Modeling Endometrium Biology and Disease
Abstract
:1. Introduction
2. Endometrium Development and Biology
2.1. Endometrium Development
2.2. Endometrium Biology
2.2.1. Endometrium Remodeling during Menstrual Cycle
2.2.2. Endometrium Stem Cells
2.2.3. Unraveling the Endometrium Make-Up by Single-Cell Transcriptomics
3. Modeling Endometrium Development and Biology
3.1. Modeling Endometrium Development
3.2. Modeling Endometrium Biology
3.2.1. In 2D
3.2.2. In 3D
3.2.3. Advanced Composite Endometrium Models
4. Modeling of Endometriosis
4.1. Endometriosis
4.2. Single-Cell Profiling of Endometriosis
4.3. Endometriosis Models
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boretto, M.; Cox, B.; Noben, M.; Hendriks, N.; Fassbender, A.; Roose, H.; Amant, F.; Timmerman, D.; Tomassetti, C.; Vanhie, A.; et al. Development of Organoids from Mouse and Human Endometrium Showing Endometrial Epithelium Physiology and Long-Term Expandability. Development 2017, 144, 1775–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turco, M.Y.; Gardner, L.; Hughes, J.; Cindrova-Davies, T.; Gomez, M.J.; Farrell, L.; Hollinshead, M.; Marsh, S.G.E.; Brosens, J.J.; Critchley, H.O.; et al. Long-Term, Hormone-Responsive Organoid Cultures of Human Endometrium in a Chemically Defined Medium. Nat. Cell Biol. 2017, 19, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Boretto, M.; Maenhoudt, N.; Luo, X.; Hennes, A.; Boeckx, B.B.; Bui, B.; Heremans, R.; Perneel, L.; Kobayashi, H.; Van Zundert, I.; et al. Patient-Derived Organoids from Endometrial Disease Capture Clinical Heterogeneity and Are Amenable to Drug Screening. Nat. Cell Biol. 2019, 21, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Behringer, R.R. Developmental Genetics of the Female Reproductive Tract in Mammals. Nat. Rev. Genet. 2003, 4, 969–980. [Google Scholar] [CrossRef]
- Roly, Z.Y.; Backhouse, B.; Cutting, A.; Tan, T.Y.; Sinclair, A.H.; Ayers, K.L.; Major, A.T.; Smith, C.A. The Cell Biology and Molecular Genetics of Müllerian Duct Development. Wiley Interdiscip. Rev. Dev. Biol. 2018, 7, e310. [Google Scholar] [CrossRef]
- Torres, M.; Gómez-Pardo, E.; Dressler, G.R.; Gruss, P. Pax-2 Controls Multiple Steps of Urogenital Development. Development 1995, 121, 4057–4065. [Google Scholar] [CrossRef]
- Kobayashi, A.; Shawlot, W.; Kania, A.; Behringer, R.R. Requirement of Lim1 for Female Reproductive Tract Development. Development 2004, 131, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, N.; Yoshida, M.; Kuratani, S.; Matsuo, I.; Aizawa, S. Defects of Urogenital Development in Mice Lacking Emx2. Development 1997, 124, 1653–1664. [Google Scholar] [CrossRef]
- Mendelsohn, C.; Lohnes, D.; Décimo, D.; Lufkin, T.; LeMeur, M.; Chambon, P.; Mark, M. Function of the Retinoic Acid Receptors (RARs) during Development. Development 1994, 120, 2749–2771. [Google Scholar] [CrossRef]
- Iizuka-Kogo, A.; Ishidao, T.; Akiyama, T.; Senda, T. Abnormal Development of Urogenital Organs in Dlgh1-Deficient Mice. Development 2007, 134, 1799–1807. [Google Scholar] [CrossRef] [Green Version]
- Vainio, S.; Heikkilä, M.; Kispert, A.; Chin, N.; McMahon, A.P. Female Development in Mammals Is Regulated by Wnt-4 Signalling. Nature 1999, 397, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Carroll, T.J.; Park, J.S.; Hayashi, S.; Majumdar, A.; McMahon, A.P. Wnt9b Plays a Central Role in the Regulation of Mesenchymal to Epithelial Transitions Underlying Organogenesis of the Mammalian Urogenital System. Dev. Cell 2005, 9, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledig, S.; Brucker, S.; Barresi, G.; Schomburg, J.; Rall, K.; Wieacker, P. Frame Shift Mutation of LHX1 Is Associated with Mayer-Rokitansky- Küster-Hauser (MRKH) Syndrome. Hum. Reprod. 2012, 27, 2872–2875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandbacka, M.; Laivuori, H.; Freitas, É.; Halttunen, M.; Jokimaa, V.; Morin-Papunen, L.; Rosenberg, C.; Aittomäki, K. TBX6, LHX1 and Copy Number Variations in the Complex Genetics of Müllerian Aplasia. Orphanet J. Rare Dis. 2013, 8, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biason-Lauber, A.; Konrad, D.; Navratil, F.; Schoenle, E.J. A WNT4 Mutation Associated with Müllerian-Duct Regression and Virilization in a 46,XX Woman. N. Engl. J. Med. 2004, 351, 792–798. [Google Scholar] [CrossRef] [Green Version]
- Biason-Lauber, A.; De Filippo, G.; Konrad, D.; Scarano, G.; Nazzaro, A.; Schoenle, E.J. WNT4 Deficiency-a Clinical Phenotype Distinct from the Classic Mayer-Rokitansky-Kuster-Hauser Syndrome: A Case Report. Hum. Reprod. 2007, 22, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Li, Y.; Wang, M.; Li, H.; Su, T.; Li, Y.; Wang, S. Associations of Polymorphisms in WNT9B and PBX1 with Mayer-Rokitansky-Küster-Hauser Syndrome in Chinese Han. PLoS ONE 2015, 10, e0130202. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.; Sassoon, D.A. Wnt-7a Maintains Appropriate Uterine Patterning during the Development of the Mouse Female Reproductive Tract. Development 1998, 125, 3201–3211. [Google Scholar] [CrossRef]
- Parr, B.A.; McMahon, A.P. Sexually Dimorphic Development of the Mammalian Reproductive Tract Requires Wnt-7a. Nature 1998, 395, 707–710. [Google Scholar] [CrossRef]
