Cardiac Allograft Rejection Induces Changes in Nucleocytoplasmic Transport: RANGAP1 as a Potential Non-Invasive Biomarker
Abstract
:1. Introduction
2. Methods
2.1. Collection of Samples
2.2. Measurement of Circulating RANGAP1
2.3. Measurement of Circulating NT-proBNP and High-Sensitivity Troponin T
2.4. Statistical Analysis
3. Results
3.1. Study Population and ACR
3.2. RanGAP1 Analysis in ACR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khush, K.K.; Cherikh, W.S.; Chambers, D.C.; Harhay, M.O.; Hayes, D.; Hsich, E.; Meiser, B.; Potena, L.; Robinson, A.; Rossano, J.W.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult heart transplantation report-2019; focus theme: Donor and recipient size match. J. Heart Lung Transplant. 2019, 38, 1056–1066, Correction in J. Heart Lung Transplant. 2020, 39, 91. [Google Scholar] [CrossRef] [PubMed]
- Bergersen, L.; Marshall, A.; Gauvreau, K.; Beekman, R.; Hirsch, R.; Foerster, S.; Balzer, D.; Vincent, J.; Hellenbrand, W.; Cheatham, J.; et al. Adverse event rates in congenital cardiac catheterization-a multi-center experience. Catheter. Cardiovasc. Interv. 2010, 75, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.; Sørensen, F.B.; Nielsen, B.; Bagger, J.P.; Thayssen, P.; Baandrup, U. Reproducibility of the acute rejection diagnosis in human cardiac allografts. The Stanford Classification and the International Grading System. J. Heart Lung Transplant. 1993, 12, 239–243. [Google Scholar] [PubMed]
- Tarazón, E.; Gil-Cayuela, C.; Manzanares, M.G.; Roca, M.; Lago, F.; González-Juanatey, J.R.; Sánchez-Lacuesta, E.; Martínez-Dolz, L.; Portolés, M.; Roselló-Lletí, E. Circulating Sphingosine-1-Phosphate as A Non-Invasive Biomarker of Heart Transplant Rejection. Sci. Rep. 2019, 9, 13880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarazón, E.; Ortega, A.; Gil-Cayuela, C.; Sánchez-Lacuesta, E.; Marín, P.; Lago, F.; González-Juanatey, J.R.; Martínez-Dolz, L.; Portolés, M.; Rivera, M.; et al. SERCA2a: A potential non-invasive biomarker of cardiac allograft rejection. J. Heart Lung Transplant. 2017, 36, 1322–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, D.A.; Drazner, M.H.; de Lemos, J.A. Do established biomarkers such as B-type natriuretic peptide and troponin predict rejection? Curr. Opin. Organ Transplant. 2013, 18, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Dolz, L.; Almenar, L.; Reganon, E.; Vila, V.; Sánchez-Soriano, R.; Martínez-Sales, V.; Moro, J.; Agüero, J.; Sánchez-Lázaro, I.; Salvador, A. What is the best biomarker for diagnosis of rejection in heart transplantation? Clin. Transplant. 2009, 23, 672–680. [Google Scholar] [CrossRef]
- Di Francesco, A.; Fedrigo, M.; Santovito, D.; Natarelli, L.; Castellani, C.; De Pascale, F.; Toscano, G.; Fraiese, A.; Feltrin, G.; Benazzi, E.; et al. MicroRNA signatures in cardiac biopsies and detection of allograft rejection. J. Heart Lung Transplant. 2018, 37, 1329–1340. [Google Scholar] [CrossRef]
- Constanso-Conde, I.; Hermida-Prieto, M.; Barge-Caballero, E.; Núñez, L.; Pombo-Otero, J.; Suárez-Fuentetaja, N.; Paniagua-Martín, M.J.; Barge-Caballero, G.; Couto-Mallón, D.; Pan-Lizcano, R.; et al. Circulating miR-181a-5p as a new biomarker for acute cellular rejection in heart transplantation. J. Heart Lung Transplant. 2020, 39, 1100–1108. [Google Scholar] [CrossRef]
