Characterization by Gender of Frailty Syndrome in Elderly People according to Frail Trait Scale and Fried Frailty Phenotype
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Characterization of the Cohort by Gender
3.2. Comparison of Frailty Profiles by Gender
3.3. Association Studies between Frailty and Relevant Health Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, W.; Goodkind, D.; Kowal, P.R. An Aging World: 2015; United States Census Bureau: Washington, DC, USA, 2016.
- Nguyen, T.; Cumming, R.G.; Hilmer, S.N. A review of frailty in developing countries. J. Nutr. Health Aging 2015, 19, 941–946. [Google Scholar] [CrossRef]
- Bloom, D.E.; Boersch-Supan, A.; McGee, P.; Seike, A. Population aging: Facts, challenges, and responses. Benefits Compens. Int. 2011, 41, 22. [Google Scholar]
- Thumala, D.; Kennedy, B.K.; Calvo, E.; Gonzalez-Billault, C.; Zitko, P.; Lillo, P.; Villagra, R.; Ibáñez, A.; Assar, R.; Andrade, M.; et al. Aging and Health Policies in Chile: New Agendas for Research. Health Syst. Reform 2017, 3, 253–260. [Google Scholar] [CrossRef]
- Rudnicka, E.; Napierała, P.; Podfigurna, A.; Męczekalski, B.; Smolarczyk, R.; Grymowicz, M. The World Health Organization (WHO) approach to healthy ageing. Maturitas 2020, 139, 6–11. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines on Integrated Care for Older People (ICOPE); World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Arauna, D.; Cerda, A.; Garcia-García, J.F.; Wehinger, S.; Castro, F.; Méndez, D.; Alarcón, M.; Fuentes, E.; Palomo, I. Polypharmacy Is Associated with Frailty, Nutritional Risk and Chronic Disease in Chilean Older Adults: Remarks from PIEI-ES Study. Clin. Interv. Aging 2020, 15, 1013–1022. [Google Scholar] [CrossRef]
- World Health Organization. WHO Clinical Consortium on Healthy Ageing: Topic Focus: Frailty and Intrinsic Capacity: Report of Consortium Meeting, 1–2 December 2016 in Geneva, Switzerland; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Palomo, I.; Giacaman, R.A.; León, S.; Lobos, G.; Bustamante, M.; Wehinger, S.; Tapia, J.C.; Fuentes, M.; Alarcón, M.; García, F.; et al. Analysis of the characteristics and components for the frailty syndrome in older adults from central Chile. The PIEI-ES study. Arch. Gerontol. Geriatr. 2018, 80, 70–75. [Google Scholar] [CrossRef]
- Coelho-Junior, H.J.; Marzetti, E.; Picca, A.; Calvani, R.; Cesari, M.; Uchida, M.C. Prevalence of Prefrailty and Frailty in South America: A Systematic Review of Observational Studies. J. Frailty Aging 2020, 9, 197–213. [Google Scholar] [CrossRef]
- García-García, F.J.; Carcaillon, L.; Fernandez-Tresguerres, J.; Alfaro, A.; Larrion, J.L.; Castillo, C.; Rodriguez-Mañas, L. A New Operational Definition of Frailty: The Frailty Trait Scale. J. Am. Med. Dir. Assoc. 2014, 15, 371.e7–371.e13. [Google Scholar] [CrossRef]
- García-García, F.J.; Carnicero, J.A.; Losa-Reyna, J.; Alfaro-Acha, A.; Castillo-Gallego, C.; Rosado-Artalejo, C.; Gutiérrrez-Ávila, G.; Rodriguez-Mañas, L. Frailty Trait Scale–Short Form: A Frailty Instrument for Clinical Practice. J. Am. Med. Dir. Assoc. 2020, 21, 1260–1266.e2. [Google Scholar] [CrossRef]
