Development of Machine Learning Models Predicting Estimated Blood Loss during Liver Transplant Surgery
Abstract
:1. Introduction
2. Methods
2.1. Patients and Data Collection
2.2. Statistical and Machine Learning Methods
2.2.1. Data Preprocessing
2.2.2. Feature Selection
2.2.3. Machine Learning Model Training
2.2.4. Risk Scoring System Development
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baganate, F.; Beal, E.W.; Tumin, D.; Azoulay, D.; Mumtaz, K.; Black, S.M.; Washburn, K.; Pawlik, T.M. Early mortality after liver transplantation: Defining the course and the cause. Surgery 2018, 164, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Kwong, A.J.; Ebel, N.H.; Kim, W.R.; Lake, J.R.; Smith, J.M.; Schladt, D.P.; Skeans, M.A.; Foutz, J.; Gauntt, K.; Cafarella, M.; et al. OPTN/SRTR 2020 Annual Data Report: Liver. Am. J. Transplant. 2022, 22, 204–309. [Google Scholar] [CrossRef] [PubMed]
- Kloesel, B.; Kovatsis, P.G.; Faraoni, D.; Young, V.; Kim, H.B.; Vakili, K.; Goobie, S.M. Incidence and predictors of massive bleeding in children undergoing liver transplantation: A single-center retrospective analysis. Paediatr. Anaesth. 2017, 27, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Starczewska, M.H.; Giercuszkiewicz, D.; Niewiński, G.; Kański, A. Perioperative bleeding in patients undergoing liver transplantation. Anaesthesiol. Intensive Ther. 2016, 48, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.P.; Zhao, Q.Y.; Wu, J.; Luo, Y.W.; Dong, H.; Chen, Z.W.; Gui, R.; Wang, Y.J. Machine Learning for the Prediction of Red Blood Cell Transfusion in Patients During or After Liver Transplantation Surgery. Front. Med. 2021, 8, 632210. [Google Scholar] [CrossRef] [PubMed]
- Sihler, K.C.; Napolitano, L.M. Massive transfusion: New insights. Chest 2009, 136, 1654–1667. [Google Scholar] [CrossRef]
- Mitra, B.; Cameron, P.A.; Gruen, R.L.; Mori, A.; Fitzgerald, M.; Street, A. The definition of massive transfusion in trauma: A critical variable in examining evidence for resuscitation. Eur. J. Emerg. Med. 2011, 18, 137–142. [Google Scholar] [CrossRef]
- Cecie Starr, R.T. Biology: The Unity and Diversity of Life; Wadsworth Pub Co.: Belmont, CA, USA, 1989. [Google Scholar]
- Flint, A.W.J.; McQuilten, Z.K.; Wood, E.M. Massive transfusions for critical bleeding: Is everything old new again? Transfus. Med. 2018, 28, 140–149. [Google Scholar] [CrossRef]
- Barjaktarevic, I.; Cortes Lopez, R.; Steadman, R.; Wray, C.; Qadir, N.; Chang, S.Y.; Wang, T. Perioperative Considerations in Liver Transplantation. Semin. Respir. Crit. Care Med. 2018, 39, 609–624. [Google Scholar] [CrossRef]
- Adelmann, D.; Kronish, K.; Ramsay, M.A. Anesthesia for Liver Transplantation. Anesthesiol. Clin. 2017, 35, 491–508. [Google Scholar] [CrossRef]
- Pustavoitau, A.; Lesley, M.; Ariyo, P.; Latif, A.; Villamayor, A.J.; Frank, S.M.; Rizkalla, N.; Merritt, W.; Cameron, A.; Dagher, N.; et al. Predictive Modeling of Massive Transfusion Requirements During Liver Transplantation and Its Potential to Reduce Utilization of Blood Bank Resources. Anesth. Analg. 2017, 124, 1644–1652. [Google Scholar] [CrossRef] [PubMed]
