Np = 1,870 with phosphate repletion

Figure 1. Data cohort selection criteria (demonstrated in the UPHS database). Heart rate, (HR);

Respiratory rate, (RR); Oxygen saturation, (SPO,); Temperature, (TEMP); Systolic blood pressure
(BPSYS); Diastolic blood pressure, (BPDIA).

Each hospital visit was divided into 6 h intervals to reflect the frequency with which
staff may be reasonably able to react to automated recommendations. Clinically nonviable

outliers in measured patient vitals and lab values were filtered out, and the mean of
remaining measurements within a given six-hour interval was taken as representative of
the value at this time step. Missing values were imputed with the last measurement for up
to 48 h and otherwise imputed with the population mean value of each lab or vital sign.

2.2. Model Framework

The task of electrolyte repletion during patient visits to the ICU was modeled as a

Markov decision process (MDP), M = <S5, A, P, R, 7> [31]. Over a sequence of discrete
time steps at 6 h intervals, we observed the patient in some state in S, chose a treatment
action from set A, and observed a stochastic transition to a new patient state (according
to probability distribution P). Feedback from the transition was in the form of reward R.



J. Pers. Med. 2022, 12, 661 40f13

The 6 h interval was chosen to mimic hospital workflow. Our objective was to learn an
optimal policy 71, mapping from a state in a continuous space S to an action in a discrete
set A that maximizes the total discounted reward collected over the patient visit, where
discount factor oy determines the relative importance of immediate versus distant rewards.
Details of the protocol are included in Appendix A [30].

In defining the clinical condition of the patient in our model, we incorporated a total
of 52 factors based on their relevance to or potential influence on electrolyte homeostasis
in the patient (Table 1) [19,20]. We also included the administration of intravenous (IV)
and oral (PO) electrolytes, and other potentially relevant medications administered over
the past 6 h interval. To define the actionable Al events (action space A), we allowed for
dosage rates in line with standard clinical practice (Table 2). The dosing of these drugs was
considered at one of six possible rates: 0-10 mEq/h infused over 1, 2, or 3 h; 10-20 mEq/h
over 2, 4, or 6 h, or some combination of both intravenous and oral supplements. Repletion
rates and doses were chosen in the same way for magnesium (Mg) and phosphates (P)
(Table 2).

Table 2. Repletion of K, Mg, and P replacements in terms of dose and duration.

Oral (PO) Intravenous (IV)
PO1 PO2 PO3 Iv1 Iv2 Iv3 Iv4 IV5 IVe
20 mE 40 mE 60 mE 20 mE 40 mE 60 mE
koo 0mg  40mg  GOmg oh i 6h Ih 2h 3h
Mg 0 400mg  800mg 1200 mg 01.5hg i 5 ; 5 ; 5
15 mEq 30 mEq 45 mEq
p 0 250 mg 500 mg 750 mg 1h 3h 6h

The Al performance was guided by: (i) a penalty for electrolyte levels above the
reference range, (ii) a penalty for electrolyte levels below this range, (iii) the corresponding
effective cost of PO repletion, and (iv) cost of repletion. The Al reward function was a
weighted sum of these four conditions relevant to the current patient condition, the immedi-
ate action advised by Al, and the next state (Appendix A). The aim of our RL algorithm was
learning a policy that would maximize the cumulative reward or, equivalently, minimize
the total accumulated penalties over the course of the patient’s admission.

2.3. Model Training

Data from the 13,234 hospital visits obtained from the UPHS dataset after applying
our exclusion criteria were randomly split into 7000 visits in the training set to learn an
optimal repletion policy, and 6164 in the test set to evaluate our learned policy on held-out
data. By setting the sampling interval at 6 h and creating one-step transition samples of
the form <state, action, reward, next state>, we produced a total of 54,228 samples in the
training set for the potassium sub-cohort, 59,775 for magnesium, and 15,863 for phosphate.

Fitted Q-iteration (FQI), a data-efficient algorithm for offline reinforcement learning,
was used to learn optimal treatment policies from these sets of patient state transitions [32].
The FQI algorithm learns a Q-value function, which is an estimate of the long-term rewards
of each available action at a given patient state from the training data. Then, on our test
data, we can use the learned Q-value function to choose the action that maximizes the
rewards at a given patient state to identify the optimal treatment policy [33,34].