- Checa-López, M.; Oviedo-Briones, M.; Pardo-Gómez, A.; Gonzales-Turín, J.; Guevara-Guevara, T.; Carnicero, J.A.; Rodriguez-Mañas, L. FRAILTOOLS study protocol: A comprehensive validation of frailty assessment tools to screen and diagnose frailty in different clinical and social settings and to provide instruments for integrated care in older adults. BMC Geriatr. 2019, 19, 86. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Bouzón, C.; Carcaillon, L.; García-García, F.J.; Amor-Andrés, M.S.; El Assar, M.; Rodríguez-Mañas, L. Association between endothelial dysfunction and frailty: The Toledo Study for Healthy Aging. AGE 2013, 36, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Chang, M.; Wang, J. Abdominal obesity, body mass index and the risk of frailty in community-dwelling older adults: A systematic review and meta-analysis. Age Ageing 2021, 50, 1118–1128. [Google Scholar] [CrossRef]
- Hawkins, K.L.; Zhang, L.; Ng, D.K.; Althoff, K.N.; Palella, F.J., Jr.; Kingsley, L.A.; Jacobson, L.P.; Margolick, J.B.; Lake, J.E.; Brown, T.T.; et al. Abdominal obesity, sarcopenia, and osteoporosis are associated with frailty in men living with and without HIV. AIDS 2018, 32, 1257–1266. [Google Scholar] [CrossRef]
- Afonso, C.; Sousa-Santos, A.R.; Santos, A.; Borges, N.; Padrão, P.; Moreira, P.; Amaral, T.F. Frailty status is related to general and abdominal obesity in older adults. Nutr. Res. 2020, 85, 21–30. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; McBurnie, M.A. Frailty in older adults evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef]
- Walston, J.; Buta, B.; Xue, Q.-L. Frailty Screening and Interventions: Considerations for Clinical Practice. Clin. Geriatr. Med. 2018, 34, 25–38. [Google Scholar] [CrossRef]
- Rosado-Artalejo, C.; Carnicero, J.A.; Losa-Reyna, J.; Guadalupe-Grau, A.; Guiterrez-Avila, G.; Alfaro-Acha, A.; Rodriguez-Artalejo, F.; Rodriguez-Manas, L.; Garcia-Garcia, F.J. Cognitive performance across 3 frailty phenotypes: Toledo study for healthy aging. J. Am. Med. Dir. Assoc. 2017, 18, 785–790. [Google Scholar] [CrossRef]
- Garcia-Garcia, F.J.; Gutierrez Avila, G.; Alfaro-Acha, A.; Amor Andres, M.S.; De Los Angeles De La Torre Lanza, M.; Escribano Aparicio, M.V.; Humanes Aparicio, S.; Larrion Zugasti, J.L.; Gomez-Serranillo Reus, M.; Rodriguez-Artalejo, F.; et al. The prevalence of frailty syndrome in an older population from Spain. The Toledo study for healthy aging. J. Nutr. Health Aging 2011, 15, 852–856. [Google Scholar] [CrossRef]
- Albala, C.; Lera, L.; Sanchez, H.; Angel, B.; Márquez, C.; Arroyo, P.; Fuentes, P. Frequency of frailty and its association with cognitive status and survival in older Chileans. Clin. Interv. Aging 2017, 12, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- McMinn, J.; Steel, C.; Bowman, A. Investigation and management of unintentional weight loss in older adults. BMJ 2011, 342, d1732. [Google Scholar] [CrossRef]
- Castell, M.V.; Sánchez, M.; Julián, R.; Queipo, R.; Martín, S.; Otero, Á. Frailty prevalence and slow walking speed in persons age 65 and older: Implications for primary care. BMC Fam. Pract. 2013, 14, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girgus, J.S.; Yang, K.; Ferri, C.V. The Gender Difference in Depression: Are Elderly Women at Greater Risk for Depression Than Elderly Men? Geriatrics 2017, 2, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Cho, J.; Lee, I.; Park, S.; Kim, D.; Kong, J.; Kang, H. Involuntary Weight Loss and Late-Life Depression in Korean Older Adults. Iran. J. Public Health 2020, 49, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker For Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [Green Version]