- Benson, G.V.; Lim, H.; Paria, B.C.; Satokata, I.; Dey, S.K.; Maas, R.L. Mechanisms of Reduced Fertility in Hoxa-10 Mutant Mice: Uterine Homeosis and Loss of Maternal Hoxa-10 Expression. Development 1996, 122, 2687–2696. [Google Scholar]
- Cheng, Z.; Zhu, Y.; Su, D.; Wang, J.; Cheng, L.; Chen, B.; Wei, Z.; Zhou, P.; Wang, B.; Ma, X.; et al. A Novel Mutation of HOXA10 in a Chinese Woman with a Mllerian Duct Anomaly. Hum. Reprod. 2011, 26, 3197–3201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekici, A.B.; Strissel, P.L.; Oppelt, P.G.; Renner, S.P.; Brucker, S.; Beckmann, M.W.; Strick, R. HOXA10 and HOXA13 Sequence Variations in Human Female Genital Malformations Including Congenital Absence of the Uterus and Vagina. Gene 2013, 518, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Gendron, R.L.; Paradis, H.; Hsieh-Li, H.M.; Lee, D.W.; Steven Potter, S.; Markoff, E. Abnormal Uterine Stromal and Glandular Function Associated with Maternal Reproductive Defects in Hoxa-11 Null Mice. Biol. Reprod. 1997, 56, 1097–1105. [Google Scholar] [CrossRef]
- Warot, X.; Fromental-Ramain, C.; Fraulob, V.; Chambon, P.; Dollé, P. Gene Dosage-Dependent Effects of the Hoxa-13 and Hoxd-13 Mutations on Morphogenesis of the Terminal Parts of the Digestive and Urogenital Tracts. Development 1997, 124, 4781–4791. [Google Scholar] [CrossRef] [PubMed]
- Mortlock, D.P.; Innis, J.W. Mutation of HOXA 13 in Hand-Foot-Genital Syndrome. Nat. Genet. 1997, 15, 179–180. [Google Scholar] [CrossRef] [PubMed]
- Kurita, T.; Cunha, G.R. Roles of P63 in Differentiation of Müllerian Duct Epithelial Cells. Ann. N. Y. Acad. Sci. 2001, 948, 9–12. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Liu, S.; Li, G.; Cui, L.; Qin, Y.; Chen, Z.J. Novel Mutations in the TP63 Gene Are Potentially Associated with Möllerian Duct Anomalies. Hum. Reprod. 2016, 31, 2865–2871. [Google Scholar] [CrossRef]
- Lindner, T.H.; Njølstad, P.R.; Horikawa, Y.; Bostad, L.; Bell, G.I.; Søvik, O. A Novel Syndrome of Diabetes Mellitus, Renal Dysfunction and Genital Malformation Associated with a Partial Deletion of the Pseudo-POU Domain of Hepatocyte Nuclear Factor-1β. Hum. Mol. Genet. 1999, 8, 2001–2008. [Google Scholar] [CrossRef] [Green Version]
- Franco, H.L.; Dai, D.; Lee, K.Y.; Rubel, C.A.; Roop, D.; Boerboom, D.; Jeong, J.; Lydon, J.P.; Bagchi, I.C.; Bagchi, M.K.; et al. WNT4 Is a Key Regulator of Normal Postnatal Uterine Development and Progesterone Signaling during Embryo Implantation and Decidualization in the Mouse. FASEB J. 2011, 25, 1176–1187. [Google Scholar] [CrossRef] [Green Version]
- Mericskay, M.; Kitajewski, J.; Sassoon, D. Wnt5a Is Required for Proper Epithelial-Mesenchymal Interactions in the Uterus. Development 2004, 131, 2061–2072. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.W.; Lee, H.S.; Franco, H.L.; Broaddus, R.R.; Taketo, M.M.; Tsai, S.Y.; Lydon, J.P.; DeMayo, F.J. Β-Catenin Mediates Glandular Formation and Dysregulation of Β-Catenin Induces Hyperplasia Formation in the Murine Uterus. Oncogene 2009, 28, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison Stewart, C.; Wang, Y.; Bonilla-Claudio, M.; Martin, J.F.; Gonzalez, G.; Taketo, M.M.; Behringer, R.R. CTNNB1 in Mesenchyme Regulates Epithelial Cell Differentiation during Müllerian Duct and Postnatal Uterine Development. Mol. Endocrinol. 2013, 27, 1442–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelton, D.N.; Fornalik, H.; Neff, T.; Park, S.Y.; Bender, D.; DeGeest, K.; Liu, X.; Xie, W.; Meyerholz, D.K.; Engelhardt, J.F.; et al. The Role of LEF1 in Endometrial Gland Formation and Carcinogenesis. PLoS ONE 2012, 7, e40312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.E.; Zhang, X.; Nothnick, W.B. Disruption of the TIMP-1 Gene Product Is Associated with Accelerated Endometrial Gland Formation during Early Postnatal Uterine Development. Biol. Reprod. 2004, 71, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhang, X.; Nothnick, W.B.; Spencer, T.E. Matrix Metalloproteinases and Their Tissue Inhibitors in the Developing Neonatal Mouse Uterus. Biol. Reprod. 2004, 71, 1598–1604. [Google Scholar] [CrossRef]
- Baker, J.; Hardy, M.P.; Zhou, J.; Bondy, C.; Lupu, F.; Bellvé, A.R.; Efstratiadis, A. Effects of an Igf1 Gene Null Mutation on Mouse Reproduction. Mol. Endocrinol. 1996, 10, 903–918. [Google Scholar]
- Kelleher, A.M.; Peng, W.; Pru, J.K.; Pru, C.A.; DeMayo, F.J.; Spencer, T.E. Forkhead Box A2 (FOXA2) Is Essential for Uterine Function and Fertility. Proc. Natl. Acad. Sci. USA 2017, 114, E1018–E1026. [Google Scholar] [CrossRef] [Green Version]
- Bellessort, B.; Bachelot, A.; Heude, É.; Alfama, G.; Fontaine, A.; Le Cardinal, M.; Treier, M.; Levi, G. Role of Foxl2 in Uterine Maturation and Function. Hum. Mol. Genet. 2014, 24, 3092–3103. [Google Scholar] [CrossRef] [Green Version]