For each electrolyte repletion task, the learned policy first decides whether to adminis-
ter a supplement and if so, by what route (oral, intravenous, or both). The second and third
steps determine the most appropriate dosage and infusion time for oral or intravenous re-
pletion, respectively. A retrospective off-policy evaluation (OPE) of the learned policy was
performed using a frequency analysis of action recommendations, a qualitative analysis of
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the policy on patient trajectories, and fitted-Q evaluation (FQE), a state-of-the-art approach
to estimating the expected accumulated reward of the learned policies [35].

2.4. Validation on MIMIC-IV

We extracted 40,000 adult ICU patients from MIMIC-IV to validate our RL algo-
rithm [36]. The data include deidentified hospital patients admitted to one of the critical
care units of the Beth Israel Deaconess Medical Center between 2008 and 2019. We used
40,000 unique critical care visits for our validation. As with the UPHS data, we split the
visits into 32,000 for the training set and 8000 for the test set to evaluate our learned policy.
After filtering, this data yielded a total of 54,228 samples in the training set for the potassium
sub-cohort, 59,775 for magnesium, and 15,863 for phosphate. We also followed a similar
imputation protocol when the exact value of a lab or vital was unknown. When training
our Al algorithm, we used a set of 63 covariates to represent patient state. Our reward
function is identical to the one used on the UPHS dataset, where rewards accumulate when
the patient is within the reference range for a given electrolyte.

2.5. Financial Modeling

Financial modeling was carried out using the attached workflow, drawing upon prior
work (Appendix B) [24]. The salaries were taken from a U.S. job site [37,38]. The prices of
the medication were set using the Lexicon [39]. The prices of laboratory tests were obtained
from the CMS schedule for the year 2020 [40]. In general, the lowest bracket was applied
uniformly where estimates for wages, lab, and salaries were incorporated into the modeling.
The time spent on tasks were estimated using observation and staff input.

3. Results
3.1. Patterns in Historical Provider Behavior

In analyzing repletion patterns in terms of the distribution of pre-and post-repletion
electrolyte measurements, we found that the large majority (73% potassium, 88% magne-
sium, and 38% phosphate) of replacements were ordered while electrolyte levels were either
within or above the reference range (Figure 2). In fact, potassium and magnesium were
over-repleted at a rate of 4.4% and 1.4%. Phosphate was rarely over-treated by comparison,
with just 0.6% of repletion events occurring above the target phosphate range. In addition,
replacement at low electrolyte levels often failed to bring post-repletion values into the
reference range (Figure 2).

Potassium (K)
1%2]
5 2000 Reference Range
E’ I Pre-Repletion
oy W Post-Repletion
@ 1000
~
e
9, 5.5 6.0
17 Magnesium (Mg)
5 3000 Reference Range
% I Pre-Repletion
&’ 2000 W Post-Repletion
[=2]
= 1000
I+
8' 35 4.0
1000
Phosphorous (P)

[%2]
S 750 Reference Range
E I Pre-Repletion
§ 500 W Post-Repletion
a
5 250

0

5 6

Figure 2. Distribution of electrolyte levels as executed by providers in historical dataset representing
pre-repletion (red) and post-repletion events (green), along with the target range of electrolyte levels,

in gray.
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3.2. AI-Driven Repletion Recommendations

We used inverse reinforcement learning (IRL, Appendix A), to estimate the relative
weights in the reward function of each of four variables—IV repletion cost, PO repletion
cost, abnormally high, and abnormally low electrolyte values—for historical UPHS data in
the case of potassium (K) and magnesium (Mg). Surprisingly, we estimate small negative
weights on both the cost of IV and the cost of PO repletion driving historical policy (Table 3).
We compare this with the same weights chosen for training an Al-driven repletion protocol
and demonstrate that this represents a substantial shift in weights relative to historical
behavior, suggesting a more cost-aware repletion protocol (Table 3).

Table 3. Weights of four variables driving electrolyte repletion (IV repletion cost, PO cost, abnor-
mally high, and abnormally low electrolyte values) in the historical dataset and after application of
reinforcement learning (RL) algorithm showed substantial changes.

