Antibiotic Prescription and In-Hospital Mortality in COVID-19: A Prospective Multicentre Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Ethical Consideration
2.3. Variables and Data Measurement
2.4. Sample Size
2.5. Data Analysis
3. Results
3.1. Bacteriological Results
3.2. Antibiotic Prescription
3.3. Factors Associated with Patients’ Outcomes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karami, Z.; Knoop, B.T.; Dofferhoff, A.S.M.; Blaauw, M.J.T.; Janssen, N.A.; van Apeldoorn, M.; Kerckhoffs, A.P.M.; van de Maat, J.S.; Hoogerwerf, J.J.; Oever, J.T. Few bacterial co-infections but frequent empiric antibiotic use in the early phase of hospitalized patients with COVID-19: Results from a multicentre retrospective cohort study in The Netherlands. Infect. Dis. 2021, 53, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Rapid Guideline: Antibiotics for Pneumonia in Adults in Hospital|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/ng173 (accessed on 1 June 2021).
- Alhazzani, W.; Møller, M.H.; Arabi, Y.M.; Loeb, M.; Gong, M.N.; Fan, E.; Oczkowski, S.; Levy, M.M.; Derde, L.; Dzierba, A.; et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit. Care Med. 2020, 48, e440–e469. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. COVID-19 Clinical Management: Living Guidance. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2 (accessed on 1 June 2021).
- Rouzé, A.; Labreuche, J.; Nseir, S. Reply to Kasugai et al.: The Mystery of Futility of Appropriate Antibiotics for Coinfection in COVID-19. Am. J. Respir. Crit. Care Med. 2021, 204, 1489–1491. [Google Scholar] [CrossRef] [PubMed]
- Tong-Minh, K.; van der Does, Y.; Engelen, S.; de Jong, E.; Ramakers, C.; Gommers, D.; van Gorp, E.; Endeman, H. High procalcitonin levels associated with increased intensive care unit admission and mortality in patients with a COVID-19 infection in the emergency department. BMC Infect. Dis. 2022, 22, 165. [Google Scholar] [CrossRef] [PubMed]
- Van Laethem, J.; Wuyts, S.C.M.; Pierreux, J.; Seyler, L.; Verschelden, G.; Depondt, T.; Meuwissen, A.; Lacor, P.; Piérard, D.; Allard, S.D. Presumed Urinary Tract Infection in Patients Admitted with COVID-19: Are We Treating Too Much? Antibiotics 2021, 10, 1493. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Bull. World Health Organ. 2007, 85, 867–872. [Google Scholar] [CrossRef]
- Katz, M.H. Outcome variables in multivariable analysis. In Multivariable Analysis; Cambridge University Press (CUP): Cambridge, UK, 2011; pp. 25–73. [Google Scholar]
- Evidence-Based Medicine Toolbox|EBM Calculators. Available online: https://ebm-tools.knowledgetranslation.net/calculator (accessed on 3 March 2022).