- Agbor-Enoh, S.; Shah, P.; Tunc, I.; Hsu, S.; Russell, S.; Feller, E.; Shah, K.; Rodrigo, M.E.; Najjar, S.S.; Kong, H.; et al. Cell-Free DNA to Detect Heart Allograft Acute Rejection. Circulation 2021, 143, 1184–1197. [Google Scholar] [CrossRef]
- Jamali, T.; Jamali, Y.; Mehrbod, M.; Mofrad, M.R. Nuclear pore complex: Biochemistry and biophysics of nucleocytoplasmic transport in health and disease. Int. Rev. Cell Mol. Biol. 2011, 287, 233–286. [Google Scholar] [CrossRef] [PubMed]
- Cortes, R.; Roselló-Lletí, E.; Rivera, M.; Martínez-Dolz, L.; Salvador, A.; Azorín, I.; Portoles, M. Influence of heart failure on nucleocytoplasmic transport in human cardiomyocytes. Cardiovasc. Res. 2010, 85, 464–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarazón, E.; Rivera, M.; Roselló-Lletí, E.; Molina-Navarro, M.M.; Sánchez-Lázaro, I.J.; España, F.; Montero, J.A.; Lago, F.; González-Juanatey, J.R.; Portolés, M. Heart failure induces significant changes in nuclear pore complex of human cardiomyocytes. PLoS ONE 2012, 7, e48957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezzitouny, M.; Roselló-Lletí, E.; Portolés, M.; Sánchez-Lázaro, I.; Arnau-Vives, M.Á.; Tarazón, E.; Gil-Cayuela, C.; Lozano-Edo, S.; López-Vilella, R.; Almenar-Bonet, L.; et al. Value of SERCA2a as a Biomarker for the Identification of Patients with Heart Failure Requiring Circulatory Support. J. Pers. Med. 2021, 11, 1122. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Edo, S.; Sánchez-Lázaro, I.; Almenar-Bonet, L.; Portolés, M.; Ezzitouny, M.; Tarazón, E.; Roselló-Lleti, E.; Lopez-Vilella, R.; Martínez-Dolz, L. Alterations in the Nucleocytoplasmic Transport in Heart Transplant Rejection. Transp. Proc. 2021, 53, 2718–2720. [Google Scholar] [CrossRef]
- Stewart, S.; Winters, G.L.; Fishbein, M.C.; Tazelaar, H.D.; Kobashigawa, J.; Abrams, J.; Andersen, C.B.; Angelini, A.; Berry, G.J.; Burke, M.M.; et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J. Heart Lung Transplant. 2005, 24, 1710–1720. [Google Scholar] [CrossRef]
- Clarke, P.R.; Zhang, C. Spatial and temporal coordination of mitosis by Ran GTPase. Nat. Rev. Mol. Cell Biol. 2008, 9, 464–477. [Google Scholar] [CrossRef]
- Pemberton, L.F.; Paschal, B.M. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 2005, 6, 187–198. [Google Scholar] [CrossRef]
- Sorokin, A.V.; Kim, E.R.; Ovchinnikov, L.P. Nucleocytoplasmic transport of proteins. Biochemistry 2007, 72, 1439–1457. [Google Scholar] [CrossRef]
- Lozano-Edo, S.; Sánchez-Lázaro, I.; Portolés, M.; Roselló-Lletí, E.; Tarazón, E.; Arnau-Vives, M.A.; Ezzitouny, M.; Lopez-Vilella, R.; Almenar-Bonet, L.; Martínez-Dolz, L. Plasma Levels of SERCA2a as a Noninvasive Biomarker of Primary Graft Dysfunction After Heart Transplantation. Transplantation 2022, 106, 887–893. [Google Scholar] [CrossRef]
- Tarazón, E.; Pérez-Carrillo, L.; Portolés, M.; Roselló-Lletí, E. Electron Microscopy Reveals Evidence of Perinuclear Clustering of Mitochondria in Cardiac Biopsy-Proven Allograft Rejection. J. Pers. Med. 2022, 12, 296. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H.; Johnson, M.L.; Aaronson, K.D.; Gordon, D.; Dyke, D.B.; Koelling, T.M. Brain natriuretic peptide predicts serious cardiac allograft rejection independent of hemodynamic measurements. J. Heart Lung Transplant. 2005, 24, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Kittleson, M.M.; Skojec, D.V.; Wittstein, I.S.; Champion, H.C.; Judge, D.P.; Barouch, L.A.; Halushka, M.; Hare, J.M.; Kasper, E.K.; Russell, S.D. The change in B-type natriuretic peptide levels over time predicts significant rejection in cardiac transplant recipients. J. Heart Lung Transplant. 2009, 28, 704–709. [Google Scholar] [CrossRef]