Historical Policy Drivers Al Policy Drivers
K (—0.05, —0.08, 0.20, 0.67) (0.07,0.04, 0.15, 0.74)
Mg (—0.05, —0.01, 0.33, 0.61) (0.01, 0.01, 0.48, 0.48)
P (—0.25,0.11, 0.30, 0.34) (0.08, 0.07, 0.5, 0.35)

Consequently, the learned RL protocol using this IRL-learned reward function led to
policies that recommended less frequent repletion in the case of potassium and magnesium,
with reductions of 61.7% and 63.9%, respectively (Figure 3). The RL-based system also
showed a preference towards orally administered repletion for all three electrolytes consid-
ered, with higher doses of oral potassium replacement and higher doses of intravenous
repletion for all three electrolytes when this route was chosen by the system. Compared to
historical data, instances of intravenous potassium replacement dropped by 75% and oral
replacement dropped by 50% (Figure 3).

v Nl Em vi e
— ____E= I
= vz [ —
495 . 103 V2 ez
V3 B - 27
I o
M - i E [
va 55 | ES V3 a4
5 s M I - . -
S V5 e va
g ’ [n I
I 14 PO1
V6 s . E . p=
952
po1 1% . | BB
. pm
I, 1 O2 :
PO2 31 I -
185 B- mmm Historical Behavior
By _ 110 PO3 5 :
PO e — o: m=_Aldriven Policy
0 500 1000 1500 0 500 1000 1500 2000 0 250 500 750 1000 1250
Count (K) Count (Mg) Count (P)

Figure 3. Distribution of repletion dosage levels chosen for three electrolytes in the historical data
(UPHS) vs. dosages recommended by the learned RL policy.

Our optimal policy recommended repletion only when potassium was below the
threshold of the reference range, and intravenous replacement only when the patient was
significantly hypokalemic (data not shown). We can study the learned policy for a single
patient visit to explain the behavior of the policy. The learned policy recommends fewer
replacement interventions when electrolyte level is normal and more frequent repletion
when the patient’s electrolyte level is low (Figure 4). The Al-driven protocol favored K-PO
(oral repletion), recommending K-IV (intravenous repletion) only when potassium levels
were far below the reference range, and also tended to recommend repletion more promptly
following a hypokalemic event.
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A
4 — ~
3 - K (Measured) - - \ /
B UPHS
— K-PO
K-IV
C Al
— K-PO
K-IV
0 30 60 90 120 150

Hours into admission

Figure 4. Panel (A) captures measured potassium (y-axis) across hours into patient admission (x-axis)
with the gray ribbon visualizing the optimal range of potassium. Panel (B) is potassium repletion
as performed by provider in historical data across hours into patient admission. Panel (C) is the
recommendation for repletion across hours into patient admission driven by the learned RL protocol.
The length of the shaded K-IV events indicates duration of infusion time.

In order to quantify how our system compares with the performance of historical
behavior with respect to our weighted reward function, we used Fitted-Q evaluation (FQE).
The Q-value provides a measure of policy effectiveness. Plotting the distribution of values
(that is, expected accumulated rewards) for the set of all pairs of patient states and actions
in the data, we found that the average reward for the learned RL protocol was higher
than that for the historical data in the case of all three electrolyte policies (Figure 5). This
difference is especially pronounced in the case of potassium and magnesium, emphasizing
the scope of possible improvement in current practice with respect to electrolyte repletion.

-0.4 -25
-1.0
-06 =0
-7.5
-15 08
[
3 -10.0
5 )
(o4 -1.0
-2.0
-125
-1.2
-15.0
-25
14 -17.5
I |Historical Behavior
I |Al-driven Policy
-3.0 K -1.6 g -20.0 P

Figure 5. Estimated performance of policy for potassium (K), magnesium (Mg), and phosphate (P)
measured by the Q-value prediction, which corresponds to the expected total rewards (time saved,
money saved, avoidance of near misses, and side effects) during the entire patient admission. For all
three electrolyte policies, the mean Q-value prediction of state—action pairs in the test set was higher
for the learned RL policy than for clinician behavior observed in the UPHS data. This suggests that
RL optimizes the reward function to create a learned policy that is better than clinician behavior.

