Data-Driven EEG Theta and Alpha Components Are Associated with Subjective Experience during Resting State
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. ARSQ
2.4. EEG Processing
2.5. Frequency Principal Component Analysis (f-PCA)
2.6. Source Localization
2.7. Statistical Analysis
3. Results
3.1. f-PCA Outcomes
3.2. Subjective Reports
3.3. Relationship between Data-Driven EEG Components and Subjective Experiences
3.4. sLORETA Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bressler, S.L.; Menon, V. Large-scale brain networks in cognition: Emerging methods and principles. Trends Cogn. Sci. 2010, 14, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Brookes, M.J.; Woolrich, M.; Luckhoo, H.; Price, D.; Hale, J.R.; Stephenson, M.C.; Barnes, G.R.; Smith, S.M.; Morris, P.G. Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc. Natl. Acad. Sci. USA 2011, 4, 16783–16788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Xia, X.; Li, X. A Review of Resting-State Electroencephalography Analysis in Disorders of Consciousness. Front. Neurol. 2017, 8, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greicius, M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 2008, 24, 424–430. [Google Scholar] [CrossRef]
- Koenig, T.; Lehmann, D.; Saito, N.; Kuginuki, T.; Kinoshita, T.; Koukkou, M. Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naïve patients with schizophrenia: Preliminary results. Schizophr. Res. 2001, 50, 55–60. [Google Scholar] [CrossRef]
- Newson, J.J.; Thiagarajan, T.C. EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front. Hum. Neurosci. 2019, 12, 521. [Google Scholar] [CrossRef]
- Benjamin, C.; Lieberman, D.A.; Changl, M.; Ofen, N.; Whitfield-Gabrieli, S.; Gabrieli, J.D.E.; Gaab, N. The influence of rest period instructions on the default mode network. Front. Hum. Neurosci. 2010, 4, 218. [Google Scholar] [CrossRef] [Green Version]
- Duncan, N.W.; Northoff, G. Overview of potential procedural and participant-related confounds for neuroimaging of the resting state. J. Psychiatry Neurosci. 2013, 38, 84. [Google Scholar] [CrossRef] [Green Version]
- Rice, J.K.; Rorden, C.; Little, J.S.; Parra, L.C. Subject position affects EEG magnitudes. Neuroimage 2013, 64, 476–484. [Google Scholar] [CrossRef]
- Van Diessen, E.; Numan, T.; Van Dellen, E.; Van Der Kooi, A.W.; Boersma, M.; Hofman, D.; Van Lutterveld, R.; Van Dijk, B.W.; Van Straaten, E.C.W.; Hillebrand, A.; et al. Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clin. Neurophysiol. 2015, 126, 1468–1481. [Google Scholar] [CrossRef]
- Gonzalez-Castillo, J.; Kam, J.W.Y.; Hoy, C.W.; Bandettini, P.A. How to Interpret Resting-State fMRI: Ask Your Participants. J. Neurosci. 2021, 41, 1130–1141. [Google Scholar] [CrossRef] [PubMed]
- Hurlburt, R.T.; Alderson-Day, B.; Fernyhough, C.; Kühn, S. What goes on in the resting-state? A qualitative glimpse into resting-state experience in the scanner. Front. Psychol. 2015, 6, 1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smallwood, J.; Schooler, J.W. The Science of Mind Wandering: Empirically Navigating the Stream of Consciousness. Annu. Rev. Psychol 2015, 66, 487–518. [Google Scholar] [CrossRef] [PubMed]
- Delamillieure, P.; Doucet, G.; Mazoyer, B.; Turbelin, M.-R.; Delcroix, N.; Mellet, E.; Zago, L.; Crivello, F.; Petit, L.; Tzourio-Mazoyer, N.; et al. The resting state questionnaire: An introspective questionnaire for evaluation of inner experience during the conscious resting state. Brain Res. Bull. 2010, 81, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Gorgolewski, K.J.; Lurie, D.; Urchs, S.; Kipping, J.A.; Craddock, R.C.; Milham, M.P.; Margulies, D.S.; Smallwood, J. A Correspondence between Individual Differences in the Brain’s Intrinsic Functional Architecture and the Content and Form of Self-Generated Thoughts. PLoS ONE 2014, 9, e97176. [Google Scholar] [CrossRef] [PubMed]
