The Present and Future of Allergen Immunotherapy in Personalized Medicine
Abstract
:1. Introduction
2. The Role of AIT in Allergic Diseases
3. Treatable Traits
4. Omics
4.1. Proteomics
4.2. Epigenomics
4.3. Metabolomics
4.4. Transcriptomics
4.5. Breathomics
5. Present Landscape of Personalized AIT
6. Future Landscape of Personalized AIT
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Venne, J.; Busshoff, U.; Poschadel, S.; Menschel, R.; Evangelatos, N.; Vysyaraju, K.; Brand, A. International consortium for personalized medicine: An international survey about the future of personalized medicine. Pers. Med. 2020, 17, 89–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogenberg, F.R.; Isaacson Barash, C.; Pursel, M. Personalized medicine: Part 1: Evolution and development into theranostics. Pharm. Ther. 2010, 35, 560–576. [Google Scholar]
- Rachid Zaim, S.; Kenost, C.; Zhang, H.H.; Lussier, Y.A. Personalized beyond Precision: Designing Unbiased Gold Standards to Improve Single-Subject Studies of Personal Genome Dynamics from Gene Products. J. Pers. Med. 2020, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Bodtger, U. Prognostic value of asymptomatic skin sensitization to aeroallergens. Curr. Opin. Allergy Clin. Immunol. 2004, 4, 5–10. [Google Scholar] [CrossRef]
- Canonica, G.W.; Ansotegui, I.J.; Pawankar, R.; Schmid-Grendelmeier, P.; van Hage, M.; Baena-Cagnani, C.E.; Melioli, G.; Nunes, C.; Passalacqua, G.; Rosenwasser, L.; et al. A WAO-ARIA-GA2LEN consensus document on molecular-based allergy diagnostics. World Allergy Organ. J. 2013, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Lei, D.K.; Saltoun, C. Allergen immunotherapy: Definition, indications, and Reactions. Allergy Asthma Proc. 2019, 40, 369–371. [Google Scholar] [CrossRef]
- Luengo, O.; Galvan-Blasco, P.; Cardona, V. Molecular diagnosis contribution for personalized medicine. Curr. Opin. Allergy Clin. Immunol. 2022. [Google Scholar] [CrossRef]
- Kucuksezer, U.C.; Ozdemir, C.; Cevhertas, L.; Ogulur, I.; Akdis, M.; Akdis, C.A. Mechanisms of allergen-specific immunotherapy and allergen tolerance. Allergol. Int. 2020, 69, 549–560. [Google Scholar] [CrossRef]
- Alvaro-Lozano, M.; Akdis, C.A.; Akdis, M.; Alviani, C.; Angier, E.; Arasi, S.; Arzt-Gradwohl, L.; Barber, D.; Bazire, R.; Cavkaytar, O.; et al. EAACI Allergen Immunotherapy User’s Guide. Pediatr. Allergy Immunol. 2020, 31 (Suppl. S25), 1–101. [Google Scholar] [CrossRef]
- Gaspar Marques, J.; Lobato, M.; Leiria-Pinto, P.; Neuparth, N.; Carreiro Martins, P. Asthma and COPD “overlap”: A treatable trait or common several treatable-traits? Eur. Ann. Allergy Clin. Immunol. 2020, 52, 148–159. [Google Scholar] [CrossRef] [Green Version]
- McDonald, V.M.; Fingleton, J.; Agusti, A.; Hiles, S.A.; Clark, V.L.; Holland, A.E.; Marks, G.B.; Bardin, P.P.; Beasley, R.; Pavord, I.D.; et al. Treatable traits: A new paradigm for 21st century management of chronic airway diseases: Treatable Traits Down Under International Workshop report. Eur. Respir. J. 2019, 53, 1802058. [Google Scholar] [CrossRef] [PubMed]