- Bellessort, B.; Le Cardinal, M.; Bachelot, A.; Narboux-Nême, N.; Garagnani, P.; Pirazzini, C.; Barbieri, O.; Mastracci, L.; Jonchere, V.; Duvernois-Berthet, E.; et al. Dlx5 and Dlx6 Control Uterine Adenogenesis during Post-Natal Maturation: Possible Consequences for Endometriosis. Hum. Mol. Genet. 2016, 25, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Lubahn, D.B.; Moyer, J.S.; Golding, T.S.; Couse, J.F.; Korach, K.S.; Smithies, O. Alteration of Reproductive Function but Not Prenatal Sexual Development after Insertional Disruption of the Mouse Estrogen Receptor Gene. Proc. Natl. Acad. Sci. USA 1993, 90, 11162–11166. [Google Scholar] [CrossRef] [Green Version]
- Nanjappa, M.K.; Medrano, T.I.; March, A.G.; Cooke, P.S. Neonatal Uterine and Vaginal Cell Proliferation and Adenogenesis Are Independent of Estrogen Receptor 1 (ESR1) in the Mouse. Biol. Reprod. 2015, 92, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.S.; Vanden Heuvel, G.B.; Igarashi, P. A Conserved Hox Axis in the Mouse and Human Female Reproductive System: Late Establishment and Persistent Adult Expression of the Hoxa Cluster Genes. Biol. Reprod. 1997, 57, 1338–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, C.A.; Bartol, F.F.; Tarleton, B.J.; Wiley, A.A.; Johnson, G.A.; Bazer, F.W.; Spencer, T.E. Developmental Biology of Uterine Glands. Biol. Reprod. 2001, 65, 1311–1323. [Google Scholar] [CrossRef] [PubMed]
- Mullen, R.D.; Behringer, R.R. Molecular Genetics of Müllerian Duct Formation, Regression and Differentiation. Sex. Dev. 2014, 8, 281–296. [Google Scholar] [CrossRef] [Green Version]
- McMellen, A.; Woodruff, E.R.; Corr, B.R.; Bitler, B.G.; Moroney, M.R. Wnt Signaling in Gynecologic Malignancies. Int. J. Mol. Sci. 2020, 21, 4272. [Google Scholar] [CrossRef]
- Jabbour, H.N.; Kelly, R.W.; Fraser, H.M.; Critchley, H.O.D. Endocrine Regulation of Menstruation. Endocr. Rev. 2006, 27, 17–46. [Google Scholar] [CrossRef] [Green Version]
- Cousins, F.L.; Gargett, C.E. Endometrial Stem/Progenitor Cells and Their Role in the Pathogenesis of Endometriosis. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 50, 27–38. [Google Scholar] [CrossRef]
- Garry, R.; Hart, R.; Karthigasu, K.A.; Burke, C. A Re-Appraisal of the Morphological Changes within the Endometrium during Menstruation: A Hysteroscopic, Histological and Scanning Electron Microscopic Study. Hum. Reprod. 2009, 24, 1393–1401. [Google Scholar] [CrossRef]
- Hawkins, S.M.; Matzuk, M.M. Menstrual Cycle: Basic Biology. Ann. N. Y. Acad. Sci. 2008, 1135, 10–18. [Google Scholar] [CrossRef]
- Gargett, C.E. Uterine Stem Cells: What Is the Evidence? Hum. Reprod. Update 2007, 13, 87–101. [Google Scholar] [CrossRef]
- Santamaria, X.; Mas, A.; Cervelló, I.; Taylor, H.; Simon, C. Uterine Stem Cells: From Basic Research to Advanced Cell Therapies. Hum. Reprod. Update 2018, 24, 673–693. [Google Scholar] [PubMed]
- Tempest, N.; Jansen, M.; Baker, A.M.; Hill, C.J.; Hale, M.; Magee, D.; Treanor, D.; Wright, N.A.; Hapangama, D.K. Histological 3D Reconstruction and in Vivo Lineage Tracing of the Human Endometrium. J. Pathol. 2020, 251, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Cousins, F.L.; Pandoy, R.; Jin, S.; Gargett, C.E. The Elusive Endometrial Epithelial Stem/Progenitor Cells. Front. Cell Dev. Biol. 2021, 9, 640319. [Google Scholar] [CrossRef] [PubMed]
- Clevers, H.; Loh, K.M.; Nusse, R. An Integral Program for Tissue Renewal and Regeneration: Wnt Signaling and Stem Cell Control. Science 2014, 346, 1248012. [Google Scholar] [CrossRef] [PubMed]
- Blanpain, C.; Fuchs, E. Plasticity of Epithelial Stem Cells in Tissue Regeneration. Science 2014, 344, 1242281. [Google Scholar] [CrossRef] [Green Version]
- Morrison, S.J.; Spradling, A.C. Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life. Cell 2008, 132, 598–611. [Google Scholar] [CrossRef] [Green Version]
- Syed, S.M.; Kumar, M.; Ghosh, A.; Tomasetig, F.; Ali, A.; Whan, R.M.; Alterman, D.; Tanwar, P.S. Endometrial Axin2+ Cells Drive Epithelial Homeostasis, Regeneration, and Cancer Following Oncogenic Transformation. Cell Stem Cell 2020, 26, 64–80. [Google Scholar] [CrossRef]
- Seishima, R.; Leung, C.; Yada, S.; Murad, K.B.A.; Tan, L.T.; Hajamohideen, A.; Tan, S.H.; Itoh, H.; Murakami, K.; Ishida, Y.; et al. Neonatal Wnt-Dependent Lgr5 Positive Stem Cells Are Essential for Uterine Gland Development. Nat. Commun. 2019, 10, 5378. [Google Scholar] [CrossRef]
- Gargett, C.E.; Schwab, K.E.; Deane, J.A. Endometrial Stem/Progenitor Cells: The First 10 Years. Hum. Reprod. Update 2016, 22, 137–163. [Google Scholar] [CrossRef] [Green Version]
- Valentijn, A.J.; Palial, K.; Al-lamee, H.; Tempest, N.; Drury, J.; Von Zglinicki, T.; Saretzki, G.; Murray, P.; Gargett, C.E.; Hapangama, D.K. SSEA-1 Isolates Human Endometrial Basal Glandular Epithelial Cells: Phenotypic and Functional Characterization and Implications in the Pathogenesis of Endometriosis. Hum. Reprod. 2013, 28, 2695–2708. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.P.T.; Xiao, L.; Deane, J.A.; Tan, K.S.; Cousins, F.L.; Masuda, H.; Sprung, C.N.; Rosamilia, A.; Gargett, C.E. N-Cadherin Identifies Human Endometrial Epithelial Progenitor Cells by in Vitro Stem Cell Assays. Hum. Reprod. 2017, 32, 2254–2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tempest, N.; Baker, A.M.; Wright, N.A.; Hapangama, D.K. Does Human Endometrial LGR5 Gene Expression Suggest the Existence of Another Hormonally Regulated Epithelial Stem Cell Niche? Hum. Reprod. 2018, 33, 1052–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervelló, I.; Mas, A.; Gil-Sanchis, C.; Peris, L.; Faus, A.; Saunders, P.T.K.; Critchley, H.O.D.; Simón, C. Reconstruction of Endometrium from Human Endometrial Side Population Cell Lines. PLoS ONE 2011, 6, e21221. [Google Scholar] [CrossRef]