- Calderón-Parra, J.; Muiño-Miguez, A.; Bendala-Estrada, A.D.; Ramos-Martínez, A.; Muñez-Rubio, E.; Carracedo, E.F.; Montes, J.T.; Rubio-Rivas, M.; Arnalich-Fernandez, F.; Pérez, J.L.B.; et al. Inappropriate antibiotic use in the COVID-19 era: Factors associated with inappropriate prescribing and secondary complications. Analysis of the registry SEMI-COVID. PLoS ONE 2021, 16, e0251340. [Google Scholar] [CrossRef]
- Giacomelli, A.; Ridolfo, A.L.; Milazzo, L.; Oreni, L.; Bernacchia, D.; Siano, M.; Bonazzetti, C.; Covizzi, A.; Schiuma, M.; Passerini, M.; et al. 30-day mortality in patients hospitalized with COVID-19 during the first wave of the Italian epidemic: A prospective cohort study. Pharmacol. Res. 2020, 158, 104931. [Google Scholar] [CrossRef]
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef]
- Giacomelli, A.; Ridolfo, A.L.; Oreni, L.; Vimercati, S.; Albrecht, M.; Cattaneo, D.; Rimoldi, S.G.; Rizzardini, G.; Galli, M.; Antinori, S. Consumption of antibiotics at an Italian university hospital during the early months of the COVID-19 pandemic: Were all antibiotic prescriptions appropriate? Pharmacol. Res. 2021, 164, 105403. [Google Scholar] [CrossRef] [PubMed]
- Nestler, M.J.; Godbout, E.; Lee, K.; Kim, J.; Noda, A.J.; Taylor, P.; Pryor, R.; Markley, J.D.; Doll, M.; Bearman, G.; et al. Impact of COVID-19 on pneumonia-focused antibiotic use at an academic medical center. Infect. Control Hosp. Epidemiol. 2020, 42, 915–916. [Google Scholar] [CrossRef]
- Verdejo, C.; Vergara-Merino, L.; Meza, N.; Pérez-Bracchiglione, J.; Carvajal-Juliá, N.; Madrid, E.; Rada, G.; Reyes, M.X.R. Macrolides for the treatment of COVID-19: A living, systematic review. Medwave 2020, 20, e8073. [Google Scholar] [CrossRef] [PubMed]
- Abaleke, E.; Abbas, M.; Abbasi, S.; Abbott, A.; Abdelaziz, A.; Abdelbadiee, S.; Abdelfattah, M.; Abdul, B.; Rasheed, A.A.; Abdul-Kadir, R.; et al. Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 605–612. [Google Scholar] [CrossRef]
- Furtado, R.H.M.; Berwanger, O.; Fonseca, H.A.; Corrêa, T.D.; Ferraz, L.R.; Lapa, M.G.; Zampieri, F.G.; Veiga, V.C.; Azevedo, L.C.P.; Rosa, R.G.; et al. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): A randomised clinical trial. Lancet 2020, 396, 959–967. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Chan, K.G. Underestimation of co-infections in COVID-19 due to non-discriminatory use of antibiotics. J. Infect. 2020, 81, e29–e30. [Google Scholar] [CrossRef]
- Ginsburg, A.S.; Klugman, K.P. COVID-19 pneumonia and the appropriate use of antibiotics. Lancet Glob. Health 2020, 8, e1453–e1454. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Giannella, M.; Rinaldi, M.; Tesini, G.; Gallo, M.; Cipriani, V.; Vatamanu, O.; Campoli, C.; Toschi, A.; Ferraro, G.; Horna, C.S.; et al. Predictive model for bacterial co-infection in patients hospitalized for COVID-19: A multicenter observational cohort study. Infection 2022, 1–11. [Google Scholar] [CrossRef]