- Sidey-Gibbons, J.A.M.; Sidey-Gibbons, C.J. Machine learning in medicine: A practical introduction. BMC Med. Res. Methodol. 2019, 19, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strandberg, T.E.; Pitkala, K. What is the most important component of blood pressure. Curr. Opin. Intern. Med. 2003, 2, 312–316. [Google Scholar] [CrossRef]
- Sheng, S. Mean arterial pressure and arterial stiffness in Japanese population: A secondary analysis based on a cross-sectional study. Blood Press. Monit. 2020, 25, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Gunarathne, A.; Patel, J.V.; Gammon, B.; Hughes, E.A.; Lip, G.Y.H. Impact of mean arterial blood pressure on higher arterial stiffness indices in South Asians compared to white Europeans. J. Hypertens. 2008, 26, 1420–1426. [Google Scholar] [CrossRef]
- Meinshausen, N.; Bühlmann, P. Stability selection. J. R. Stat. Soc. Ser. B Stat. Methodol. 2010, 72, 417–473. [Google Scholar] [CrossRef]
- Danforth, D.; Gabriel, R.A.; Clark, A.I.; Newhouse, B.; Khoche, S.; Vig, S.; Sanchez, R.; Schmidt, U.H. Preoperative risk factors for massive transfusion, prolonged ventilation requirements, and mortality in patients undergoing liver transplantation. Korean J. Anesthesiol. 2020, 73, 30–35. [Google Scholar] [CrossRef] [Green Version]
- McCluskey, S.A.; Karkouti, K.; Wijeysundera, D.N.; Kakizawa, K.; Ghannam, M.; Hamdy, A.; Grant, D.; Levy, G. Derivation of a risk index for the prediction of massive blood transfusion in liver transplantation. Liver Transplant. 2006, 12, 1584–1593. [Google Scholar] [CrossRef]
- Xia, V.W.; Du, B.; Braunfeld, M.; Neelakanta, G.; Hu, K.-Q.; Nourmand, H.; Levin, P.; Enriquez, R.; Hiatt, J.R.; Ghobrial, R.M.; et al. Preoperative characteristics and intraoperative transfusion and vasopressor requirements in patients with low vs. high MELD scores. Liver Transplant. 2006, 12, 614–620. [Google Scholar] [CrossRef]
- Frasco, P.E.; Poterack, K.A.; Hentz, J.G.; Mulligan, D.C. A comparison of transfusion requirements between living donation and cadaveric donation liver transplantation: Relationship to model of end-stage liver disease score and baseline coagulation status. Anesth. Analg. 2005, 101, 30–37. [Google Scholar] [CrossRef]
- Cleland, S.; Corredor, C.; Ye, J.J.; Srinivas, C.; McCluskey, S.A. Massive haemorrhage in liver transplantation: Consequences, prediction and management. World J. Transplant. 2016, 6, 291. [Google Scholar] [CrossRef] [PubMed]
- Ghaffaripour, S.; Mahmoudi, H.; Khosravi, M.B.; Sahmeddini, M.A.; Eghbal, H.; Sattari, H.; Kazemi, K.; Malekhosseini, S.A. Preoperative factors as predictors of blood product transfusion requirements in orthotopic liver transplantation. Prog. Transplant. 2011, 21, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.U.; Byeon, G.J.; Park, J.Y.; Yoon, S.H.; Ryu, J.H.; Ri, H.S. Bloodless living donor liver transplantation Risk factors, outcomes, and diagnostic predictors. Medicine 2018, 97, e13581. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.C.; Sappenfield, J.W.; Smith, R.S.; Kiley, S.P. Initiation and termination of massive transfusion protocols: Current strategies and future prospects. Anesth. Analg. 2017, 125, 2045–2055. [Google Scholar] [CrossRef]
- Boks, A.L.; Brommer, E.J.; Schalm, S.W.; Van Vliet, H.H. Hemostasis and fibrinolysis in severe liver failure and their relation to hemorrhage. Hepatology 1986, 6, 79–86. [Google Scholar] [CrossRef]