- Diaz, B.A.; Van Der Sluis, S.; Moens, S.; Benjamins, J.S.; Migliorati, F.; Stoffers, D.; Den Braber, A.; Poil, S.-S.; Hardstone, R.; Van ’t Ent, D.; et al. The Amsterdam Resting-State Questionnaire reveals multiple phenotypes of resting-state cognition. Front. Hum. Neurosci. 2013, 7, 446. [Google Scholar] [CrossRef] [Green Version]
- Diaz, B.A.; Van Der Sluis, S.; Benjamins, J.S.; Stoffers, D.; Hardstone, R.; Mansvelder, H.D.; Van Someren, E.J.W.; Linkenkaer-Hansen, K. The ARSQ 2.0 reveals age and personality effects on mind-wandering experiences. Front. Psychol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Zanesco, A.P.; Denkova, E.; Jha, A.P. Associations between self-reported spontaneous thought and temporal sequences of EEG microstates. Brain Cogn. 2021, 150, 105696. [Google Scholar] [CrossRef]
- Diaz, B.A.; Hardstone, R.; Mansvelder, H.D.; Van Someren, E.J.W.; Linkenkaer-Hansen, K. Resting-state subjective experience and EEG biomarkers are associated with sleep-onset latency. Front. Psychol. 2016, 7, 492. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, A.; Baglio, F.; Costantini, I.; Dipasquale, O.; Savazzi, F.; Nemni, R.; Sangiuliano Intra, F.; Tagliabue, S.; Valle, A.; Massaro, D.; et al. Theory of Mind and the Whole Brain Functional Connectivity: Behavioral and Neural Evidences with the Amsterdam Resting State Questionnaire. Front. Psychol. 2015, 6, 1855. [Google Scholar] [CrossRef] [Green Version]
- Pipinis, E.; Melynyte, S.; Koenig, T.; Jarutyte, L.; Linkenkaer-Hansen, K.; Ruksenas, O.; Griskova-Bulanova, I. Association Between Resting-State Microstates and Ratings on the Amsterdam Resting-State Questionnaire. Brain Topogr. 2017, 30, 245–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portnova, G.V.; Ukraintseva, Y.V.; Liaukovich, K.M.; Martynova, O.V. Association of the retrospective self-report ratings with the dynamics of EEG. Heliyon 2019, 5, e02533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiller, B.; Heinrichs, M.; Beste, C.; Stock, A. Acute alcohol intoxication modulates the temporal dynamics of resting electroencephalography networks. Addict. Biol. 2021, 26, e13034. [Google Scholar] [CrossRef] [PubMed]
- Stoffers, D.; Diaz, B.A.; Chen, G.; Braber, A.D.; Van’t Ent, D.; Boomsma, D.I.; Mansvelder, H.D.; De Geus, E.; Van Someren, E.J.W.; Linkenkaer-Hansen, K. Resting-State fMRI Functional Connectivity Is Associated with Sleepiness, Imagery, and Discontinuity of Mind. PLoS ONE 2015, 10, e0142014. [Google Scholar] [CrossRef] [PubMed]
- Tarailis, P.; Šimkutė, D.; Koenig, T.; Griškova-Bulanova, I. Relationship between Spatiotemporal Dynamics of the Brain at Rest and Self-Reported Spontaneous Thoughts: An EEG Microstate Approach. J. Pers. Med. 2021, 11, 1216. [Google Scholar] [CrossRef]
- Tomescu, M.I.; Papasteri, C.C.; Sofonea, A.; Boldasu, R.; Kebets, V.; Pistol, C.A.D.; Poalelungi, C.; Benescu, V.; Podina, I.R.; Nedelcea, C.I.; et al. Spontaneous thought and microstate activity modulation by social imitation. Neuroimage 2022, 249, 118878. [Google Scholar] [CrossRef]