- Yii, A.C.A.; Tay, T.R.; Choo, X.N.; Koh, M.S.Y.; Tee, A.K.H.; Wang, D.Y. Precision medicine in united airways disease: A “treatable traits” approach. Allergy 2018, 73, 1964–1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiteneder, H.; Peng, Y.Q.; Agache, I.; Diamant, Z.; Eiwegger, T.; Fokkens, W.J.; Traidl-Hoffmann, C.; Nadeau, K.; O’Hehir, R.E.; O’Mahony, L.; et al. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020, 75, 3039–3068. [Google Scholar] [CrossRef] [PubMed]
- Ogulur, I.; Pat, Y.; Ardicli, O.; Barletta, E.; Cevhertas, L.; Fernandez-Santamaria, R.; Huang, M.; Bel Imam, M.; Koch, J.; Ma, S.; et al. Advances and highlights in biomarkers of allergic diseases. Allergy 2021, 76, 3659–3686. [Google Scholar] [CrossRef]
- Pu, X.; Wang, X.; Chen, Y.; Wang, H.; Wang, X.; Yin, J. Application of proteomics in allergic rhinitis. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2022, 36, 153–157. [Google Scholar] [CrossRef]
- Peng, C.; Van Meel, E.R.; Cardenas, A.; Rifas-Shiman, S.L.; Sonawane, A.R.; Glass, K.R.; Gold, D.R.; Platts-Mills, T.A.; Lin, X.; Oken, E.; et al. Epigenome-wide association study reveals methylation pathways associated with childhood allergic sensitization. Epigenetics 2019, 14, 445–466. [Google Scholar] [CrossRef]
- Delacher, M.; Schreiber, L.; Richards, D.M.; Farah, C.; Feuerer, M.; Huehn, J. Transcriptional control of regulatory T cells. In Transcriptional Control of Lineage Differentiation in Immune Cells; Current Topics in Microbiology and Immunology; Springer: Cham, Switzerland, 2014; Volume 381, pp. 83–124. [Google Scholar] [CrossRef]
- Schmidl, C.; Delacher, M.; Huehn, J.; Feuerer, M. Epigenetic mechanisms regulating T-cell responses. J. Allergy Clin. Immunol. 2018, 142, 728–743. [Google Scholar] [CrossRef] [Green Version]
- Swamy, R.S.; Reshamwala, N.; Hunter, T.; Vissamsetti, S.; Santos, C.B.; Baroody, F.M.; Hwang, P.H.; Hoyte, E.G.; Garcia, M.A.; Nadeau, K.C. Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy. J. Allergy Clin. Immunol. 2012, 130, 215–224.e217. [Google Scholar] [CrossRef] [Green Version]
- Canas, J.A.; Nunez, R.; Cruz-Amaya, A.; Gomez, F.; Torres, M.J.; Palomares, F.; Mayorga, C. Epigenetics in Food Allergy and Immunomodulation. Nutrients 2021, 13, 4345. [Google Scholar] [CrossRef]
- Rodriguez-Coira, J.; Villasenor, A.; Izquierdo, E.; Huang, M.; Barker-Tejeda, T.C.; Radzikowska, U.; Sokolowska, M.; Barber, D. The Importance of Metabolism for Immune Homeostasis in Allergic Diseases. Front. Immunol. 2021, 12, 692004. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, H.; Xie, Z.; Liu, Y.; Gao, K.; Zhang, J.; Xie, S.; Wang, F.; Fan, R.; Jiang, W. Identification of Novel Biomarkers for Evaluating Disease Severity in House-Dust-Mite-Induced Allergic Rhinitis by Serum Metabolomics. Dis. Markers 2021, 2021, 5558458. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, C.; Wang, G.; Guo, X.; Jiang, S.; Zuo, X.; Wang, X.; Hsu, A.C.; Qi, M.; Wang, F. Airway Microbiome and Serum Metabolomics Analysis Identify Differential Candidate Biomarkers in Allergic Rhinitis. Front. Immunol. 2021, 12, 771136. [Google Scholar] [CrossRef] [PubMed]