- Garrido, I.P.; Pascual-Figal, D.A.; Nicolás, F.; González-Carrillo, M.J.; Manzano-Fernández, S.; Sánchez-Mas, J.; Valdés-Chavarri, M. Usefulness of serial monitoring of B-type natriuretic peptide for the detection of acute rejection after heart transplantation. Am. J. Cardiol. 2009, 103, 1149–1153. [Google Scholar] [CrossRef] [PubMed]
- Stehlik, J.; Edwards, L.B.; Kucheryavaya, A.Y.; Benden, C.; Christie, J.D.; Dipchand, A.I.; Dobbels, F.; Kirk, R.; Rahmel, A.O.; Hertz, M.I. The Registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report--2012. J. Heart Lung Transplant. 2012, 31, 1052–1064. [Google Scholar] [CrossRef] [Green Version]
- Shaw, S.M.; Williams, S.G. Is brain natriuretic peptide clinically useful after cardiac transplantation? J. Heart Lung Transplant. 2006, 25, 1396–1401. [Google Scholar] [CrossRef]
- He, Y.; Yang, Z.; Zhao, C.S.; Xiao, Z.; Gong, Y.; Li, Y.Y.; Chen, Y.; Du, Y.; Feng, D.; Altman, A.; et al. T-cell receptor (TCR) signaling promotes the assembly of RanBP2/RanGAP1-SUMO1/Ubc9 nuclear pore subcomplex via PKC-θ-mediated phosphorylation of RanGAP1. eLife 2021, 10, e67123. [Google Scholar] [CrossRef]
- Timonen, P.; Magga, J.; Risteli, J.; Punnonen, K.; Vanninen, E.; Turpeinen, A.; Tuomainen, P.; Kuusisto, J.; Vuolteenaho, O.; Peuhkurinen, K. Cytokines, interstitial collagen and ventricular remodelling in dilated cardiomyopathy. Int. J. Cardiol. 2008, 124, 293–300. [Google Scholar] [CrossRef]
- Vorpahl, M.; Schönhofer-Merl, S.; Michaelis, C.; Flotho, A.; Melchior, F.; Wessely, R. The Ran GTPase-activating protein (RanGAP1) is critically involved in smooth muscle cell differentiation, proliferation and migration following vascular injury: Implications for neointima formation and restenosis. PLoS ONE 2014, 9, e101519. [Google Scholar] [CrossRef] [Green Version]
- Stoica, S.C.; Cafferty, F.; Pauriah, M.; Taylor, C.J.; Sharples, L.D.; Wallwork, J.; Large, S.R.; Parameshwar, J. The cumulative effect of acute rejection on development of cardiac allograft vasculopathy. J. Heart Lung Transplant. 2006, 25, 420–425. [Google Scholar] [CrossRef]
Variables a | Total (n = 75) | Non-Rejection—Grade 1R (n = 59) | Grades 2R–3R Rejection (n = 16) | p |
---|---|---|---|---|
Clinics and demographics | ||||
Age, years | 52.3 (14.0) | 51.88 (14.5) | 53.7 (12.3) | 0.69 |
Male sex (%) | 59 (78.7) | 48 (81.4) | 11 (68.8) | 0.28 |
Body mass index (kg/m2) | 25.48 (3.67) | 25.48 (3.87) | 25.46 (3.04) | 0.99 |
Hypertension (%) | 24 (32.9) | 20 (35.1) | 4 (25.0) | 0.45 |
Diabetes mellitus (%) | 8 (11.0) | 6 (10.5) | 2 (12.5) | 0.82 |
Dyslipemia (%) | 20 (27.4) | 14 (24.1) | 6 (40.0) | 0.22 |
Ejection fraction pre-HT (%) | 25.13 (15.64) | 24.36 (16.42) | 28.0 (12.37) | 0.41 |
Indication for cardiac transplantation 0.73 | ||||
Ischemic cardiomyopathy (%) | 18 (24.0) | 13 (22.0) | 5 (31.3) | |
Idiopathic dilated cardiomyopathy (%) | 22 (29.3) | 18 (30.5) | 4 (25.0) | |
Other (%) | 35 (46.7) | 28 (47.5) | 7 (43.8) | |
Immunosuppressive therapy | ||||
Tacrolimus (%) | 72 (96) | 56 (94.9) | 16 (100) | 0.36 |