- Clevers, H.; Watt, F.M. Defining Adult Stem Cells by Function, Not by Phenotype. Annu. Rev. Biochem. 2018, 87, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Patterson, A.L.; Zhang, L.; Arango, N.A.; Teixeira, J.; Pru, J.K. Mesenchymal-to-Epithelial Transition Contributes to Endometrial Regeneration Following Natural and Artificial Decidualization. Stem Cells Dev. 2013, 22, 964–974. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, H.C.; Dhakal, P.; Behura, S.K.; Schust, D.J.; Spencer, T.E. Self-Renewing Endometrial Epithelial Organoids of the Human Uterus. Proc. Natl. Acad. Sci. USA 2019, 116, 23132–23142. [Google Scholar] [CrossRef]
- Lucas, E.S.; Vrljicak, P.; Muter, J.; Diniz-da-Costa, M.M.; Brighton, P.J.; Kong, C.S.; Lipecki, J.; Fishwick, K.J.; Odendaal, J.; Ewington, L.J.; et al. Recurrent Pregnancy Loss Is Associated with a Pro-Senescent Decidual Response during the Peri-Implantation Window. Commun. Biol. 2020, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, D.R.; Campbell, K.R.; Greening, K.; Ho, G.C.; Hopkins, J.; Bui, M.; Douglas, J.M.; Sharlandjieva, V.; Munzur, A.D.; Lai, D.; et al. Single Cell Transcriptomes of Normal Endometrial Derived Organoids Uncover Novel Cell Type Markers and Cryptic Differentiation of Primary Tumours. J. Pathol. 2020, 252, 201–214. [Google Scholar] [CrossRef]
- Wang, W.; Vilella, F.; Moreno, I.; Pan, W.; Quake, S.; Simon, C. Single Cell RNAseq Provides a Molecular and Cellular Cartography of Changes to the Human Endometrium through the Menstrual Cycle. Fertil. Steril. 2018, 110, e2. [Google Scholar] [CrossRef] [Green Version]
- Queckbörner, S.; von Grothusen, C.; Boggavarapu, N.R.; Francis, R.M.; Davies, L.C.; Gemzell-Danielsson, K. Stromal Heterogeneity in the Human Proliferative Endometrium—A Single-Cell Rna Sequencing Study. J. Pers. Med. 2021, 11, 448. [Google Scholar] [CrossRef]
- Rawlings, T.M.; Makwana, K.; Taylor, D.M.; Molè, M.A.; Fishwick, K.J.; Tryfonos, M.; Odendaal, J.; Hawkes, A.; Zernicka-Goetz, M.; Hartshorne, G.M.; et al. Modelling the Impact of Decidual Senescence on Embryo Implantation in Human Endometrial Assembloids. eLife 2021, 10, e69603. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alonso, L.; Handfield, L.F.; Roberts, K.; Nikolakopoulou, K.; Fernando, R.C.; Gardner, L.; Woodhams, B.; Arutyunyan, A.; Polanski, K.; Hoo, R.; et al. Mapping the Temporal and Spatial Dynamics of the Human Endometrium in Vivo and in Vitro. Nat. Genet. 2021, 53, 1698–1711. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhao, G.; Jiang, P.; Wang, H.; Wang, Z.; Yao, S.; Zhou, Z.; Wang, L.; Liu, D.; Deng, W.; et al. Deciphering the Endometrial Niche of Human Thin Endometrium at Single-Cell Resolution. Proc. Natl. Acad. Sci. USA 2022, 119, e2115912119. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, L.; Zhan, H.; Mo, Y.; Ren, Z.; Shao, A.; Lin, J. Single-Cell Transcriptomic Analysis of Endometriosis Provides Insights into Fibroblast Fates and Immune Cell Heterogeneity. Cell Biosci. 2021, 11, 125. [Google Scholar] [CrossRef]
- Fonseca, M.A.S.; Wright, K.N.; Lin, X.; Abbasi, F.; Haro, M.; Sun, J.; Hernandez, L.; Orr, N.L.; Hong, J.; Choi-Kuaea, Y.; et al. A Cellular and Molecular Portrait of Endometriosis Subtypes. bioRxiv 2021. [Google Scholar] [CrossRef]
- Tan, Y.; Flynn, W.F.; Sivajothi, S.; Luo, D.; Bozal, S.B.; Luciano, A.A.; Robson, P.; Luciano, D.E.; Courtois, E.T. Single Cell Analysis of Endometriosis Reveals a Coordinated Transcriptional Program Driving Immunotolerance and Angiogenesis across Eutopic and Ectopic Tissues. bioRxiv 2021. [Google Scholar] [CrossRef]
- Wang, W.; Vilella, F.; Alama, P.; Moreno, I.; Mignardi, M.; Isakova, A.; Pan, W.; Simon, C.; Quake, S.R. Single-Cell Transcriptomic Atlas of the Human Endometrium during the Menstrual Cycle. Nat. Med. 2020, 26, 1644–1653. [Google Scholar] [CrossRef]
- Efremova, M.; Vento-Tormo, M.; Teichmann, S.A.; Vento-Tormo, R. CellPhoneDB: Inferring Cell–Cell Communication from Combined Expression of Multi-Subunit Ligand–Receptor Complexes. Nat. Protoc. 2020, 15, 1484–1506. [Google Scholar] [CrossRef]
- Lee, S.K.; Kim, C.J.; Kim, D.-J.; Kang, J. Immune Cells in the Female Reproductive Tract. Immune Netw. 2015, 15, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Lee, M.; Lee, S.K. Role of Endometrial Immune Cells in Implantation. Clin. Exp. Reprod. Med. 2011, 38, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Brighton, P.J.; Maruyama, Y.; Fishwick, K.; Vrljicak, P.; Tewary, S.; Fujihara, R.; Muter, J.; Lucas, E.S.; Yamada, T.; Woods, L.; et al. Clearance of Senescent Decidual Cells by Uterine Natural Killer Cells in Cycling Human Endometrium. eLlife 2017, 6, e31274. [Google Scholar] [CrossRef]
