Development and Validation of an Artificial Intelligence Electrocardiogram Recommendation System in the Emergency Department
Abstract
:1. Introduction
2. Methods
2.1. Population
2.2. Data Source
2.3. Model Training and Development
2.4. Response Variable
2.5. Demographic Variable
2.6. Chief Complaint Variable
2.7. Model Selection
2.8. Variables of Importance
2.9. Statistical Analysis
3. Results
3.1. Demographics of the Development, Validation, and Test Cohorts
3.2. Model Development and Validation
3.3. Performance of the XGBoost Model in the Test Cohorts
3.4. Variable Significance in the XGBoost Model
3.5. ECG Acquisition in Initially ECG Non-Acquisition Patients Stratified by the AI Model
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antman, E.M.; Anbe, D.T.; Armstrong, P.W.; Bates, E.R.; Green, L.A.; Hand, M.; Hochman, J.S.; Krumholz, H.M.; Kushner, F.G.; Lamas, G.A.; et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction—Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction). Circulation 2004, 110, 588–636. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [Green Version]
- Luepker, R.V.; Apple, F.S.; Christenson, R.H.; Crow, R.S.; Fortmann, S.P.; Goff, D.; Goldberg, R.J.; Hand, M.M.; Jaffe, A.S.; Julian, D.G.; et al. Case definitions for acute coronary heart disease in epidemiology and clinical research studies: A statement from the AHA Council on Epidemiology and Prevention; AHA Statistics Committee; World Heart Federation Council on Epidemiology and Prevention; the European Society of Cardiology Working Group on Epidemiology and Prevention; Centers for Disease Control and Prevention; and the National Heart, Lung, and Blood Institute. Circulation 2003, 108, 2543–2549. [Google Scholar] [CrossRef] [PubMed]
- Glickman, S.W.; Shofer, F.S.; Wu, M.C.; Scholer, M.J.; Ndubuizu, A.; Peterson, E.D.; Granger, C.B.; Cairns, C.B.; Glickman, L.T. Development and validation of a prioritization rule for obtaining an immediate 12-lead electrocardiogram in the emergency department to identify ST-elevation myocardial infarction. Am. Heart J. 2012, 163, 372–382. [Google Scholar] [CrossRef]
- O’Donnell, S.; Monahan, P.; McKee, G.; McMahon, G.; Curtin, E.; Farrell, S.; Moser, D. Towards prompt electrocardiogram acquisition in triage: Preliminary testing of a symptom-based clinical prediction rule for the Android tablet. Eur. J. Cardiovasc. Nurs. 2019, 18, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Takakuwa, K.M.; Burek, G.A.; Estepa, A.T.; Shofer, F.S. A method for improving arrival-to-electrocardiogram time in emergency department chest pain patients and the effect on door-to-balloon time for ST-segment elevation myocardial infarction. Acad. Emerg. Med. 2009, 16, 921–927. [Google Scholar] [CrossRef]
- Graff, L.; Palmer, A.C.; Lamonica, P.; Wolf, S. Triage of patients for a rapid (5-min) electrocardiogram: A rule based on presenting chief complaints. Ann. Emerg. Med. 2000, 36, 554–560. [Google Scholar] [CrossRef] [Green Version]
- Backus, B.E.; Six, A.J.; Kelder, J.C.; Bosschaert, M.A.; Mast, E.G.; Mosterd, A.; Veldkamp, R.F.; Wardeh, A.J.; Tio, R.; Braam, R.; et al. A prospective validation of the HEART score for chest pain patients at the emergency department. Int. J. Cardiol. 2013, 168, 2153–2158. [Google Scholar] [CrossRef] [Green Version]