- Saner, F.H.; Kirchner, C. Monitoring and Treatment of Coagulation Disorders in End-Stage Liver Disease. Visc. Med. 2016, 32, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Segal, J.B.; Dzik, W.H. Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: An evidence-based review. Transfusion 2005, 45, 1413–1425. [Google Scholar] [CrossRef]
- Forkin, K.T.; Colquhoun, D.A.; Nemergut, E.C.; Huffmyer, J.L. The Coagulation Profile of End-Stage Liver Disease and Considerations for Intraoperative Management. Anesth. Analg. 2018, 126, 46–61. [Google Scholar] [CrossRef]
- Premkumar, M.; Kulkarni, A.V.; Kajal, K.; Divyaveer, S. Principles, Interpretation, and Evidence-Based Role of Viscoelastic Point-of-Care Coagulation Assays in Cirrhosis and Liver Failure. J. Clin. Exp. Hepatol. 2022, 12, 533–543. [Google Scholar] [CrossRef]
- Northup, P.; Reutemann, B. Management of Coagulation and Anticoagulation in Liver Transplantation Candidates. Liver Transplant. 2018, 24, 1119–1132. [Google Scholar] [CrossRef] [Green Version]
- Drolz, A.; Horvatits, T.; Roedl, K.; Rutter, K.; Staufer, K.; Kneidinger, N.; Holzinger, U.; Zauner, C.; Schellongowski, P.; Heinz, G.; et al. Coagulation parameters and major bleeding in critically ill patients with cirrhosis. Hepatology 2016, 64, 556–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisman, T.; Porte, R.J. Rebalanced hemostasis in patients with liver disease: Evidence and clinical consequences. Blood 2010, 116, 878–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Findlay, J.Y.; Rettke, S.R. Poor prediction of blood transfusion requirements in adult liver transplantations from preoperative variables. J. Clin. Anesth. 2000, 12, 319–323. [Google Scholar] [CrossRef]
- De Robertis, E.; Kozek-Langenecker, S.A.; Tufano, R.; Romano, G.M.; Piazza, O.; Zito Marinosci, G. Coagulopathy induced by acidosis, hypothermia and hypocalcaemia in severe bleeding. Minerva Anestesiol. 2015, 81, 65–75. [Google Scholar]
- Schmied, H.; Kurz, A.; Sessler, D.I.; Kozek, S.; Reiter, A. Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet 1996, 347, 289–292. [Google Scholar] [CrossRef]
- Priestley, E.M.; Inaba, K.; Byerly, S.; Biswas, S.; Wong, M.D.; Lam, L.; Benjamin, E.; Demetriades, D. Pulse Pressure as an Early Warning of Hemorrhage in Trauma Patients. J. Am. Coll. Surg. 2019, 229, 184–191. [Google Scholar] [CrossRef]
- Sohal, A.S.; Gangji, A.S.; Crowther, M.A.; Treleaven, D. Uremic bleeding: Pathophysiology and clinical risk factors. Thromb. Res. 2006, 118, 417–422. [Google Scholar] [CrossRef]
- Modanlou, K.A.; Grossman, B.J.; Oliver, D.A. Liver donor’s age and recipient’s serum creatinine predict blood component use during liver transplantation. Transfusion 2009, 49, 2645–2651. [Google Scholar] [CrossRef]
EBL < 5000 cc (N = 228) | EBL ≥ 5000 cc (N = 186) | p Value | |
---|---|---|---|
EBL (mean (SD)) | 2753.6 (1258.0) | 8755.1 (4220.7) | <0.001 |
Age (mean (SD)) | 56.07 (8.5) | 55.43 (9.1) | 0.458 |
Sex = male (%) | 159 (69.7) | 132 (71.0) | 0.869 |
Height (mean (SD)) | 165.20 (8.1) | 165.27 (8.9) | 0.932 |
Weight (mean (SD)) | 65.28 (11.0) | 66.67 (11.8) | 0.216 |
Emergency (%) | 43 (18.9) | 51 (27.4) | 0.051 |
Cadaver donor (%) | 41 (18.0) | 44 (23.7) | 0.194 |
Operation time (mean (SD)) | 617.5 (138.5) | 666.2 (168.8) | <0.001 |