- Dudzińska-Griszek, J.; Szuster-Kowolik, K.; Szewieczek, J. Grip strength as a frailty diagnostic component in geriatric inpatients. Clin. Interv. Aging 2017, 12, 1151–1157. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.K.; Fielding, R.A. Exercise as an Intervention for Frailty. Clin. Geriatr. Med. 2011, 27, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Freiberger, E.; Kemmler, W.; Siegrist, M.; Sieber, C. Frailty and exercise interventions: Evidence and barriers for exercise programs. Z. Fur. Gerontol. Und Geriatr. 2016, 49, 606–611. [Google Scholar] [CrossRef]
- Da Mata, F.A.F.; da Silva Pereira, P.P.; de Andrade, K.R.C.; Figueiredo, A.C.M.G.; Silva, M.T.; Pereira, M.G. Prevalence of Frailty in Latin America and the Caribbean: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0160019. [Google Scholar] [CrossRef]
- Kane, A.E.; Howlett, S.E. Sex differences in frailty: Comparisons between humans and preclinical models. Mech. Ageing Dev. 2021, 198, 111546. [Google Scholar] [CrossRef]
- Liu, L.-K.; Guo, C.-Y.; Lee, W.-J.; Chen, L.-Y.; Hwang, A.-C.; Lin, M.-H.; Peng, L.-N.; Liang, K.-Y. Subtypes of physical frailty: Latent class analysis and associations with clinical characteristics and outcomes. Sci. Rep. 2017, 7, 46417. [Google Scholar] [CrossRef]
- Huang, S.; Tange, C.; Otsuka, R.; Nishita, Y.; Peng, L.; Hsiao, F.; Tomida, M.; Shimokata, H.; Arai, H.; Chen, L. Subtypes of physical frailty and their long-term outcomes: A longitudinal cohort study. J. Cachex-Sarcopenia Muscle 2020, 11, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Mak, J.K.L.; Reynolds, C.A.; Hägg, S.; Li, X.; Ericsson, M.; Pedersen, N.L.; Jylhävä, J.; Kuja-Halkola, R. Sex differences in genetic and environmental influences on frailty and its relation to body mass index and education. Aging 2021, 13, 16990–17023. [Google Scholar] [CrossRef] [PubMed]
- Brigola, A.G.; Alexandre, T.D.S.; Inouye, K.; Yassuda, M.S.; Pavarini, S.C.I.; Mioshi, E. Limited formal education is strongly associated with lower cognitive status, functional disability and frailty status in older adults. Dement. Neuropsychol. 2019, 13, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Kojima, G.; Liljas, A.E.; Iliffe, S. Frailty syndrome: Implications and challenges for health care policy. Risk Manag. Health Policy 2019, 12, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Brigola, A.G.; Rossetti, E.S.; Dos Santos, B.R.; Neri, A.L.; Zazzetta, M.S.; Inouye, K.; Pavarini, S.C.I. Relationship between cognition and frailty in elderly: A systematic review. Dement. Neuropsychol. 2015, 9, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Hoogendijk, E.O.; van Hout, H.P.; Heymans, M.W.; van der Horst, H.E.; Frijters, D.H.; Broese van Groenou, M.I.; Huisman, M. Explaining the association between educational level and frailty in older adults: Results from a 13-year longitudinal study in the Netherlands. Ann. Epidemiol. 2014, 24, 538–544.e2. [Google Scholar] [CrossRef]
- Sardella, A.; Catalano, A.; Lenzo, V.; Bellone, F.; Corica, F.; Quattropani, M.C.; Basile, G. Association between cognitive reserve dimensions and frailty among older adults: A structured narrative review. Geriatr. Gerontol. Int. 2020, 20, 1005–1023. [Google Scholar] [CrossRef]
- Amiri, S.; Behnezhad, S.; Hasani, J. Body Mass Index and risk of frailty in older adults: A systematic review and meta-analysis. Obes. Med. 2020, 18, 100196. [Google Scholar] [CrossRef]