- Than, M.; Flaws, D.; Sanders, S.; Doust, J.; Glasziou, P.; Kline, J.; Aldous, S.; Troughton, R.; Reid, C.; Parsonage, W.A.; et al. Development and validation of the Emergency Department Assessment of Chest pain Score and 2 h accelerated diagnostic protocol. Emerg. Med. Australas. 2014, 26, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Gilboy, N.; Tanabe, T.; Travers, D.; Rosenau, A.M. Emergency Severity Index (ESI): A Triage Tool for Emergency Department Care, 4th ed.; Emergency Nurses Association: Schaumburg, IL, USA, 2020. [Google Scholar]
- Nishi, F.A.; de Oliveira Motta Maia, F.; de Souza Santos, I.; de Almeida Lopes Monteiro da Cruz, D. Assessing sensitivity and specificity of the Manchester Triage System in the evaluation of acute coronary syndrome in adult patients in emergency care: A systematic review. JBI Database Syst. Rev. Implement. Rep. 2017, 15, 1747–1761. [Google Scholar] [CrossRef]
- Beveridge, R.; Ducharme, J.; Janes, L.; Beaulieu, S.; Walter, S. Reliability of the Canadian emergency department triage and acuity scale: Interrater agreement. Ann. Emerg. Med. 1999, 34, 155–159. [Google Scholar] [CrossRef]
- Frisch, S.O.; Faramand, Z.; Leverknight, B.; Martin-Gill, C.; Sereika, S.M.; Sejdić, E.; Hravnak, M.; Callaway, C.W.; Al-Zaiti, S. The Association Between Patient Outcomes and the Initial Emergency Severity Index Triage Score in Patients with Suspected Acute Coronary Syndrome. J. Cardiovasc. Nurs. 2020, 35, 550–557. [Google Scholar] [CrossRef]
- Nishi, F.A.; Polak, C.; Cruz, D. Sensitivity and specificity of the Manchester Triage System in risk prioritization of patients with acute myocardial infarction who present with chest pain. Eur. J. Cardiovasc. Nurs. 2018, 17, 660–666. [Google Scholar] [CrossRef]
- Attia, Z.I.; Harmon, D.M.; Behr, E.R.; Friedman, P.A. Application of artificial intelligence to the electrocardiogram. Eur. Heart J. 2021, 42, 4717–4730. [Google Scholar] [CrossRef]
- Attia, Z.I.; Kapa, S.; Lopez-Jimenez, F.; McKie, P.M.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Enriquez-Sarano, M.; Noseworthy, P.A.; Munger, T.M.; et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat. Med. 2019, 25, 70–74. [Google Scholar] [CrossRef]
- Kwon, J.M.; Kim, K.H.; Akkus, Z.; Jeon, K.H.; Park, J.; Oh, B.H. Artificial intelligence for detecting mitral regurgitation using electrocardiography. J. Electrocardiol. 2020, 59, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.M.; Lee, S.Y.; Jeon, K.H.; Lee, Y.; Kim, K.H.; Park, J.; Oh, B.H.; Lee, M.M. Deep Learning-Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography. J. Am. Heart Assoc. 2020, 9, e014717. [Google Scholar] [CrossRef]
- Ko, W.Y.; Siontis, K.C.; Attia, Z.I.; Carter, R.E.; Kapa, S.; Ommen, S.R.; Demuth, S.J.; Ackerman, M.J.; Gersh, B.J.; Arruda-Olson, A.M.; et al. Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. J. Am. Coll. Cardiol. 2020, 75, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.C.; Lin, C.S.; Tsai, C.S.; Tsao, T.P.; Cheng, C.C.; Liou, J.T.; Lin, W.S.; Cheng, S.M.; Lou, Y.S.; Lee, C.C.; et al. A deep learning algorithm for detecting acute myocardial infarction. EuroIntervention 2021, 17, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.S.; Lin, C.; Fang, W.H.; Hsu, C.J.; Chen, S.J.; Huang, K.H.; Lin, W.S.; Tsai, C.S.; Kuo, C.C.; Chau, T.; et al. A Deep-Learning Algorithm (ECG12Net) for Detecting Hypokalemia and Hyperkalemia by Electrocardiography: Algorithm Development. JMIR Med. Inform. 2020, 8, e15931. [Google Scholar] [CrossRef]
- Chang, D.W.; Lin, C.S.; Tsao, T.P.; Lee, C.C.; Chen, J.T.; Tsai, C.S.; Lin, W.S.; Lin, C. Detecting Digoxin Toxicity by Artificial Intelligence-Assisted Electrocardiography. Int. J. Environ. Res. Public Health 2021, 18, 3839. [Google Scholar] [CrossRef]