- Hanna, J.; Goldman-Wohl, D.; Hamani, Y.; Avraham, I.; Greenfield, C.; Natanson-Yaron, S.; Prus, D.; Cohen-Daniel, L.; Arnon, T.I.; Manaster, I.; et al. Decidual NK Cells Regulate Key Developmental Processes at the Human Fetal-Maternal Interface. Nat. Med. 2006, 12, 1065–1074. [Google Scholar] [CrossRef]
- Sasaki, Y.; Sakai, M.; Miyazaki, S.; Higuma, S.; Shiozaki, A.; Saito, S. Decidual and Peripheral Blood CD4 +CD25 + Regulatory T Cells in Early Pregnancy Subjects and Spontaneous Abortion Cases. Mol. Hum. Reprod. 2004, 10, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Tan, J.; Chen, H.; Chen, Y.; Zhang, J. Changes of CD4+CD25high Regulatory T Cells and FOXP3 Expression in Unexplained Recurrent Spontaneous Abortion Patients. Fertil. Steril. 2010, 94, 2244–2247. [Google Scholar] [CrossRef]
- Wang, W.J.; Hao, C.F.; Yi-Lin; Yin, G.J.; Bao, S.H.; Qiu, L.H.; Lin, Q.D. Increased Prevalence of T Helper 17 (Th17) Cells in Peripheral Blood and Decidua in Unexplained Recurrent Spontaneous Abortion Patients. J. Reprod. Immunol. 2010, 84, 164–170. [Google Scholar] [CrossRef]
- Chao, K.-H.; Yang, Y.-S.; Ho, G.-N.; Chen, S.-U.; Chen, H.-F.; Dai, H.-J.; Huang, S.-C.; Gill, T.J. Decidual Natural Killer Cytotoxicity Decreased in Normal Pregnancy but Not in Anembryonic Pregnancy and Recurrent Spontaneous Abortion. Am. J. Reprod. Immunol. 1995, 34, 274–280. [Google Scholar] [CrossRef]
- Clifford, K.; Flanagan, A.M.; Regan, L. Endometrial CD56 + Natural Killer Cells in Women with Recurrent Miscarriage: A Histomorphometric Study. Hum. Reprod. 1999, 14, 2727–2730. [Google Scholar] [CrossRef] [Green Version]
- Tuckerman, E.; Laird, S.M.; Prakash, A.; Li, T.C. Prognostic Value of the Measurement of Uterine Natural Killer Cells in the Endometrium of Women with Recurrent Miscarriage. Hum. Reprod. 2007, 22, 2208–2213. [Google Scholar] [CrossRef]
- Gellersen, B.; Brosens, I.A.; Brosens, J.J. Decidualization of the Human Endometrium: Mechanisms, Functions, and Clinical Perspectives. Semin. Reprod. Med. 2007, 25, 445–453. [Google Scholar] [CrossRef]
- Bhurke, A.S.; Bagchi, I.C.; Bagchi, M.K. Progesterone-Regulated Endometrial Factors Controlling Implantation. Am. J. Reprod. Immunol. 2016, 75, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Yucer, N.; Holzapfel, M.; Jenkins Vogel, T.; Lenaeus, L.; Ornelas, L.; Laury, A.; Sareen, D.; Barrett, R.; Karlan, B.Y.; Svendsen, C.N. Directed Differentiation of Human Induced Pluripotent Stem Cells into Fallopian Tube Epithelium. Sci. Rep. 2017, 7, 10741. [Google Scholar] [CrossRef]
- Miyazaki, K.; Dyson, M.T.; Furukawa, Y.; Yilmaz, B.D.; Maruyama, T.; Bulun, S.E. Generation of Progesterone-Responsive Endometrial Stromal Fibroblasts from Human Induced Pluripotent Stem Cells: Role of the WNT/CTNNB1 Pathway. Stem Cell Rep. 2018, 11, 1136–1155. [Google Scholar] [CrossRef] [Green Version]
- Cheung, V.C.; Peng, C.Y.; Marinić, M.; Sakabe, N.J.; Aneas, I.; Lynch, V.J.; Ober, C.; Nobrega, M.A.; Kessler, J.A. Pluripotent Stem Cell-Derived Endometrial Stromal Fibroblasts in a Cyclic, Hormone-Responsive, Coculture Model of Human Decidua. Cell Rep. 2021, 35, 109138. [Google Scholar] [CrossRef]
- Nishida, M.; Kasahara, K.; Kaneko, M.; Iwasaki, H.; Hayashi, K. Establishment of a New Human Endometrial Adenocarcinoma Cell Line, Ishikawa Cells, Containing Estrogen and Progesterone Receptors. Nihon Sanka Fujinka Gakkai Zasshi 1985, 37, 1103–1111. [Google Scholar]
- Kim, M.R.; Park, D.W.; Lee, J.H.; Choi, D.S.; Hwang, K.J.; Ryu, H.S.; Min, C.K. Progesterone-Dependent Release of Transforming Growth Factor-Beta1 from Epithelial Cells Enhances the Endometrial Decidualization by Turning on the Smad Signalling in Stromal Cells. Mol. Hum. Reprod. 2005, 11, 801–808. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.T.; Kaufman, D.G.; Seppälä, M.; Lessey, B.A. Endometrial Stromal Cells Regulate Epithelial Cell Growth in Vitro: A New Co-Culture Model. Hum. Reprod. 2001, 16, 836–845. [Google Scholar] [CrossRef]
- Fitzgerald, H.C.; Schust, D.J.; Spencer, T.E. In Vitro Models of the Human Endometrium: Evolution and Application for Women’s Health+. Biol. Reprod. 2021, 104, 282–293. [Google Scholar] [CrossRef]
- Weimar, C.H.E.; Post Uiterweer, E.D.; Teklenburg, G.; Heijnen, C.J.; Macklon, N.S. In-Vitro Model Systems for the Study of Human Embryo-Endometrium Interactions. Reprod. Biomed. Online 2013, 27, 461–476. [Google Scholar] [CrossRef] [Green Version]
- Clevers, H. Modeling Development and Disease with Organoids. Cell 2016, 165, 1586–1597. [Google Scholar] [CrossRef] [Green Version]
- McCauley, H.A.; Wells, J.M. Pluripotent Stem Cell-Derived Organoids: Using Principles of Developmental Biology to Grow Human Tissues in a Dish. Development 2017, 144, 958–962. [Google Scholar] [CrossRef] [Green Version]
- Schutgens, F.; Clevers, H. Human Organoids: Tools for Understanding Biology and Treating Diseases. Annu. Rev. Pathol. Mech. Dis. 2020, 15, 211–234. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 Stem Cells Build Crypt-Villus Structures in Vitro without a Mesenchymal Niche. Nature 2009, 459, 262–265. [Google Scholar] [CrossRef]
- Kim, J.; Koo, B.K.; Knoblich, J.A. Human Organoids: Model Systems for Human Biology and Medicine. Nat. Rev. Mol. Cell Biol. 2020, 21, 571–584. [Google Scholar] [CrossRef]