- Knight, S.R.; Ho, A.; Pius, R.; Buchan, I.; Carson, G.; Drake, T.M.; Dunning, J.; Fairfield, C.J.; Gamble, C.; Green, C.A.; et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: Development and validation of the 4C Mortality Score. BMJ 2020, 370, m3339. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, Y.; Azoyan, L.; Szychowiak, P.; Bellamine, A.; Lemaitre, G.; Bernaux, M.; Daniel, C.; Leblanc, J.; Riller, Q.; Steichen, O.; et al. External validation of prognostic scores for COVID-19: A multicenter cohort study of patients hospitalized in Greater Paris University Hospitals. Intensiv. Care Med. 2021, 47, 1426–1439. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Marks, M.; Samuels, T.H.A.; Luintel, A.; Rampling, T.; Chowdhury, H.; Quartagno, M.; Nair, A.; Lipman, M.; Abubakar, I.; et al. Systematic evaluation and external validation of 22 prognostic models among hospitalised adults with COVID-19: An observational cohort study. Eur. Respir. J. 2020, 56, 2003498. [Google Scholar] [CrossRef] [PubMed]
- Shindo, Y.; Ito, R.; Kobayashi, D.; Ando, M.; Ichikawa, M.; Goto, Y.; Fukui, Y.; Iwaki, M.; Okumura, J.; Yamaguchi, I.; et al. Risk factors for 30-day mortality in patients with pneumonia who receive appropriate initial antibiotics: An observational cohort study. Lancet Infect. Dis. 2015, 15, 1055–1065. [Google Scholar] [CrossRef]
- Hughes, S.; Troise, O.; Donaldson, H.; Mughal, N.; Moore, L.S.P. Bacterial and fungal coinfection among hospitalized patients with COVID-19: A retrospective cohort study in a UK secondary-care setting. Clin. Microbiol. Infect. 2020, 26, 1395–1399. [Google Scholar] [CrossRef]
- Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R., Jr.; Nahid, M.; Ringel, J.B.; et al. Clinical Characteristics of Covid-19 in New York City. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef]
- Moretto, F.; Sixt, T.; Devilliers, H.; Abdallahoui, M.; Eberl, I.; Rogier, T.; Buisson, M.; Chavanet, P.; Duong, M.; Esteve, C.; et al. Is there a need to widely prescribe antibiotics in patients hospitalized with COVID-19? Int. J. Infect. Dis. 2021, 105, 256–260. [Google Scholar] [CrossRef]
- Rosca, A.; Balcaen, T.; Lanoix, J.-P.; Michaud, A.; Moyet, J.; Marcq, I.; Schmit, J.-L.; Bloch, F.; Deschasse, G. Mortality risk and antibiotic use for COVID-19 in hospitalized patients over 80. Biomed. Pharmacother. 2022, 146, 112481. [Google Scholar] [CrossRef]
- Schons, M.J.; Caliebe, A.; Spinner, C.D.; Classen, A.Y.; Pilgram, L.; Ruethrich, M.M.; Rupp, J.; de Miranda, S.N.; Römmele, C.; Vehreschild, J.; et al. All-cause mortality and disease progression in SARS-CoV-2-infected patients with or without antibiotic therapy: An analysis of the LEOSS cohort. Infection 2022, 50, 423–436. [Google Scholar] [CrossRef]
Aetiological Agents | Microbiological Sample * | Cases **, N | ||
---|---|---|---|---|
Sputum | Urine | Blood | ||
Gram-positive bacteria | 33 | |||
S. aureus | 11 | |||
Coagulase-negative staphylococci | 8 | |||
Streptococcus spp. | 5 | |||
Streptococcus pneumoniae | 5 | |||
Enterococcus spp. | 4 | |||
Fungi | 17 | |||
Candida spp. | 16 | |||
Aspergillus spp. | 1 | |||
Gram-negative bacteria | 75 | |||
K. pneumoniae | 26 | |||
E. coli | 25 | |||
P. aeruginosa | 4 | |||
H. influenzae | 4 | |||
A. baumannii | 3 | |||
S. maltophilia | 3 | |||
Serratia spp. | 2 | |||
Hafnia paralvei | 2 | |||
Sphingomonas paucimobilis | 2 | |||
K. oxytoca | 1 | |||
Enterobacter cloacae | 1 | |||
P. fluorescens | 1 | |||
Proteus mirabilis | 1 |