- Lin, C.S.; Lee, Y.T.; Fang, W.H.; Lou, Y.S.; Kuo, F.C.; Lee, C.C.; Lin, C. Deep Learning Algorithm for Management of Diabetes Mellitus via Electrocardiogram-Based Glycated Hemoglobin (ECG-HbA1c): A Retrospective Cohort Study. J. Pers. Med. 2021, 11, 725. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.T.; Lin, C.S.; Tsao, T.P.; Lee, C.C.; Cheng, C.C.; Chen, J.T.; Tsai, C.S.; Lin, W.S.; Lin, C. A Deep-Learning Algorithm-Enhanced System Integrating Electrocardiograms and Chest X-rays for Diagnosing Aortic Dissection. Can. J. Cardiol. 2021, 38, 160–168. [Google Scholar] [CrossRef]
- Lin, C.; Chau, T.; Lin, C.-S.; Shang, H.-S.; Fang, W.-H.; Lee, D.-J.; Lee, C.-C.; Tsai, S.-H.; Wang, C.-H.; Lin, S.-H. Point-of-care artificial intelligence-enabled ECG for dyskalemia: A retrospective cohort analysis for accuracy and outcome prediction. NPJ Digit. Med. 2022, 5, 8. [Google Scholar] [CrossRef]
- Lee, C.C.; Lin, C.S.; Tsai, C.S.; Tsao, T.P.; Cheng, C.C.; Liou, J.T.; Lin, W.S.; Lee, C.C.; Chen, J.T.; Lin, C. A deep learning-based system capable of detecting pneumothorax via electrocardiogram. Eur. J. Trauma Emerg. Surg. 2022, 1–10. [Google Scholar] [CrossRef]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Ruopp, M.D.; Perkins, N.J.; Whitcomb, B.W.; Schisterman, E.F. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. J. Math. Methods Biosci. 2008, 50, 419–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salman, O.H.; Taha, Z.; Alsabah, M.Q.; Hussein, Y.S.; Mohammed, A.S.; Aal-Nouman, M. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work. Comput. Methods Programs Biomed. 2021, 209, 106357. [Google Scholar] [CrossRef] [PubMed]
- Khera, R.; Haimovich, J.; Hurley, N.C.; McNamara, R.; Spertus, J.A.; Desai, N.; Rumsfeld, J.S.; Masoudi, F.A.; Huang, C.; Normand, S.L.; et al. Use of Machine Learning Models to Predict Death after Acute Myocardial Infarction. JAMA Cardiol. 2021, 6, 633–641. [Google Scholar] [CrossRef]
- Uddin, S.; Khan, A.; Hossain, M.E.; Moni, M.A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 2019, 19, 281. [Google Scholar] [CrossRef]
- Fernandes, M.; Vieira, S.M.; Leite, F.; Palos, C.; Finkelstein, S.; Sousa, J.M.C. Clinical Decision Support Systems for Triage in the Emergency Department using Intelligent Systems: A Review. Artif. Intell. Med. 2020, 102, 101762. [Google Scholar] [CrossRef] [PubMed]
- Yanamadala, A.; Kumar, S.; Lichtenberg, R. It is a medical emergency! Act fast: A case report of painless aortic dissection. Eur. Heart J. Case Rep. 2019, 3, ytz072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lentini, S.; Perrotta, S. Aortic dissection with concomitant acute myocardial infarction: From diagnosis to management. J. Emerg. Trauma Shock 2011, 4, 273–278. [Google Scholar] [CrossRef]
- Hammad, T.A.; Parikh, M.; Tashtish, N.; Lowry, C.M.; Gorbey, D.; Forouzandeh, F.; Filby, S.J.; Wolf, W.M.; Costa, M.A.; Simon, D.I.; et al. Impact of COVID-19 pandemic on ST-elevation myocardial infarction in a non-COVID-19 epicenter. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2020, 97, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Raita, Y.; Goto, T.; Faridi, M.K.; Brown, D.F.M.; Camargo, C.A., Jr.; Hasegawa, K. Emergency department triage prediction of clinical outcomes using machine learning models. Crit. Care 2019, 23, 64. [Google Scholar] [CrossRef] [Green Version]
- Fenn, A.; Davis, C.; Buckland, D.M.; Kapadia, N.; Nichols, M.; Gao, M.; Knechtle, W.; Balu, S.; Sendak, M.; Theiling, B.J. Development and Validation of Machine Learning Models to Predict Admission from Emergency Department to Inpatient and Intensive Care Units. Ann. Emerg. Med. 2021, 78, 290–302. [Google Scholar] [CrossRef]