- Seino, T.; Kawasaki, S.; Shimokawa, M.; Kitagawa, Y.; Kanai, T.; Sato, T. Human Pancreatic Tumor Organoids Reveal Loss of Stem Cell Niche Factor Dependence during Disease Progression. Cell Stem Cell 2018, 22, 454–467.e6. [Google Scholar] [CrossRef] [Green Version]
- McCracken, K.W.; Catá, E.M.; Crawford, C.M.; Sinagoga, K.L.; Schumacher, M.; Rockich, B.E.; Tsai, Y.H.; Mayhew, C.N.; Spence, J.R.; Zavros, Y.; et al. Modelling Human Development and Disease in Pluripotent Stem-Cell-Derived Gastric Organoids. Nature 2014, 516, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Fatehullah, A.; Tan, S.H.; Barker, N. Organoids as an in Vitro Model of Human Development and Disease. Nat. Cell Biol. 2016, 18, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Haider, S.; Gamperl, M.; Burkard, T.R.; Kunihs, V.; Kaindl, U.; Junttila, S.; Fiala, C.; Schmidt, K.; Mendjan, S.; Knöfler, M.; et al. Estrogen Signaling Drives Ciliogenesis in Human Endometrial Organoids. Endocrinology 2019, 160, 2282–2297. [Google Scholar] [CrossRef]
- Cindrova-Davies, T.; Zhao, X.; Elder, K.; Jones, C.J.P.; Moffett, A.; Burton, G.J.; Turco, M.Y. Menstrual Flow as a Non-Invasive Source of Endometrial Organoids. Commun. Biol. 2021, 4, 651. [Google Scholar] [CrossRef]
- Hapangama, D.K.; Drury, J.; Da Silva, L.; Al-Lamee, H.; Earp, A.; Valentijn, A.J.; Edirisinghe, D.P.; Murray, P.A.; Fazleabas, A.T.; Gargett, C.E. Abnormally Located SSEA1+/SOX9+ Endometrial Epithelial Cells with a Basalis-like Phenotype in the Eutopic Functionalis Layer May Play a Role in the Pathogenesis of Endometriosis. Hum. Reprod. 2019, 34, 56–68. [Google Scholar] [CrossRef]
- Kagawa, H.; Javali, A.; Khoei, H.H.; Sommer, T.M.; Sestini, G.; Novatchkova, M.; Scholte op Reimer, Y.; Castel, G.; Bruneau, A.; Maenhoudt, N.; et al. Human Blastoids Model Blastocyst Development and Implantation. Nature 2022, 591, 600–605. [Google Scholar] [CrossRef]
- Murphy, A.R.; Wiwatpanit, T.; Lu, Z.; Davaadelger, B.; Kim, J.J. Generation of Multicellular Human Primary Endometrial Organoids. J. Vis. Exp. 2019, 2019, 6–10. [Google Scholar] [CrossRef]
- Wiwatpanit, T.; Murphy, A.R.; Lu, Z.; Urbanek, M.; Burdette, J.E.; Woodruff, T.K.; Kim, J.J. Scaffold-Free Endometrial Organoids Respond to Excess Androgens Associated with Polycystic Ovarian Syndrome. J. Clin. Endocrinol. Metab. 2020, 105, 769–780. [Google Scholar] [CrossRef]
- Abbas, Y.; Brunel, L.G.; Hollinshead, M.S.; Fernando, R.C.; Gardner, L.; Duncan, I.; Moffett, A.; Best, S.; Turco, M.Y.; Burton, G.J.; et al. Generation of a Three-Dimensional Collagen Scaffold-Based Model of the Human Endometrium. Interface Focus 2020, 10, 20190079. [Google Scholar] [CrossRef] [Green Version]
- Pham, M.T.; Pollock, K.M.; Rose, M.D.; Cary, W.A.; Stewart, H.R.; Zhou, P.; Nolta, J.A.; Waldau, B. Generation of Human Vascularized Brain Organoids. Neuroreport 2018, 29, 588–593. [Google Scholar] [CrossRef]
- Kim, E.; Choi, S.; Kang, B.; Kong, J.H.; Kim, Y.; Yoon, W.H.; Lee, H.R.; Kim, S.E.; Kim, H.M.; Lee, H.S.; et al. Creation of Bladder Assembloids Mimicking Tissue Regeneration and Cancer. Nature 2020, 588, 664–669. [Google Scholar] [CrossRef]
- Gnecco, J.S.; Ding, T.; Smith, C.; Lu, J.; Bruner-Tran, K.L.; Osteen, K.G. Hemodynamic Forces Enhance Decidualization via Endothelial-Derived Prostaglandin E2 and Prostacyclin in a Microfluidic Model of the Human Endometrium. Hum. Reprod. 2019, 34, 702–714. [Google Scholar] [CrossRef] [Green Version]
- Min, S.; Kim, S.; Cho, S.W. Gastrointestinal Tract Modeling Using Organoids Engineered with Cellular and Microbiota Niches. Exp. Mol. Med. 2020, 52, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Bishop, R.C.; Boretto, M.; Rutkowski, M.R.; Vankelecom, H.; Derré, I. Murine Endometrial Organoids to Model Chlamydia Infection. Front. Cell. Infect. Microbiol. 2020, 10, 416. [Google Scholar] [CrossRef]
- Kessler, M.; Hoffmann, K.; Fritsche, K.; Brinkmann, V.; Mollenkopf, H.J.; Thieck, O.; Teixeira da Costa, A.R.; Braicu, E.I.; Sehouli, J.; Mangler, M.; et al. Chronic Chlamydia Infection in Human Organoids Increases Stemness and Promotes Age-Dependent CpG Methylation. Nat. Commun. 2019, 10, 1194. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Yoshihara, K.; Suda, K.; Nakaoka, H.; Yachida, N.; Ueda, H.; Sugino, K.; Mori, Y.; Yamawaki, K.; Tamura, R.; et al. Three-Dimensional Understanding of the Morphological Complexity of the Human Uterine Endometrium. iScience 2021, 24, 102258. [Google Scholar] [CrossRef]
- Cousins, F.L.; Filby, C.E.; Gargett, C.E. Endometrial Stem/Progenitor Cells–Their Role in Endometrial Repair and Regeneration. Front. Reprod. Health 2022, 3, 235–251. [Google Scholar] [CrossRef]
- Zondervan, K.T.; Becker, C.M.; Missmer, S.A. Endometriosis. N. Engl. J. Med. 2020, 382, 1244–1256. [Google Scholar] [CrossRef]
- Saunders, P.T.K.; Horne, A.W. Endometriosis: Etiology, Pathobiology, and Therapeutic Prospects. Cell 2021, 184, 2807–2824. [Google Scholar] [CrossRef]