- Hubbard, R.E.; Lang, I.A.; Llewellyn, D.J.; Rockwood, K. Frailty, body mass index, and abdominal obesity in older people. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2010, 65, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Kim, J.; Han, E.S.; Ryu, M.; Cho, Y.; Chae, S. Frailty and body mass index as predictors of 3-year mortality in older adults living in the community. Gerontology 2014, 60, 475–482. [Google Scholar] [CrossRef]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Abizanda, P.; Romero, L.; Sanchez-Jurado, P.M.; Martinez-Reig, M.; Alfonso-Silguero, S.A.; Rodriguez-Manas, L. Age, frailty, disability, institutionalization, multimorbidity or comorbidity. Which are the main targets in older adults? J. Nutr. Health Aging 2014, 18, 622–627. [Google Scholar] [CrossRef] [PubMed]
Variable | Women (n = 220) | Men (n = 80) | Total (n = 300) |
---|---|---|---|
Gender % (95% CI) | 73.3 (68.1–78.2) | 26.7 (21.9–31.9) | 100 |
Age (mean ± SD) | 74.1 ± 5.9 | 75.0 ± 4.9 | 74.3 ± 5.7 |
BMI (kg/m2) (mean ± SD) | 29.7 ± 4.8 | 29.6 ± 3.9 | 29.7 ± 4.6 |
Years of education (mean ± SD) | 9.3 ± 4.7 | 9.6 ± 4.0 | 9.4 ± 4.0 |
Abdominal obesity % (95% CI) **** | 73.6 (67.4–79.2) | 48.8 (38.1–59.6) | 67.0 (61.5–72.1) |
Living alone % (95% CI) * | 31.4 (25.6–37.8) | 18.8 (11.7–28.7) | 28.0 (23.2–33.3) |
Women (n = 220) | Men (n = 80) | Total (n = 300) | |
---|---|---|---|
FP Components % (95% CI) | |||
Slowness | 25.0 (19.74–31.12) | 17.5 (10.72–27.26) | 23.0 (18.6–28.1) |
Weakness ** | 21.4 (16.5–27.3) | 38.8 (28.8–49.7) | 26.0 (21.4–31.2) |
Weight loss * | 16.8 (12.5–22.3) | 7.5 (3.5–15.4) | 14.3 (10.8–18.8) |
Exhaustion | 30.9 (25.2–37.3) | 25.0 (16.8–35.5) | 29.3 (24.5–34.7) |
Low physical activity | 36.4 (30.3–42.9) | 33.8 (24.3–33.8) | 35.7 (30.5–41.2) |
Number of componentes % (95% CI) | |||
0 | 38.2 (32.0–44.8) | 36.3 (26.6–47.2) | 37.7 (32.4–43.3) |
1 | 24.5 (19.3–30.6) | 30.0 (21.1–40.8) | 26.0 (21.4–31.2) |
2 | 15.9 (11.7–21.3) | 18.8 (11.7–28.7) | 16.7 (12.9–21.3) |
3 | 13.2 (9.4–18.3) | 6.3 (13.8–2.7) | 11.3 (8.2–15.4) |
4 | 6.4 (3.8–10.4) | 7.5 (3.5–15.4) | 6.7 (4.4–10.1) |
5 | 1.8 (0.7–4.6) | 1.3 (0.1–6.7) | 1.7 (0.7–3.8) |
Total Frail (≥3 points), % (95% CI) | 21.4 (16.5–27.2) | 15.0 (8.8–24.4) | 19.7 (15.6–24.5) |
Total Pre-frail (1–2 points), % (95% CI) | 40.5 (34.2–47.1) | 48.8 (38.1–59.5) | 42.7 (37.2–48.3) |
Women (n = 220) | Men (n = 80) | Total (n = 300) | |
---|---|---|---|
FTS-5 criteria score (mean ± SD) | |||
BMI | 2.2 ± 2.0 | 1.9 ± 1.8 | 2.1±1.9 |
Handgrip *** | 2.1 ± 1.9 | 1.3 ± 1.7 | 1.9 ± 1.9 |
Romberg Test | 4.3 ± 7.4 | 5.8 ± 9.1 | 4.7 ± 7.9 |
Walking time ** | 2.4 ± 2.0 | 1.8 ± 1.7 | 2.2 ± 1.9 |
PASE ** | 4.7 ± 2.3 | 3.8 ± 2.6 | 4.4 ± 2.4 |
Quartiles FTS5 score % (95% CI) | |||
Q1 | 24.5 (19.3–30.6) | 35 (25.5–45.9) | 27.3 (22.6–32.6) |
Q2 | 26.8 (21.4–33.0) | 20 (12.7–30.0) | 25.0 (20.4–30.2) |
Q3 | 23.2 (18.1–29.2) | 21.3 (13.7–31.4) | 22.7 (18.3–27.7) |
Q4 | 25.5 (20.2–31.6) | 23.8 (15.8–34.1) | 25.0 (20.4–30.2) |
Total Frail | |||
FTS-5 | 18.1 (13.6–23.8) | 17.5 (10.7–27.3) | 18.0 (14.1–22.7) |
FTS-3 | 22.7 (17.7–28.7) | 25.0 (16.8–35.5) | 23.3 (18.9–28.4) |
Variable | Frail vs. Non-Frail | Frail vs. Pre-Frail | ||||
---|---|---|---|---|---|---|
Model 1 OR (95% CI) | Model 2 OR (95% CI) | Model 3 OR (95% CI) | Model 1 OR (95% CI) | Model 2 OR (95% CI) | Model 3 OR (95% CI) | |