3.3. Expected Outcomes of Implementing AI-Driven Protocol

We compared the repletion events in the historical data for the 6164 patients in our
test set with the instances of recommended repletion according to our learned RL policy,
accounting for both the shift towards oral repletion and the overall reduction in repletion
events. We calculated the potential decrease in the cost of medication over the full five-year
period to be from USD 62k to USD 20.5k. The corresponding estimated expenses related
to customary lab work were reduced from USD 87.2k to USD 38k. When we included
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expenses related to the time spent by different healthcare providers with lab and drug
expenses, the total expected expenditures from an RL-driven process were reduced from
USD 519k to USD 156k, translating into a savings of USD 790 per hospital visit.

Beyond these direct cost savings, the RL system also avoids replacement of electrolytes
when the patient is above the reference range, reducing potential harm to the patient,
promoting precise electrolyte replacement, and avoiding potential misses and near misses.

3.4. Validation of the Protocol

We validated the learned electrolyte repletion policy by testing the policy estimated
from the UPHS cohort in EHR data from the MIMIC-IV cohort. The electrolyte replacement
patterns in the MIMIC-IV database were similar to those observed in UPHS (Figure 6A).
Similar to the UPHS test data, the application of the RL protocol learned from the UPHS
cohort and applied to the MIMIC-IV cohort resulted in a shift towards PO dosages and less
frequent replacement (Figure 6B). The learned RL protocol, in general, recommends reple-
tion less frequently than reported in the MIMIC-IV dataset, reflecting the lower frequency
of repletion in the UPHS data relative to the MIMIC-1V data. Finally, we confirmed that the
learned RL protocol uses covariates similarly to suggest optimal actions in the MIMIC-IV
dataset as in the UPHS data (Figure 6C).

» Potassium (K)
5 30000 Reference Range
= mmm Pre-Repletion
g 20000 mw Post-Repletion
¥
3 10000 V1 '_ vi
9; 55 6.0 v ®
600 V2
2 Magnesium (Mg) w3
2 200 Reference Range -
2 mmm Pre-Repletion s V3
& mw Post-Repletion - u
2200 § ws 1 wa
#
ve 1 [ |
8. 0 POl
3
60 Phosphorous (P) Po1 |
: y ol = O? —
340 ‘ mmm Pre-Repletion Po2
& mw Post-Repletion po3 oo I
a 20 H
* N . 0 200 400 600 800 1000 1200 1400 0 5000 10000 15000 20000 25000 30000 35000
O T 2 3 7 5 Count (K) Count (Mg)
C 4
3| — K (Measured)
—— K-PO
K-V
—_— K-PO
K-V
0 30 60 90 120 150

Hours into admission

Figure 6. The performance of providers in the MIMIC database was similar to that observed in
UPHS with frequent over-repletion (Panel (A)). Implementation of the RL Al-driven policy resulted
in an insignificant shift in repletion patterns (Panel (B)), but only when the repletion was adequate
(Panel (C)).

4. Discussion

This is the first demonstration of an RL-derived treatment protocol in an ICU setting,
intended to provide potentially continuous recommendations for clinician-in-the-loop
patient care to address the issue of electrolyte replacements. Our RL algorithm demonstrates
several important variables that guide providers to replete electrolytes for the first time.
Furthermore, we demonstrated in silico that we can use a reinforcement learning (RL)
strategy to create a policy that differs from clinical recommendations and that uses patient
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characteristics at a given time and a dynamic set of clinical variables to tailor treatment
to specific patient needs. Finally, RL performed similarly in datasets from two different
institutions, showing equivalent behavior and improvements in clinician policies, and
addressing the ever-important problem of Al validation.

The reinforcement learning system described in this paper uses available information
from electronic health records of vital signs, lab tests, and administered drugs and proce-
dures in order to estimate a patient-specific, provider-in-loop recommendation protocol
for electrolyte repletion at six-hour intervals. This period was chosen as a reasonable time
within the workflow of the intensive care unit. Recommendations are presented in an
interpretable and hierarchical way in which the system first suggests whether or not a
repletion is needed, along with the best route for repletion, and followed by the most
appropriate dosage in the event that the clinician chooses to administer a repletion.