- American Society for Reproductive Medicine. Revised American Society for Reproductive Medicine Classification of Endometriosis: 1996. Fertil. Steril. Steril. 1997, 67, 817–821. [Google Scholar] [CrossRef]
- Sampson, J. Peritoneal Endometriosis Due to the Menstrual Dissemination of Endometrial Tissue into the Peritoneal Cavity. Am. J. Obstet. Gynecol. 1927, 14, 442–469. [Google Scholar] [CrossRef]
- Cousins, F.L.; Xiao, L.; Gargett, C.E. Adult Stem Cells in the Pathogenesis and Treatment of Endometriosis. J. Endometr. Pelvic Pain Disord. 2017, 9, 223–231. [Google Scholar] [CrossRef]
- Maruyama, T. A Revised Stem Cell Theory for the Pathogenesis of Endometriosis. J. Pers. Med. 2022, 12, 216. [Google Scholar] [CrossRef]
- Platteeuw, L.; D’Hooghe, T. Novel Agents for the Medical Treatment of Endometriosis. Curr. Opin. Obstet. Gynecol. 2014, 26, 243–252. [Google Scholar] [CrossRef]
- Grümmer, R. Animal Models in Endometriosis Research. Hum. Reprod. Update 2006, 12, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Greaves, E.; Cousins, F.L.; Murray, A.; Esnal-Zufiaurre, A.; Fassbender, A.; Horne, A.W.; Saunders, P.T.K. A Novel Mouse Model of Endometriosis Mimics Human Phenotype and Reveals Insights into the Inflammatory Contribution of Shed Endometrium. Am. J. Pathol. 2014, 184, 1930–1939. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.W.; Licence, D.; Cook, E.; Luo, F.; Arends, M.J.; Smith, S.K.; Print, C.G.; Charnock-Jones, D.S. Activation of Mutated K-Ras in Donor Endometrial Epithelium and Stroma Promotes Lesion Growth in an Intact Immunocompetent Murine Model of Endometriosis. J. Pathol. 2011, 224, 261–269. [Google Scholar] [CrossRef]
- Cousins, F.L.; Murray, A.; Esnal, A.; Gibson, D.A.; Critchley, H.O.D.; Saunders, P.T.K. Evidence from a Mouse Model That Epithelial Cell Migration and Mesenchymal-Epithelial Transition Contribute to Rapid Restoration of Uterine Tissue Integrity during Menstruation. PLoS ONE 2014, 9, e86378. [Google Scholar] [CrossRef]
- Bellofiore, N.; Rana, S.; Dickinson, H.; Temple-Smith, P.; Evans, J. Characterization of Human-like Menstruation in the Spiny Mouse: Comparative Studies with the Human and Induced Mouse Model. Hum. Reprod. 2018, 33, 1715–1726. [Google Scholar] [CrossRef]
- D’Hooghe, T.M.; Bambra, C.S.; Raeymaekers, B.M.; De Jonge, I.; Lauweryns, J.M.; Koninckx, P.R. Intrapelvic Injection of Menstrual Endometrium Causes Endometriosis in Baboons (Papio cynocephalus and Papio anubis). Am. J. Obstet. Gynecol. 1995, 173, 125–134. [Google Scholar] [CrossRef]
- D’Hooghe, T.M.; Kyama, C.M.; Chai, D.; Fassbender, A.; Vodolazkaia, A.; Bokor, A.; Mwenda, J.M. Nonhuman Primate Models for Translational Research in Endometriosis. Reprod. Sci. 2009, 16, 152–161. [Google Scholar] [CrossRef]
- Banu, S.K.; Lee, J.H.; Starzinski-Powitz, A.; Arosh, J.A. Gene Expression Profiles and Functional Characterization of Human Immortalized Endometriotic Epithelial and Stromal Cells. Fertil. Steril. 2008, 90, 972–987. [Google Scholar] [CrossRef]
- Fasciani, A.; Bocci, G.; Xu, J.; Bielecki, R.; Greenblatt, E.; Leyland, N.; Casper, R.F. Three-Dimensional in Vitro Culture of Endometrial Explants Mimics the Early Stages of Endometriosis. Fertil. Steril. 2003, 80, 1137–1143. [Google Scholar] [CrossRef]
- Schäfer, W.R.; Fischer, L.; Roth, K.; Jüllig, A.K.; Stuckenschneider, J.E.; Schwartz, P.; Weimer, M.; Orlowska-Volk, M.; Hanjalic-Beck, A.; Kranz, I.; et al. Critical Evaluation of Human Endometrial Explants as an Ex Vivo Model System: A Molecular Approach. Mol. Hum. Reprod. 2011, 17, 255–265. [Google Scholar] [CrossRef]
- Brueggmann, D.; Templeman, C.; Starzinski-Powitz, A.; Rao, N.P.; Gayther, S.A.; Lawrenson, K. Novel Three-Dimensional in Vitro Models of Ovarian Endometriosis. J. Ovarian Res. 2014, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Esfandiari, F.; Favaedi, R.; Heidari-Khoei, H.; Chitsazian, F.; Yari, S.; Piryaei, A.; Ghafari, F.; Baharvand, H.; Shahhoseini, M. Insight into Epigenetics of Human Endometriosis Organoids: DNA Methylation Analysis of HOX Genes and Their Cofactors. Fertil. Steril. 2021, 115, 125–137. [Google Scholar] [CrossRef]
- Esfandiari, F.; Heidari Khoei, H.; Saber, M.; Favaedi, R.; Piryaei, A.; Moini, A.; Shahhoseini, M.; Ramezanali, F.; Ghaffari, F.; Baharvand, H. Disturbed Progesterone Signalling in an Advanced Preclinical Model of Endometriosis. Reprod. Biomed. Online 2021, 43, 139–147. [Google Scholar] [CrossRef] [PubMed]
Gene | Factor Encoded | Mutant Phenotype in | |
---|---|---|---|
Mouse | Human | ||
Prenatal | |||
Formation of the MD | |||
Pax2 | Paired box TF | Absence of FRT [6] | |
Lim1 (Lhx1) | Homeodomain TF | Absence of FRT [7] | MRKH syndrome [13,14] |
Emx2 | Homeodomain TF | Absence of FRT [8] | |
Rarα/β/γ | Retinoic acid receptors | Varying degrees of FRT defects [9] | |
Dlgh1 | Scaffolding protein | Aplasia of cervix and vagina [10] | |
Wnt4 | WNT secreted protein | Absence of FRT [11] | MRKH syndrome [15,16] |
Wnt9b | WNT secreted protein | Absence of uterus and upper vagina [12] | MRKH syndrome [17] |
Differentiation of MD into FRT organs | |||
Wnt7a | WNT secreted protein | Transformation of fallopian tube to uterus and uterus to vagina [18,19] | |