Antibiotic Classes | Patients *, N |
---|---|
B-lactam drugs | |
Penicillins +/− BLI | 85 |
Cephalosporins +/− BLI | 163 |
Carbapenems | 79 |
Fluoroquinolones | |
Ciprofloxacin | 14 |
Levofloxacin | 26 |
Moxifloxacin | 11 |
Oxazolidinones (linezolid) | 27 |
Cyclines | |
Doxycycline | 13 |
Tigecycline | 10 |
Glycopeptides | |
Vancomycin | 17 |
Teicoplanin | 2 |
Aminoglycosides | |
Gentamicin | 4 |
Amikacin | 6 |
Macrolides (clarithromycin) | 3 |
Others | |
TMP/SMX | 23 |
Polymyxin E (colistin) | 11 |
Metronidazole | 11 |
Fosfomycin | 4 |
Clindamycin | 2 |
Chloramphenicol | 1 |
Nitrofurantoin | 1 |
Variable | Survivors, N = 505 | Non-Survivors, N = 48 | AUROC (CI 95%) * or RR (CI 95%) ** | p-Value | Missing |
---|---|---|---|---|---|
Antibiotics during hospitalisation, N (%) | 272 (53.9) | 39 (81.2) | 3.37 (1.7–6.8) | <0.001 | |
Prescription reason: yes, N (%) | 223 (82) | 30 (77) | 2 (0.8–4.9) | 0.124 | |
Prescription reason: no, N (%) | 49 (18) | 9 (23) | 6.1 (1.9–19.1) | 0.001 | |
Gender, female, N (%) | 250 (49.5) | 20 (41.7) | 1.3 (0.8–2.3) | 0.375 | |
Age, median (min, max) | 67 (18–94) | 74 (50–91) | 0.642 (0.567–0.716) | 0.001 | |
Charlson comorbidity index, median (min, max) | 4 (0–12) | 4.5 (1–11) | 0.645 (0.567–0.724) | 0.001 | |
COVID-19 severity (ordinal variable) | <0.001 | ||||
Mild | 41 (8.1) | 3 (6.2) | |||
Moderate | 290 (57.4) | 7 (14.6) | |||
Severe | 174 (34.5) | 38 (79.2) | |||
Pulmonary involvement $, % (min, max) | 40 (0–95) | 70 (0–95) | 0.662 (0.526–0.797) | 0.007 | |
Pulmonary embolism, N (%) | 13 (2.6) | 1 (2.1) | 0.8 (0.1–5.5) | 1 | |
SpO2_admission, median (min, max) | 93 (60–99) | 89.5 (58–99) | 0.610 (0.518–0.701) | 0.012 | 4 |
SpO2_at ATB prescription, median (min, max) | 93 (53, 99) | 86.5 (56, 99) | 0.660 (0.555–0.764) | 0.001 | 66 |
Positive microbiology, N (%) | 81 (29.8) | 14 (35.9) | 0.460 | ||
Appropriate ATB, N (%) | 74 (27.2) | 3 (7.7) | 0.23 (0.08–0.7) | 0.009 | |
Corticotherapy, N (%) | 395 (78.2) | 36 (75) | 0.85 (0.46–1.6) | 0.588 | |
Tocilizumab, N (%) | 28 (5.5) | 6 (12.5) | 2.2 (0.99–4.76) | 0.105 | |
Anakinra, N (%) | 73 (14.5) | 16 (33.3) | 2.6 (1.5–4.5) | 0.001 | |
Antiviral | 11 (22.9) | 179 (35.4) | 0.111 | ||
CRP at admission, median (min, max) | 55.7 (0.2–397.6) | 80.2 (1.95–390.6) | 0.583 (0.492–0.673) | 0.060 | 9 |
CRP at ATB prescription, median (min, max) | 60.4 (0.2–385.3) | 86.5 (7.7–390.6) | 0.616 (0.536–0.697) | 0.011 | 58 |
IL-6 at admission, median (min, max) | 30.2 (1–1406) | 58.2 (7–656) | 0.640 (0.536–0.743) | 0.016 | 242 |
Leukocytes at admission, median (min, max) | 7200 (1060–40,930) | 8265 (2570–23,510) | 0.591 (0.502–0.681) | 0.037 | 9 |
Leukocytes at ATB prescription, median (min, max) | 7670 (1060–29,760) | 10180 (2570–28,570) | 0.618 (0.527–0.710) | 0.009 | 62 |
Neutrophils at admission, median (min, max) | 5440 (650–36,790) | 7135 (1120–20,410) | 0.624 (0.539–0.709) | 0.005 | 10 |
Neutrophils at ATB prescription, median (min, max) | 6000 (650–24,690) | 7810 (1800–26,400) | 0.652 (0.567–0.738) | 0.001 | 62 |
Lymphocytes at admission, median (min, max) | 1000 (160–6470) | 880 (150–5930) | 0.606 (0.523–0.690) | 0.015 | 10 |
Lymphocytes at ATB prescription, median (min, max) | 1050 (160–4100) | 850 (150–5930) | 0.629 (0.541–0.717) | 0.005 | 63 |