Liver cirrhosis (%) | 141 (61.8) | 148 (79.6) | <0.001 |
Alcoholic liver disease (%) | 60 (26.3) | 77 (41.4) | 0.002 |
Hepatocellular carcinoma (%) | 143 (62.7) | 65 (34.9) | <0.001 |
MELD (mean (SD)) | 13.45 (8.5) | 19.08 (10.7) | <0.001 |
Hb (mean (SD)) | 10.93 (2.2) | 9.76 (2.0) | <0.001 |
Hct (mean (SD)) | 32.22 (6.3) | 28.81 (5.8) | <0.001 |
Platelet (mean (SD)) | 94.60 (53.3) | 80.98 (54.3) | 0.011 |
PT (mean (SD)) | 1.4 (0.6) | 1.7 (0.5) | <0.001 |
aPTT (mean (SD)) | 40.0 (13.2) | 51.4 (30.0) | <0.001 |
Albumin (mean (SD)) | 3.1 (0.6) | 2.9 (0.5) | <0.001 |
Blood Urea Nitrogen (mean (SD)) | 17.6 (11.0) | 27.3 (23.0) | <0.001 |
Creatinine (mean (SD)) | 0.8 (0.4) | 1.2 (1.1) | <0.001 |
eGFR (mean (SD)) | 87.0 (43.0) | 56.2 (40.9) | <0.001 |
Mean arterial pressure (mean (SD)) | 91.1 (10.6) | 86.5(10.7) | <0.001 |
Body temperature (mean (SD)) | 36.6 (0.4) | 36.5 (0.4) | <0.001 |
Pulse pressure (mean (SD)) | 57.5 (12.5) | 52.9 (12.6) | <0.001 |
Machine Learning Method | Test Dataset | |
---|---|---|
AUROC | AUPR | |
Multivariable logistic regression | 0.840 | 0.821 |
Elastic net | 0.764 | 0.678 |
Random forests | 0.803 | 0.783 |
Extreme gradient boosting | 0.806 | 0.797 |
Neural networks | 0.851 | 0.804 |
SVM with radial kernel | 0.832 | 0.804 |
SVM with linear kernel | 0.841 | 0.818 |
Coefficient | Odd Ratio | 95% CI | p-Value | |
---|---|---|---|---|
HCC | −0.93 | 0.39 | (0.22–0.69) | 0.001 |
aPTT per 10 s | 0.21 | 1.23 | (1.05–1.49) | 0.015 |
Operation time per hour | 0.29 | 1.33 | (1.17–1.52) | <0.001 |
Body temperature per 0.5 °C | −0.41 | 0.66 | (0.46–0.95) | 0.026 |
MELD per 10 | 0.17 | 1.19 | (0.99–2.00) | 0.055 |
MAP per 10 mmHg | −0.30 | 0.74 | (0.56–0.97) | 0.033 |
Creatinine per 0.5 | 0.36 | 1.44 | (1.09–2.06) | 0.027 |
Pulse pressure per 10 mmHg | −0.29 | 0.75 | (0.59–0.94) | 0.015 |
Scores | ||
---|---|---|
HCC | ||
No | +5 | |
aPTT (sec) | ||
≥40 | +5 | |
operation time (min) | ||
≥630 and <810 | +7 | |
≥810 | +12 | |
body temperature (°C) | ||
<36.3 | +9 | |
MELD | ||
≥10 | +4 | |
MAP (mmHg) | ||
<70 | +14 | |
creatinine (mg/dL) | ||
≥0.95 and <1.15 | +8 | |
≥1.15 | +10 | |
pulse pressure (mmHg) | ||
<55 | +4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Park, K.; Lee, J.G.; Choi, T.Y.; Heo, S.; Koo, B.-N.; Chae, D. Development of Machine Learning Models Predicting Estimated Blood Loss during Liver Transplant Surgery. J. Pers. Med. 2022, 12, 1028. https://doi.org/10.3390/jpm12071028
Park S, Park K, Lee JG, Choi TY, Heo S, Koo B-N, Chae D. Development of Machine Learning Models Predicting Estimated Blood Loss during Liver Transplant Surgery. Journal of Personalized Medicine. 2022; 12(7):1028. https://doi.org/10.3390/jpm12071028
Chicago/Turabian StylePark, Sujung, Kyemyung Park, Jae Geun Lee, Tae Yang Choi, Sungtaik Heo, Bon-Nyeo Koo, and Dongwoo Chae. 2022. "Development of Machine Learning Models Predicting Estimated Blood Loss during Liver Transplant Surgery" Journal of Personalized Medicine 12, no. 7: 1028. https://doi.org/10.3390/jpm12071028
APA StylePark, S., Park, K., Lee, J. G., Choi, T. Y., Heo, S., Koo, B. -N., & Chae, D. (2022). Development of Machine Learning Models Predicting Estimated Blood Loss during Liver Transplant Surgery. Journal of Personalized Medicine, 12(7), 1028. https://doi.org/10.3390/jpm12071028