- Palagini, L.; Cellini, N.; Mauri, M.; Mazzei, I.; Simpraga, S.; Dell’osso, L.; Linkenkaer-Hansen, K.; Riemann, D. Multiple phenotypes of resting-state cognition are altered in insomnia disorder. Sleep Health 2016, 2, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Simpraga, S.; Weiland, R.F.; Mansvelder, H.D.; Polderman, T.J.; Begeer, S.; Smit, D.J.; Linkenkaer-Hansen, K. Adults with autism spectrum disorder show atypical patterns of thoughts and feelings during rest. Autism 2021, 25, 1433–1443. [Google Scholar] [CrossRef]
- Başar, E.; Başar-Eroglu, C.; Karakaş, S.; Schürmann, M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol. 2001, 39, 241–248. [Google Scholar] [CrossRef]
- Groppe, D.M.; Bickel, S.; Keller, C.J.; Jain, S.K.; Hwang, S.T.; Harden, C.; Mehta, A.D. Dominant frequencies of resting human brain activity as measured by the electrocorticogram. NeuroImage 2013, 79, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Tenke, C.E.; Kayser, J. Reference-free quantification of EEG spectra: Combining current source density (CSD) and frequency principal components analysis (fPCA). Clin. Neurophysiol. 2005, 116, 2826–2846. [Google Scholar] [CrossRef] [PubMed]
- Vallarino, E.; Sommariva, S.; Arnaldi, D.; Famà, F.; Piana, M.; Nobili, F. Transfreq: A Python package for computing the theta-to-alpha transition frequency from resting state EEG data. bioRxiv 2021. [Google Scholar] [CrossRef]
- Donoghue, T.; Haller, M.; Peterson, E.J.; Varma, P.; Sebastian, P.; Gao, R.; Noto, T.; Lara, A.H.; Wallis, J.D.; Knight, R.T.; et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 2020, 23, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Tenke, C.E.; Kayser, J.; Pechtel, P.; Webb, C.A.; Dillon, D.G.; Goer, F.; Murray, L.; Deldin, P.; Kurian, B.T.; McGrath, P.J.; et al. Demonstrating Test-Retest Reliability of Electrophysiological Measures for Healthy Adults in a Multisite Study of Biomarkers of Antidepressant Treatment Response. Psychophysiology 2017, 54, 34. [Google Scholar] [CrossRef] [Green Version]
- Barry, R.J.; De Blasio, F.M.; Karamacoska, D. Data-driven derivation of natural EEG frequency components: An optimised example assessing resting EEG in healthy ageing. J. Neurosci. Methods 2019, 321, 1–11. [Google Scholar] [CrossRef]
- Rodríguez Martinez, E.I.; Barriga-Paulino, C.I.; Zapata, M.I.; Chinchilla, C.; López-Jiménez, A.M.; Gómez, C.M. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period. BMC Neurosci. 2012, 13, 104. [Google Scholar] [CrossRef] [Green Version]
- Tenke, C.E.; Kayser, J.; Manna, C.G.; Fekri, S.; Kroppmann, C.J.; Schaller, J.D.; Alschuler, D.M.; Stewart, J.W.; McGrath, P.J.; Bruder, G.E. Current Source Density Measures of EEG Alpha Predict Antidepressant Treatment Response. Biol. Psychiatry 2011, 70, 388. [Google Scholar] [CrossRef] [Green Version]
- Barry, R.J.; De Blasio, F.M.; Fogarty, J.S.; Clarke, A.R. Natural alpha frequency components in resting EEG and their relation to arousal. Clin. Neurophysiol. 2020, 131, 205–212. [Google Scholar] [CrossRef]
- Barry, R.J.; Rushby, J.A.; Wallace, M.J.; Clarke, A.R.; Johnstone, S.J.; Zlojutro, I. Caffeine effects on resting-state arousal. Clin. Neurophysiol. 2005, 116, 2693–2700. [Google Scholar] [CrossRef]
- Barry, R.J.; De Blasio, F.M. EEG frequency PCA in EEG-ERP dynamics. Psychophysiology 2018, 55, e13042. [Google Scholar] [CrossRef]
- Karamacoska, D.; Barry, R.J.; De Blasio, F.M.; Steiner, G.Z. EEG-ERP dynamics in a visual Continuous Performance Test. Int. J. Psychophysiol. 2019, 146, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullen, T. CleanLine EEGLAB Plugin. 2012. Available online: https://www.nitrc.org/projects/cleanline (accessed on 12 October 2021).