Hoxa10 | Homeodomain TF | Partial homeotic transformation of uterus to oviduct [20] | Defects in MD fusion [21,22] |
Hoxa11 | Homeodomain TF | Partial homeotic transformation of uterus to oviduct and hypoplastic uterus [23] | |
Hoxa13 | Homeodomain TF | Homeotic transformation of cervix to uterus; agenesis of caudal MD [24] | HFG syndrome [25] |
Tp63 | Tumor suppressor protein | Incorrect epithelial differentiation of lower genital tract [26] | SNPs associated with MD anomalies [27] |
TCF2 (HNF1ß) | Homeodomain TF | NA | MRKH syndromeSevere genital malformations [28] |
Postnatal | |||
Wnt4 | WNT secreted protein | Reduction in endometrial glands [29] | |
Wnt5a | WNT secreted protein | Absence of endometrial glands [30] | |
Wnt7a | WNT secreted protein | Absence of endometrial glands [18] | |
Ctnnb1 | Signaling protein adhesion | Absence of endometrial glands [31,32] | |
Lef1 | TF | Absence of endometrial glands [33] | |
Timp1 | ECM modulator | Accelerated gland formation [34,35] | |
Igf1 | Growth factor | Hypoplastic uterus [36] | |
Foxa2 | Forkhead box TF | No gland differentiation [37] | |
Foxl2 | Forkhead box TF | Reduced stromal thickness, hypertrophic myometrium [38] | |
Dlx5/6 | Homeobox TF | Abnormal gland development [39] | |
Esr1 | Hormone receptor | Hypoplastic uterus [40,41] |
References a | Tissue Type | Candidate Stem/Progenitor Cell Markers | Clusters | |
---|---|---|---|---|
Number | Cell Types | |||
Endometrium | ||||
Fitzgerald et al. [66] | Organoids | / | 5 (13 subclusters) | Proliferative, epithelial, ciliated, unciliated and stem cells, and secretory cells after estrogen + progesterone exposure |
Lucas et al. [67] | Primary | / | 5 | Epithelial, endothelial, immune and stromal (undifferentiated, decidual and senescent decidual) cells, and a distinct proliferative stromal subpopulation |
Cochrane et al. [68] | Organoids | / | 2 | Ciliated and secretory cells |
Wang et al. [69] | Primary | PDGFRB, MCAM, SUSD2 (Smooth muscle cell cluster contains cells expressing these MSC markers) | 7 | Stromal fibroblasts, endothelial, immune (macrophages and lymphocytes), ciliated and unciliated epithelial, and smooth muscle cells |
Queckbörner et al. [70] | Primary | PDGFRβ, MCAM, SUSD2, (THY1)(However, these MSC markers were detected in all perivascular cells/pericytes) | 7 | Endothelial, epithelial, stromal, cycling stromal, two immune cell clusters (monocytes/macrophages and NK/T cells), and pericytes |
Rawlings et al. [71] | Assembloids (epithelial + stromal cells) | / | 11 | Untreated: actively dividing and E2-responsive stromal cells; actively dividing, E2-responsive and ciliated epithelial cells. Hormonally treated: pre-decidual, emerging decidual and senescent decidual stromal cells; midluteal marker expressing and late-luteal marker expressing epithelial cells; transitional population |
Garcia-Alonso et al. [72] | Primary | SOX9, LGR5 | 5 (14 subclusters) | Immune (lymphoid and myeloid), epithelial (SOX9+, luminal, glandular, and ciliated), stromal (decidualized and non-decidualized), endothelial (arterial and venous) and supporting cells (perivascular cells (PV STEAP4 and PV MYH11), smooth muscle cells and fibroblasts expressing C7 |
Organoids | / | 5 (10 subclusters) | Cell cluster from non-hormonally treated organoids (day 0, day 2, day 6, proliferative); estrogen-induced cells, ciliated (pre-ciliated and ciliated), secretory (secretory cycling, secretory), and KRT17+ cells | |
Lv H et al. [73] | Primary | / | 15 | Stromal, proliferating stromal, perivascular, luminal epithelium, glandular epithelium, ciliated epithelium, endothelial, mast, CD4+ T, CD8+ T, NKT, NK, peripheral blood-derived NK cells, lymphocytes, and macrophages |
Endometriosis | ||||
Ma et al. [74] | Primary (ectopic, eutopic and healthy) | / | 9 | Epithelial, endothelial, T, NK, mast cells, fibroblasts, macrophages/monocytes, neutrophils, and unknown |
Fonseca et al. [75] | Primary (ectopic, eutopic) | FOXO1, XBP1, MAFF, JUND(regulons marking potential stromal stem/progenitor cells) | 9 (96 subcluster) | Epithelial, endothelial, smooth muscle, myeloid, mast, B/plasma, T/NKT cells, fibroblasts, and erythrocytes |
Tan et al. [76] | Primary (ectopic, eutopic, healthy) + organoids | MUC5B (epithelial cells; also express SOX9) SUSD2 (CCL19+ perivascular cells) | 5 (58 subclusters) | Epithelial, stromal, endothelial, myeloid cells, and lymphocytes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maenhoudt, N.; De Moor, A.; Vankelecom, H. Modeling Endometrium Biology and Disease. J. Pers. Med. 2022, 12, 1048. https://doi.org/10.3390/jpm12071048
Maenhoudt N, De Moor A, Vankelecom H. Modeling Endometrium Biology and Disease. Journal of Personalized Medicine. 2022; 12(7):1048. https://doi.org/10.3390/jpm12071048
Chicago/Turabian StyleMaenhoudt, Nina, Amber De Moor, and Hugo Vankelecom. 2022. "Modeling Endometrium Biology and Disease" Journal of Personalized Medicine 12, no. 7: 1048. https://doi.org/10.3390/jpm12071048
APA StyleMaenhoudt, N., De Moor, A., & Vankelecom, H. (2022). Modeling Endometrium Biology and Disease. Journal of Personalized Medicine, 12(7), 1048. https://doi.org/10.3390/jpm12071048