NLR at admission, median (min, max) | 5.26 (0.29–60.8) | 8.66 (0.69–84) | 0.678 (0.604–0.753) | <0.001 | 11 |
NLR at ATB prescription, median (min, max) | 5.42 (0.45–56) | 9.13 (1.18–86.33) | 0.698 (0.620–0.776) | <0.001 | 63 |
D-dimers at admission, median (min, max) | 0.8 (0.1–15.4) | 1.15 (0.1–7.2) | 0.574 (0.481–0.667) | 0.109 | 78 |
D-dimers highest value, median (min, max) | 1.1 (0.1–20) | 4.4 (0.5–20) | 0.813 (0.744–0.882) | <0.001 | 74 |
D-dimers at ATB prescription, median (min, max) | 0.7 (0.1–20) | 1.9 (0.2–20) | 0.677 (0.580–0.774) | <0.001 | 137 |
Urea at admission, median (min, max) | 41 (11–189) | 60.3 (7–129) | 0.669 (0.591–0.748) | <0.001 | 17 |
Variable | Coefficient | p-Value | Odds Ratio (95% CI) |
Age (years) | 0.044 | 0.049 | 1.05 (1.0–1.09) |
Form of disease * | 0.034 | ||
Moderate COVID-19 | −0.864 | 0.482 | 0.4 (0.08–2.1) |
Severe COVID-19 | 0.663 | 0.585 | 1.9 (0.18–20.9) |
D-dimers (highest value) | 0.250 | <0.001 | 1.3 (1.15–1.43) |
Antibiotics (yes/no) | 0.846 | 0.140 | 2.33 (0.76–7.17) |
Variable | Coefficient | p | Odds Ratio (95% CI) |
---|---|---|---|
D-dimers (highest value) | 0.340 | <0.001 | 1.41 (1.21–1.63) |
SpO2 (admission) | −0.086 | 0.014 | 0.92 (0.86–0.98) |
Antibiotics (yes/no) | 0.112 | 0.145 | 3.04 (0.68–13.55) |
Variable | Coefficient | p | Odds Ratio (95% CI) |
---|---|---|---|
Form of disease * | 0.038 | ||
Moderate COVID-19 | −0.583 | 0.728 | 0.56 (0.02–14.9) |
Severe COVID-19 | 1.586 | 0.326 | 4.9 (0.2–115.3) |
D-dimers (highest value) | 0.211 | 0.009 | 1.2 (1.05–1.44) |
NLR (admission) | 0.140 | 0.017 | 1.15 (1.02–1.3) |
Antibiotics (yes/no) | 2.33 | 0.005 | 10.3 (2.0–52) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinte, L.; Ceasovschih, A.; Niculae, C.-M.; Stoichitoiu, L.E.; Ionescu, R.A.; Balea, M.I.; Cernat, R.C.; Vlad, N.; Padureanu, V.; Purcarea, A.; et al. Antibiotic Prescription and In-Hospital Mortality in COVID-19: A Prospective Multicentre Cohort Study. J. Pers. Med. 2022, 12, 877. https://doi.org/10.3390/jpm12060877
Pinte L, Ceasovschih A, Niculae C-M, Stoichitoiu LE, Ionescu RA, Balea MI, Cernat RC, Vlad N, Padureanu V, Purcarea A, et al. Antibiotic Prescription and In-Hospital Mortality in COVID-19: A Prospective Multicentre Cohort Study. Journal of Personalized Medicine. 2022; 12(6):877. https://doi.org/10.3390/jpm12060877
Chicago/Turabian StylePinte, Larisa, Alexandr Ceasovschih, Cristian-Mihail Niculae, Laura Elena Stoichitoiu, Razvan Adrian Ionescu, Marius Ioan Balea, Roxana Carmen Cernat, Nicoleta Vlad, Vlad Padureanu, Adrian Purcarea, and et al. 2022. "Antibiotic Prescription and In-Hospital Mortality in COVID-19: A Prospective Multicentre Cohort Study" Journal of Personalized Medicine 12, no. 6: 877. https://doi.org/10.3390/jpm12060877
APA StylePinte, L., Ceasovschih, A., Niculae, C. -M., Stoichitoiu, L. E., Ionescu, R. A., Balea, M. I., Cernat, R. C., Vlad, N., Padureanu, V., Purcarea, A., Badea, C., Hristea, A., Sorodoc, L., & Baicus, C. (2022). Antibiotic Prescription and In-Hospital Mortality in COVID-19: A Prospective Multicentre Cohort Study. Journal of Personalized Medicine, 12(6), 877. https://doi.org/10.3390/jpm12060877