- Delorme, A.; Sejnowski, T.; Makeig, S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 2007, 34, 1443–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, T.-P.; Makeig, S.; Humphries, C.; Lee, T.-W.; McKeown, M.J.; Iragui, V.; Sejnowski, T.J. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000, 37, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Perrin, F.; Pernier, J.; Bertrand, O.; Echallier, J.F. Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 1989, 72, 184–187. [Google Scholar] [CrossRef]
- Dien, J. The ERP PCA Toolkit: An open source program for advanced statistical analysis of event-related potential data. J. Neurosci. Methods 2010, 187, 138–145. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D.; Michel, C.M.; Lehmann, D. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 1994, 18, 49–65. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D.; Esslen, M.; Kochi, K.; Lehmann, D.; Pascual-Marqui, R.D. Functional Imaging with Low Resolution Brainelectromagnetic Tomography (LORETA): Review, Newcomparisons, and New Validation. Jpn. J. Clin. Neurophysiol. 2002, 30, 81–94. [Google Scholar]
- Mazziotta, J.; Toga, A.; Evans, A.; Fox, P.; Lancaster, J.; Zilles, K.; Woods, R.; Paus, T.; Simpson, G.; Pike, B.; et al. A Probabilistic Atlas and Reference System for the Human Brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. Biol. Sci. 2001, 356, 1293–1322. [Google Scholar] [CrossRef]
- Nichols, T.E.; Holmes, A.P. Nonparametric Permutation Tests For Functional Neuroimaging: A Primer with Examples. Hum. Brain Mapp. 2001, 15, 1–25. [Google Scholar] [CrossRef] [Green Version]
- JASP Team JASP (Version 0.14.1) [Computer Software]. Available online: https://jasp-stats.org/ (accessed on 11 August 2021).
- Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, J.; Ly, A.; Gronau, Q.F.; Šmíra, M.; Epskamp, S.; et al. JASP: Graphical statistical software for common statistical designs. J. Stat. Softw. 2019, 88. [Google Scholar] [CrossRef] [Green Version]
- Dienes, Z. How Bayes factors change scientific practice. J. Math. Psychol. 2016, 72, 78–89. [Google Scholar] [CrossRef]
- Dienes, Z. Using Bayes to get the most out of non-significant results. Front. Psychol. 2014, 5, 781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dienes, Z. Bayesian versus orthodox statistics: Which side are you on? Perspect. Psychol. Sci. 2011, 6, 274–290. [Google Scholar] [CrossRef] [Green Version]
- Kelter, R. Bayesian alternatives to null hypothesis significance testing in biomedical research: A non-technical introduction to Bayesian inference with JASP. BMC Med. Res. Methodol. 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Habermann, M.; Weusmann, D.; Stein, M.; Koenig, T. A student’s guide to randomization statistics for multichannel event-related potentials using Ragu. Front. Neurosci. 2018, 12, 355. [Google Scholar] [CrossRef] [Green Version]
- Koenig, T.; Kottlow, M.; Stein, M.; Melie-García, L. Ragu: A free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Comput. Intell. Neurosci. 2011, 2011. [Google Scholar] [CrossRef]
- Smith, E.E.; Tenke, C.E.; Deldin, P.J.; Trivedi, M.H.; Weissman, M.M.; Auerbach, R.P.; Bruder, G.E.; Pizzagalli, D.A.; Kayser, J. Frontal theta and posterior alpha in resting EEG: A critical examination of convergent and discriminant validity. Psychophysiology 2020, 57, e13483. [Google Scholar] [CrossRef]
- Milz, P.; Pascual-Marqui, R.D.; Achermann, P.; Kochi, K.; Faber, P.L. The EEG microstate topography is predominantly determined by intracortical sources in the alpha band. Neuroimage 2017, 162, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Strijkstra, A.M.; Beersma, D.G.M.; Drayer, B.; Halbesma, N.; Daan, S. Subjective sleepiness correlates negatively with global alpha (8–12 Hz) and positively with central frontal theta (4–8 Hz) frequencies in the human resting awake electroencephalogram. Neurosci. Lett. 2003, 340, 17–20. [Google Scholar] [CrossRef]