Mycophenolic acid (%) | 71 (94.7) | 55 (93.2) | 16 (100) | 0.28 |
Steroids (%) | 75 (100) | 59 (100) | 16 (100) | |
Echo-Doppler study post-HT | ||||
Moderate/severe ventricular dysfunction (%) 1–3 months | 2 (2.9) | 1 (1.7) | 1 (6.3) | 0.32 |
Moderate/severe ventricular dysfunction (%) 12 months | 3 (4) | 1 (1.7) | 2 (13.3) | 0.05 |
Moderate/severe pericardial effusion (%) 1–3 months | 8 (10.7) | 5 (8.5) | 3 (18.8) | 0.24 |
Moderate/severe pericardial effusion (%) 12 months | 2 (2.9) | 2 (3.6) | 0 (0) | 0.45 |
Moderate/severe left ventricular hypertrophy (%) 1–3 months | 7 (9.3) | 5 (8.5) | 2 (12.5) | 0.62 |
Moderate/severe left ventricular hypertrophy (%) 12 months | 0 (0) | 0 (0) | 0 (0) |
Variables a | Total (n = 75) | Non-Rejection—Grade 1R (n = 59) | Grades 2R–3R Rejection (n = 16) | p |
---|---|---|---|---|
NT-proBNP (pg/mL) 1–3 months | 1523 (798–3548) | 1499 (798–2841) | 2070 (757–7825) | 0.24 |
Log NT-proBNP (pg/mL) 1–3 months | 3.23 (0.50) | 3.18 (0.45) | 3.42 (0.64) | 0.09 |
NT-proBNP (pg/mL) 12 months | 341 (215–586) | 334 (216–540) | 460 (211–1066) | 0.31 |
Log NT-proBNP (pg/mL) 12 months | 2.60 (0.48) | 2.53 (0.36) | 2.82 (0.73) | 0.15 |
Troponin T (ng/L) 1–3 months | 7134 (47.78–159) | 68.76 (42.73–186) | 87.93 (56.18–139) | 0.31 |
Log Troponin T (ng/L) 1–3 months | 1.95 (0.47) | 1.92 (0.46) | 2.06 (0.51) | 0.29 |
Troponin T (ng/L) 12 months | 17.58 (8.39–33.36) | 17.03 (8.68–33.93) | 19.90 (8.04–37.34) | 0.90 |
Log Troponin T (ng/L) 12 months | 1.25 (0.34) | 1.24 (0.33) | 1.27 (0.37) | 0.78 |
Hemglobine 1–3 months | 11.25 (1.83) | 11.45 (1.85) | 10.54 (1.62) | 0.08 |
Hemglobine 12 months | 12.8 (1.71) | 12.95 (1.59) | 12.27 (2.11) | 0.17 |
Creatinine 1–3 months | 1.07 (0.51) | 1.06 (0.56) | 1.09 (0.31) | 0.89 |
Creatinine 12 months | 1.13 (0.33) | 1.12 (0.33) | 1.18 (0.32) | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano-Edo, S.; Roselló-Lletí, E.; Sánchez-Lázaro, I.; Tarazón, E.; Portolés, M.; Ezzitouny, M.; Lopez-Vilella, R.; Arnau, M.A.; Almenar, L.; Martínez-Dolz, L. Cardiac Allograft Rejection Induces Changes in Nucleocytoplasmic Transport: RANGAP1 as a Potential Non-Invasive Biomarker. J. Pers. Med. 2022, 12, 913. https://doi.org/10.3390/jpm12060913
Lozano-Edo S, Roselló-Lletí E, Sánchez-Lázaro I, Tarazón E, Portolés M, Ezzitouny M, Lopez-Vilella R, Arnau MA, Almenar L, Martínez-Dolz L. Cardiac Allograft Rejection Induces Changes in Nucleocytoplasmic Transport: RANGAP1 as a Potential Non-Invasive Biomarker. Journal of Personalized Medicine. 2022; 12(6):913. https://doi.org/10.3390/jpm12060913
Chicago/Turabian StyleLozano-Edo, Silvia, Esther Roselló-Lletí, Ignacio Sánchez-Lázaro, Estefanía Tarazón, Manuel Portolés, Maryem Ezzitouny, Raquel Lopez-Vilella, Miguel Angel Arnau, Luis Almenar, and Luis Martínez-Dolz. 2022. "Cardiac Allograft Rejection Induces Changes in Nucleocytoplasmic Transport: RANGAP1 as a Potential Non-Invasive Biomarker" Journal of Personalized Medicine 12, no. 6: 913. https://doi.org/10.3390/jpm12060913
APA StyleLozano-Edo, S., Roselló-Lletí, E., Sánchez-Lázaro, I., Tarazón, E., Portolés, M., Ezzitouny, M., Lopez-Vilella, R., Arnau, M. A., Almenar, L., & Martínez-Dolz, L. (2022). Cardiac Allograft Rejection Induces Changes in Nucleocytoplasmic Transport: RANGAP1 as a Potential Non-Invasive Biomarker. Journal of Personalized Medicine, 12(6), 913. https://doi.org/10.3390/jpm12060913