This is a more controlled system of prescribing electrolyte repletion, reflecting a
quantitative data-driven decision-making pathway that caregivers often fail to follow if
the decision-making process is provider- or protocol-driven [13]. The RL system provides
flexibility in deciding what the clinical priorities should be, adapting them according to the
electrolyte considered and to challenging clinical situations, such as chronic renal failure,
liver failure, or severe morbidity, or to the workflows of the specific healthcare center [31].
Our approach therefore presents an adaptive framework for the delivery of care capable of
minimizing harm and maximizing precision, considering the patient context.

Our optimal RL policy was able to recommend electrolyte replacements in a more
targeted way [31,32]. The estimated reduction in recommended repletion events in the case
of potassium and magnesium allows for considerable savings in the time spent by clinicians
assessing electrolyte levels and the costs incurred from unnecessary or repeat orders placed
without thorough re-evaluation of clinical need [1,7]. Moreover, the recommendation of
electrolyte administration at pre-repletion values above the reference range is rarely if
ever observed [16], eliminating potential risk to patients due to over-treatment that was
observed in the historical patient data.

In addition, by placing larger penalties on intravenous rather than oral potassium
repletion, we were able to arrive at a policy that chooses oral replacement where possi-
ble [32,39]. The higher effective cost of IV repletion can be justified in a number of ways:
in the cost of the prescription itself of intravenous delivery, in the provider time taken
to initiate and monitor the delivery of the drug, in the increased risk of overcorrection
when setting the infusion rate as well as bruising, clotting, or infection at the infusion site,
discomfort or infection at the infusion site, and the risk of accidental overdosing [20,39].

It is important to note that the estimates of efficacy presented here are based on retro-
spective evaluation, which is challenging for Al systems that use reinforcement learning
with batch data. In this scenario, we do not have the ground truth as to the best possible
actions to learn from, and we cannot collect additional data following our estimated policy,
as in reinforcement learning for robotics or games. Furthermore, we are not able to accu-
rately simulate this data, given the complexity of patient health trajectories. As soon as an
action is taken in the historical test data that deviates from the optimal learned policy, the
patient trajectory under the optimal policy decision and all subsequent treatment decisions
are no longer perfectly known [8,28,31].

It can also be challenging in retrospective studies to disentangle potential confounders
in the patient attributes used to determine the necessity of repletion, and care is needed
to ensure that the drivers of repletion are appropriately interpreted. For example, it was
observed that high serum creatinine levels increase the probability of recommending
potassium repletion, assuming the patient has experienced kidney failure, resulting in the
buildup of creatinine levels, and thus the need for dialysis, which in turn is likely to result
in potassium deficiency. This recommendation may not hold if dialysis is not initiated or
continued by the care provider. Finally, the system here focused on data between 2010 and
2015; it is possible that there has been a shift in electrolyte testing and ordering practices
during or after this timeframe. The training dataset is limited to one center. We also limited
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the dataset to instances where data were complete, resulting in the substantial attrition
of the dataset. It is unclear if this strategy provides a more robust treatment policy than
using a more sizable but incomplete dataset. Further validation is needed to ensure that
the repletion policy recommended is robust for this shift in time. Future developments
will include the prospective validation of optimal RL policy recommendations by first
running real-time side-by-side comparisons of system recommendations with providers’
actions (i.e., shadowing providers), and then evaluating the efficacy of bedside policy
recommendations in a provider-in-the-loop protocol.

Developing this data-driven decision support tool is one task, but its implementation
into a clinical workflow may also encounter several obstacles. Providers may mistrust the
automated recommendations, in particular where there is a substantial departure from
current practice. This may occur, for instance, when providers are inclined to frequent
recommendations of higher doses of PO repletion. In addition, questions of reimbursement,
liability, and accountability may arise, and hospital systems need to figure out how to deal
with operational and legal consequences of implementation [12,41]. However, the potential
gains of thoughtful, well-planned implementation are considerable. Our estimation of the
financial benefit is conservative and does not account for other factors that could not be
quantified in the data [22,23].