- Schjodt, M.S.; Gurdeniz, G.; Chawes, B. The Metabolomics of Childhood Atopic Diseases: A Comprehensive Pathway-Specific Review. Metabolites 2020, 10, 511. [Google Scholar] [CrossRef]
- Barker-Tejeda, T.C.; Bazire, R.; Obeso, D.; Mera-Berriatua, L.; Rosace, D.; Vazquez-Cortes, S.; Ramos, T.; Rico, M.D.P.; Chivato, T.; Barbas, C.; et al. Exploring novel systemic biomarker approaches in grass-pollen sublingual immunotherapy using omics. Allergy 2021, 76, 1199–1212. [Google Scholar] [CrossRef]
- Zheng, P.; Yan, G.; Zhang, Y.; Huang, H.; Luo, W.; Xue, M.; Li, N.; Wu, J.L.; Sun, B. Metabolomics Reveals Process of Allergic Rhinitis Patients with Single- and Double-Species Mite Subcutaneous Immunotherapy. Metabolites 2021, 11, 613. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Jiang, S.; Zhang, H.; Wang, F.; Liu, Y.; She, Y.; Jing, Q.; Gao, K.; Fan, R.; Xie, S.; et al. Prediction of sublingual immunotherapy efficacy in allergic rhinitis by serum metabolomics analysis. Int. Immunopharmacol. 2021, 90, 107211. [Google Scholar] [CrossRef]
- Zissler, U.M.; Jakwerth, C.A.; Guerth, F.; Lewitan, L.; Rothkirch, S.; Davidovic, M.; Ulrich, M.; Oelsner, M.; Garn, H.; Schmidt-Weber, C.B.; et al. Allergen-specific immunotherapy induces the suppressive secretoglobin 1A1 in cells of the lower airways. Allergy 2021, 76, 2461–2474. [Google Scholar] [CrossRef]
- Wen, T.; Rothenberg, M.E. Cell-by-cell deciphering of T cells in allergic inflammation. J. Allergy Clin. Immunol. 2019, 144, 1143–1148. [Google Scholar] [CrossRef]
- Starchenka, S.; Heath, M.D.; Lineberry, A.; Higenbottam, T.; Skinner, M.A. Transcriptome analysis and safety profile of the early-phase clinical response to an adjuvanted grass allergoid immunotherapy. World Allergy Organ. J. 2019, 12, 100087. [Google Scholar] [CrossRef]
- Peel, A.M.; Wilkinson, M.; Sinha, A.; Loke, Y.K.; Fowler, S.J.; Wilson, A.M. Volatile organic compounds associated with diagnosis and disease characteristics in asthma—A systematic review. Respir. Med. 2020, 169, 105984. [Google Scholar] [CrossRef]
- Holz, O.; Waschki, B.; Watz, H.; Kirsten, A.; Abdo, M.; Pedersen, F.; Weckmann, M.; Fuchs, O.; Dittrich, A.M.; Hansen, G.; et al. Breath volatile organic compounds and inflammatory markers in adult asthma patients: Negative results from the ALLIANCE cohort. Eur. Respir. J. 2021, 57, 2002127. [Google Scholar] [CrossRef] [PubMed]
- Till, S.J.; Francis, J.N.; Nouri-Aria, K.; Durham, S.R. Mechanisms of immunotherapy. J. Allergy Clin. Immunol. 2004, 113, 1025–1034, quiz 1035. [Google Scholar] [CrossRef] [PubMed]
- Pavon-Romero, G.F.; Parra-Vargas, M.I.; Ramirez-Jimenez, F.; Melgoza-Ruiz, E.; Serrano-Perez, N.H.; Teran, L.M. Allergen Immunotherapy: Current and Future Trends. Cells 2022, 11, 212. [Google Scholar] [CrossRef] [PubMed]