- Scheeringa, R.; Bastiaansen, M.C.M.; Petersson, K.M.; Oostenveld, R.; Norris, D.G.; Hagoort, P. Frontal theta EEG activity correlates negatively with the default mode network in resting state. Int. J. Psychophysiol. 2008, 67, 242–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews-Hanna, J.R. The brain’s default network and its adaptive role in internal mentation. Neuroscientist 2012, 18, 251–270. [Google Scholar] [CrossRef] [PubMed]
- Mason, M.F.; Norton, M.I.; Van Horn, J.D.; Wegner, D.M.; Grafton, S.T.; Macrae, C.N. Wandering Minds: The Default Network and Stimulus-Independent Thought. Science 2007, 315, 393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishida, M.; Hirai, N.; Miwakeichi, F.; Maehara, T.; Kawai, K.; Shimizu, H.; Uchida, S. Theta oscillation in the human anterior cingulate cortex during all-night sleep: An electrocorticographic study. Neurosci. Res. 2004, 50, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Karamacoska, D.; Barry, R.J.; Steiner, G.Z. Using principal components analysis to examine resting state EEG in relation to task performance. Psychophysiology 2019, 56, e13327. [Google Scholar] [CrossRef] [Green Version]
Factors | A1 | A2 | D1 | A3 | T1 | B1 | |
---|---|---|---|---|---|---|---|
ARSQ | |||||||
DoM | r | −0.081 | −0.47 | −0.008 | 0.009 | 0.059 | −0.053 |
BF10 | 0.173 | 0.107 | 0.084 | 0.084 | 0.122 | 0.114 | |
ToM | r | 0.044 | 0.045 | 0.071 | 0.007 | 0.086 | 0.046 |
BF10 | 0.103 | 0.105 | 0.145 | 0.084 | 0.191 | 0.105 | |
Self | r | −0.003 | −0.062 | −0.104 | 0.01 | −0.018 | 0.062 |
BF10 | 0.083 | 0.127 | 0.279 | 0.084 | 0.086 | 0.128 | |
Planning | r | −0.018 | −0.018 | −0.017 | −0.062 | −0.048 | −0.105 |
BF10 | 0.086 | 0.086 | 0.086 | 0.128 | 0.107 | 0.288 | |
Sleepiness | r | −0.040 | −0.004 | 0.031 | −0.052 | 0.200 * | −0.034 |
BF10 | 0.099 | 0.083 | 0.093 | 0.112 | 7.676 | 0.095 | |
Comfort | r | 0.198 * | 0.138 | 0.078 | −0.044 | 0.131 | 0.082 |
BF10 | 7.115 | 0.713 | 0.164 | 0.104 | 0.573 | 0.176 | |
SA | r | 0.027 | −0.012 | 0.025 | 0.067 | −0.089 | −0.009 |
BF10 | 0.09 | 0.085 | 0.089 | 0.137 | 0.201 | 0.084 | |
HC | r | −0.008 | −0.125 | −0.086 | −0.069 | −0.025 | −0.076 |
BF10 | 0.084 | 0.475 | 0.189 | 0.142 | 0.089 | 0.158 | |
Vis | r | 0.103 | 0.032 | −0.011 | −0.116 | 0.128 | 0.1 |
BF10 | 0.272 | 0.093 | 0.084 | 0.371 | 0.521 | 0.253 | |
VT | r | −0.066 | −0.070 | −0.090 | −0.044 | 0.02 | −0.058 |
BF10 | 0.135 | 0.145 | 0.206 | 0.103 | 0.087 | 0.121 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarailis, P.; De Blasio, F.M.; Simkute, D.; Griskova-Bulanova, I. Data-Driven EEG Theta and Alpha Components Are Associated with Subjective Experience during Resting State. J. Pers. Med. 2022, 12, 896. https://doi.org/10.3390/jpm12060896
Tarailis P, De Blasio FM, Simkute D, Griskova-Bulanova I. Data-Driven EEG Theta and Alpha Components Are Associated with Subjective Experience during Resting State. Journal of Personalized Medicine. 2022; 12(6):896. https://doi.org/10.3390/jpm12060896
Chicago/Turabian StyleTarailis, Povilas, Frances M. De Blasio, Dovile Simkute, and Inga Griskova-Bulanova. 2022. "Data-Driven EEG Theta and Alpha Components Are Associated with Subjective Experience during Resting State" Journal of Personalized Medicine 12, no. 6: 896. https://doi.org/10.3390/jpm12060896
APA StyleTarailis, P., De Blasio, F. M., Simkute, D., & Griskova-Bulanova, I. (2022). Data-Driven EEG Theta and Alpha Components Are Associated with Subjective Experience during Resting State. Journal of Personalized Medicine, 12(6), 896. https://doi.org/10.3390/jpm12060896