The next step of this project is to develop an easily implemented module allowing
for processing data from various healthcare systems to provide more cross-validation to
assess the robustness of the algorithm against regional differences and more systemic biases
related to practice patterns and biases. The implementation of the RL will be challenging,
and one way to design the algorithm is to allow it to advise physicians during patient
rounds. Designing the RL to work in a six-hour interval was carried out with that idea in
mind. Because the RL algorithm is able to integrate new data into the optimal policy, these
adaptive policies are uniquely suited for robust deployment in a variety of environments.

In summary, this work describes an approach to guiding the repletion of electrolytes of
patients in the ICU, with the aim of avoiding the need for the patient to undergo prolonged
durations of electrolyte imbalance, while minimizing the costs associated with ordering
and administering oral and intravenous repletion.
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Appendix A
Appendix A.1. Reward Design

The overall reward function can be written as R = w x ¢, where ¢(s,a,s') is a four-
dimensional vector function parameterized by the current state s, immediate action 4,
and next state s’ that formalizes each of objectives described, and w defines the relative
weight of each of these objectives. Penalties for values above and below the reference
range are applied independently to allow for asymmetric weighting of the risks posed by
hypokalemia when compared with hyperkalemia. A sigmoid function to model penalties
on abnormal vitals reflects the clinical importance of a more severe electrolyte imbalance.

Vector functions ¢ for both magnesium and phosphate are also needed, with elements
corresponding to IV repletion cost, PO repletion cost, and abnormally high and abnormal
low electrolyte levels.

-1 [agoute [OH 0, 1

_ -1 [a;'oute[l]] 0,—1
i) = ~A[si1[K] > Kpax] 10 (1 + exp (—0(K — Kmax — 1)) | € | (=10,0)
~1[s141[K] < Kyin] 10 % (1 = exp (0 (K = Ky +1)) " (~10,0)

In both the UPHS and MIMIC datasets, we used a 75-25 training-test split. We used
the two datasets to model this clinical decision-making problem as a Markov decision
process (MDP) and used a custom-designed reward function that penalizes states in which
the patient is outside the given reference range for an electrolyte. We then used batch FQI
to learn an optimal policy and find that our learned Q-table converges (i.e., stabilizes) after
25-50 iterations [30].

Appendix A.2. Fitted Q Iteration (FQI)

The FQI algorithm learns an estimator for value Q of each state—action pair in our
MDP, where Q is the expected discounted cumulative reward, starting from the given state
and taking the specified action. This algorithm uses a series of regression models, where
the target Q-values for the regression at each iteration are obtained by bootstrapping on the
estimated Q from the previous regression, and updating based on observed rewards in the
current iteration [34,35]. FQI offers flexibility in the use of any regression method to solve
the supervised problems at each iteration. We fitted our estimate of Q at each iteration
of FQI, using gradient boosting machines (GBMs) [32]. This is an ensemble method in
which weaker predictive models, such as decision trees, are built sequentially by training
on residual errors, thereby allowing models to learn higher-order terms and more complex
interactions amongst features [33].

Appendix A.3. Inverse Reinforcement Learning

Inverse reinforcement learning is the task of extracting the reward function, which
explains the observed behavior in the data. In this case, it involves determining the value
of reward weights w where R = w X ¢ gives us an optimal policy—similar to the policy
followed by clinicians in the past. This is typically carried out by arbitrarily choosing
initial weights w, solving for a policy that optimizes reward R = w X ¢, estimating some
representation of the dynamics of this policy, comparing the policy dynamics with the
behavior seen in historical data, and updating weights accordingly, then iterating until the
learned policy with our weights is acceptably close to past behavior. In this case, we first
set w to assign equal priority to all objectives in ¢ and used the discounted time spent in
each state to represent policy dynamics, using this as update w.
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Expected Clinical Workflow
Review pre-existing Write a prescription Pharmacy to fill it RN time to Write follow up Blood draw (RN)
lab value (MD) (MD) administer order (MD)
. . . S . )
* 0.5min * 1min * Pharm * |V drugs - 8min * 1min * 2min
technician time * PO drugs - 4min
® 0.2min or 0.7 if
drug
compunded
* Pharmacist
 1min for
regular
* 2min for
compunded
~—— ~—— ~—— ~—— ~—— ~——
Figure A1l. The workflow used for estimation of time and costs related to savings after the introduc-
tion of RL to a clinical setting as a clinician-in-the-loop decision-making support tool.
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