- Bonertz, A.; Roberts, G.C.; Hoefnagel, M.; Timon, M.; Slater, J.E.; Rabin, R.L.; Bridgewater, J.; Pini, C.; Pfaar, O.; Akdis, C.; et al. Challenges in the implementation of EAACI guidelines on allergen immunotherapy: A global perspective on the regulation of allergen products. Allergy 2018, 73, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lu, H.; Feng, X.; Hu, L.; Wang, J.; Yu, H. Predictive methods for efficacy of house dust mite subcutaneous immunotherapy in allergic rhinitis patients: A prospective study in a Chinese population. Int. Forum Allergy Rhinol. 2020, 10, 314–319. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, X.; Ma, J.; Wei, X.; Wang, Q.; Wang, M. Enhanced Efficacy of Dust Mite Sublingual Immunotherapy in Low-Response Allergic Rhinitis Patients after Dose Increment at 6 Months: A Prospective Study. Int. Arch. Allergy Immunol. 2020, 181, 311–319. [Google Scholar] [CrossRef]
- Incorvaia, C.; Al-Ahmad, M.; Ansotegui, I.J.; Arasi, S.; Bachert, C.; Bos, C.; Bousquet, J.; Bozek, A.; Caimmi, D.; Calderon, M.A.; et al. Personalized medicine for allergy treatment: Allergen immunotherapy still a unique and unmatched model. Allergy 2021, 76, 1041–1052. [Google Scholar] [CrossRef]
- Shamji, M.H.; Valenta, R.; Jardetzky, T.; Verhasselt, V.; Durham, S.R.; Würtzen, P.A.; van Neerven, R.J.J. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy 2021, 76, 3627–3641. [Google Scholar] [CrossRef]
- Bordas-Le Floch, V.; Berjont, N.; Batard, T.; Varese, N.; O’Hehir, R.E.; Canonica, W.G.; Van Zelm, M.C.; Mascarell, L. Coordinated IgG2 and IgE responses as a marker of allergen immunotherapy efficacy. Allergy 2022, 77, 1263–1273. [Google Scholar] [CrossRef]
- Aricigil, M.; Bayar Muluk, N.; Sakarya, E.U.; Sakalar, E.G.; Senturk, M.; Reisacher, W.R.; Cingi, C. New routes of allergen immunotherapy. Am. J. Rhinol. Allergy 2016, 30, e193–e197. [Google Scholar] [CrossRef]
- Yen, C.Y.; Yu, C.H.; Tsai, J.J.; Tseng, H.Q.; Liao, E.C. Effects of Local Nasal Immunotherapy with FIP-fve Peptide and Denatured Tyrophagus putrescentiae for Storage Mite-Induced Airway Inflammation. Arch. Immunol. Ther. Exp. 2022, 70, 6. [Google Scholar] [CrossRef] [PubMed]
- Kasemsuk, N.; Ngaotepprutaram, P.; Kanjanawasee, D.; Suwanwech, T.; Durham, S.R.; Canonica, G.W.; Tantilipikorn, P. Local Nasal Immunotherapy for Allergic Rhinitis: A Systematic Review and Meta-Analysis. Int. Forum Allergy Rhinol. 2022; accepted and in-process for publication. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridolo, E.; Incorvaia, C.; Heffler, E.; Cavaliere, C.; Paoletti, G.; Canonica, G.W. The Present and Future of Allergen Immunotherapy in Personalized Medicine. J. Pers. Med. 2022, 12, 774. https://doi.org/10.3390/jpm12050774
Ridolo E, Incorvaia C, Heffler E, Cavaliere C, Paoletti G, Canonica GW. The Present and Future of Allergen Immunotherapy in Personalized Medicine. Journal of Personalized Medicine. 2022; 12(5):774. https://doi.org/10.3390/jpm12050774
Chicago/Turabian StyleRidolo, Erminia, Cristoforo Incorvaia, Enrico Heffler, Carlo Cavaliere, Giovanni Paoletti, and Giorgio Walter Canonica. 2022. "The Present and Future of Allergen Immunotherapy in Personalized Medicine" Journal of Personalized Medicine 12, no. 5: 774. https://doi.org/10.3390/jpm12050774
APA StyleRidolo, E., Incorvaia, C., Heffler, E., Cavaliere, C., Paoletti, G., & Canonica, G. W. (2022). The Present and Future of Allergen Immunotherapy in Personalized Medicine. Journal of Personalized Medicine, 12(5), 774. https://doi.org/10.3390/jpm12050774