- Chrusciel, J.; Girardon, F.; Roquette, L.; Laplanche, D.; Duclos, A.; Sanchez, S. The prediction of hospital length of stay using unstructured data. BMC Med. Inform. Decis. Mak. 2021, 21, 351. [Google Scholar] [CrossRef]
- Ben-Assuli, O.; Vest, J.R. Data mining techniques utilizing latent class models to evaluate emergency department revisits. J. Biomed. Inf. 2020, 101, 103341. [Google Scholar] [CrossRef]
- Yun, H.; Choi, J.; Park, J.H. Prediction of Critical Care Outcome for Adult Patients Presenting to Emergency Department Using Initial Triage Information: An XGBoost Algorithm Analysis. JMIR Med. Inf. 2021, 9, e30770. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Development | Validation | Testing 1 | Testing 2 | p-Value |
---|---|---|---|---|---|
Male gender, n (%) | 64,462 (49.8) | 23,305 (48.6) | 28,285 (48.7) | 33,857 (51.1) | <0.001 |
Age (year) | 53.80 ± 21.14 | 53.64 ± 20.91 | 53.25 ± 20.71 | 52.09 ± 20.45 | <0.001 |
Height (cm) | 163.85 ± 8.90 | 163.73 ± 8.95 | 163.81 ± 8.99 | 164.36 ± 9.00 | <0.001 |
Weight (kg) | 64.49 ± 13.92 | 64.73 ± 14.14 | 64.80 ± 14.12 | 65.35 ± 14.23 | <0.001 |
Body mass index (kg/m2) | 23.91 ± 4.21 | 24.03 ± 4.26 | 24.03 ± 4.24 | 24.07 ± 4.24 | <0.001 |
Temperature (°C) | 36.74 ± 0.88 | 36.69 ± 0.90 | 36.72 ± 0.90 | 36.69 ± 0.84 | <0.001 |
Triage level, n (%) | <0.001 | ||||
I | 4672 (3.6) | 1786 (3.7) | 1974 (3.4) | 2073 (3.1) | |
II | 22,220 (17.2) | 8311 (17.3) | 9364 (16.1) | 9579 (14.5) | |
III | 95,136 (73.5) | 35,222 (73.5) | 43,545 (75.0) | 45,905 (69.3) | |
IV | 6385 (4.9) | 2242 (4.7) | 2739 (4.7) | 3072 (4.6) | |
V | 1031 (0.8) | 357 (0.7) | 420 (0.7) | 5625 (8.5) | |
Trauma, n (%) | 24,605 (19.0) | 8505 (17.7) | 10,640 (18.3) | 12,308 (18.6) | <0.001 |
Pulse (beats/min) | 86.93 ± 18.86 | 86.89 ± 18.73 | 87.43 ± 18.52 | 86.60 ± 18.56 | <0.001 |
Breath (breaths/min) | 18.74 ± 2.68 | 18.83 ± 2.27 | 18.72 ± 2.40 | 18.59 ± 2.00 | <0.001 |
SBP (mmHg) | 135.22 ± 24.94 | 135.96 ± 25.02 | 134.36 ± 24.55 | 134.72 ± 24.45 | <0.001 |
DBP (mmHg) | 77.86 ± 16.15 | 76.59 ± 16.08 | 77.96 ± 15.78 | 78.55 ± 15.81 | <0.001 |
ECG in 2 h, n (%) | 33,097 (25.6) | 16,825 (35.1) | 20,764 (35.8) | 20,380 (30.8) | <0.001 |
Cohort | Accuracy | Recall | Precision | F Scores |
---|---|---|---|---|
Validation | 0.805 | 0.834 | 0.681 | 0.750 |
Test 1 | 0.813 | 0.812 | 0.708 | 0.757 |
Test 2 | 0.814 | 0.816 | 0.659 | 0.729 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, D.-J.; Tsai, S.-H.; Chiang, H.-H.; Lee, C.-C.; Chen, S.-J. Development and Validation of an Artificial Intelligence Electrocardiogram Recommendation System in the Emergency Department. J. Pers. Med. 2022, 12, 700. https://doi.org/10.3390/jpm12050700
Tsai D-J, Tsai S-H, Chiang H-H, Lee C-C, Chen S-J. Development and Validation of an Artificial Intelligence Electrocardiogram Recommendation System in the Emergency Department. Journal of Personalized Medicine. 2022; 12(5):700. https://doi.org/10.3390/jpm12050700
Chicago/Turabian StyleTsai, Dung-Jang, Shih-Hung Tsai, Hui-Hsun Chiang, Chia-Cheng Lee, and Sy-Jou Chen. 2022. "Development and Validation of an Artificial Intelligence Electrocardiogram Recommendation System in the Emergency Department" Journal of Personalized Medicine 12, no. 5: 700. https://doi.org/10.3390/jpm12050700
APA StyleTsai, D. -J., Tsai, S. -H., Chiang, H. -H., Lee, C. -C., & Chen, S. -J. (2022). Development and Validation of an Artificial Intelligence Electrocardiogram Recommendation System in the Emergency Department. Journal of Personalized Medicine, 12(5), 700. https://doi.org/10.3390/jpm12050700