Women | 1.364 (0.635–0.929) | 1.270 (0.561–2.875) | 1.283 (0.561–2.935) | 1.701 (0.812–3.564) | 1.856 (0.812–4.245) | 1.716 (0.738–3.989) |
Age ≥ 75 years | 1.434 (0.756–2.720) | 1.225 (0.614–2.444) | 1.264 (0.626–2.551) | 0.684 (0.367–1.275) | 0.700 (0.372–1.317) | 0.694 (0.366–1.314) |
Years of education ≤ 8 | 2.316 (1.171–4.579) * | 2.240 (1.106–4.536) * | 1.053 (0.548–2.021) | 0.988 (0.509–1.919) | ||
BMI ≥ 25 kg/m2 | 2.680 (0.663–10.838) | 2.672 (0.658–10.840) | 2.825 (0.705–11.325) | 3.191 (0.779–13.079) | ||
Abdominal obesity | 2.113 (0.941–4.753) | 2.063 (0.915–4.652) | 0.811 (0.343–1.919) | 0.813 (0.340–1.945) | ||
Living alone | 1.004 (0.479–2.104) | 1.665 (0.808–3.432) | ||||
Automedication | 0.927 (0.325–2.643) | 0.642 (0.244–1.690) |
Variable | FTS-5 | ||
Frail vs. Non-Frail | |||
Model 1 OR (95% CI) | Model 2 OR (95% CI) | Model 3 OR (95% CI) | |
Women | 1.084 (0.552–2.129) | 1.010 (0.492–2.074) | 0.998 (0.480–2.076) |
Age ≥ 75 years | 1.701 (0.937–3.087) | 1.665 (0.900–3.080) | 1.669 (0.900–3.096) |
Years of education < 8 | 1.358 (0.733–2.517) | 1.368 (0.735–2.548) | |
BMI ≥ 25 kg/m2 | 8.168 (1.031–64.676) * | 7.853 (0.984–62.645) | |
Abdominal obesity | 1.426 (0.651–3.124) | 1.433 (0.650–3.160) | |
Living alone | 0.924 (0.460–1.859) | ||
Automedication | 0.589 (0.216–1.607) | ||
FTS-3 | |||
Frail vs. Non-Frail | |||
Model 1 OR (95% CI) | Model 2 OR (95% CI) | Model 3 OR (95% CI) | |
Women | 0.912 (0.500–1.663) | 0.846 (0.444–1.613) | 0.789 (0.406–1.533) |
Age ≥ 75 years | 1.726 (1.004–2.965) * | 1.804 (1.027–3.167) * | 1.839 (1.040–3.250) * |
Years of education < 8 | 0.965 (0.547–1.702) | 0.947 (0.533–1.684) | |
BMI ≥ 25 kg/m2 | 10.381 (1.332–80.907) * | 10.225 (1.297–80.617) * | |
Abdominal obesity | 1.664 (0.816–3.395) | 1.693 (0.821–3.492) | |
Living alone | 1.210 (0.643–2.278) | ||
Automedication | 0.390 (0.144–1.059) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palomo, I.; García, F.; Albala, C.; Wehinger, S.; Fuentes, M.; Alarcón, M.; Arauna, D.; Montecino, H.; Mendez, D.; Sepúlveda, M.; et al. Characterization by Gender of Frailty Syndrome in Elderly People according to Frail Trait Scale and Fried Frailty Phenotype. J. Pers. Med. 2022, 12, 712. https://doi.org/10.3390/jpm12050712
Palomo I, García F, Albala C, Wehinger S, Fuentes M, Alarcón M, Arauna D, Montecino H, Mendez D, Sepúlveda M, et al. Characterization by Gender of Frailty Syndrome in Elderly People according to Frail Trait Scale and Fried Frailty Phenotype. Journal of Personalized Medicine. 2022; 12(5):712. https://doi.org/10.3390/jpm12050712
Chicago/Turabian StylePalomo, Iván, Francisco García, Cecilia Albala, Sergio Wehinger, Manuel Fuentes, Marcelo Alarcón, Diego Arauna, Hector Montecino, Diego Mendez, Magdalena Sepúlveda, and et al. 2022. "Characterization by Gender of Frailty Syndrome in Elderly People according to Frail Trait Scale and Fried Frailty Phenotype" Journal of Personalized Medicine 12, no. 5: 712. https://doi.org/10.3390/jpm12050712
APA StylePalomo, I., García, F., Albala, C., Wehinger, S., Fuentes, M., Alarcón, M., Arauna, D., Montecino, H., Mendez, D., Sepúlveda, M., Fuica, P., & Fuentes, E. (2022). Characterization by Gender of Frailty Syndrome in Elderly People according to Frail Trait Scale and Fried Frailty Phenotype. Journal of Personalized Medicine, 12(5), 712. https://doi.org/10.3390/jpm12050712