Risk Factors Predisposing to Angina in Patients with Non-Obstructive Coronary Arteries: A Retrospective Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Population Characteristics
3.2. Laboratory Parameters
3.3. Echocardiographic Parameters
3.4. Univariable Regression Model
3.5. Multivariable Regression Model
3.6. Differences in Pharmacotherapy between OCAD and NOCAD Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Mortality Database. Available online: https://www.who.int/data/data-collection-tools/who-mortality-database (accessed on 2 March 2022).
- Proudfit, W.L.; Shirey, E.K.; Sones, F.M. Selective Cine Coronary Arteriography. Correlation with Clinical Findings in 1000 Patients. Circulation 1966, 33, 901–910. [Google Scholar] [CrossRef] [Green Version]
- Kemp, H.G.; Kronmal, R.A.; Vlietstra, R.E.; Frye, R.L. Seven Year Survival of Patients with Normal or near Normal Coronary Arteriograms: A CASS Registry Study. J. Am. Coll. Cardiol. 1986, 7, 479–483. [Google Scholar] [CrossRef] [Green Version]
- Melikian, N.; De Bruyne, B.; Fearon, W.F.; MacCarthy, P.A. The Pathophysiology and Clinical Course of the Normal Coronary Angina Syndrome (Cardiac Syndrome X). Prog. Cardiovasc. Dis. 2008, 50, 294–310. [Google Scholar] [CrossRef]
- Wittekoek, M.E.; Piek, J.J. Non-Obstructive Cardiovascular Disease: A New Challenge for Invasive Cardiology? Neth. Heart J. 2018, 26, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Kaski, J.C. Pathophysiology and Management of Patients with Chest Pain and Normal Coronary Arteriograms (Cardiac Syndrome X). Circulation 2004, 109, 568–572. [Google Scholar] [CrossRef]
- Beltrame, J.F.; Crea, F.; Camici, P. Advances in Coronary Microvascular Dysfunction. Heart Lung Circ. 2009, 18, 19–27. [Google Scholar] [CrossRef]
- Bergami, M.; Scarpone, M.; Cenko, E.; Varotti, E.; Amaduzzi, P.L.; Manfrini, O. Gender Differences in Non-Obstructive Coronary Artery Disease. Curr. Pharm. Des. 2021, 27, 3198–3209. [Google Scholar] [CrossRef]
- Humphries, K.H.; Pu, A.; Gao, M.; Carere, R.G.; Pilote, L. Angina with “Normal” Coronary Arteries: Sex Differences in Outcomes. Am. Heart J. 2008, 155, 375–381. [Google Scholar] [CrossRef]
- Waheed, N.; Elias-Smale, S.; Malas, W.; Maas, A.H.; Sedlak, T.L.; Tremmel, J.; Mehta, P.K. Sex Differences in Non-Obstructive Coronary Artery Disease. Cardiovasc. Res. 2020, 116, 829–840. [Google Scholar] [CrossRef]
- Eslick, G.D.; Fass, R. Noncardiac Chest Pain: Evaluation and Treatment. Gastroenterol. Clin. N. Am. 2003, 32, 531–552. [Google Scholar] [CrossRef]
- Crea, F.; Lanza, G.A. Angina Pectoris and Normal Coronary Arteries: Cardiac Syndrome X. Heart 2004, 90, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Sechtem, U.; Brown, D.; Godo, S.; Lanza, G.A.; Shimokawa, H.; Sidik, N. Coronary Microvascular Dysfunction in Stable Ischaemic Heart Disease (Non-Obstructive Coronary Artery Disease and Obstructive Coronary Artery Disease). Cardiovasc. Res. 2020, 116, 771–786. [Google Scholar] [CrossRef] [Green Version]
- Camici, P.G.; Crea, F. Coronary Microvascular Dysfunction. N. Engl. J. Med. 2007, 356, 830–840. [Google Scholar] [CrossRef] [Green Version]
- Sara, J.D.; Widmer, R.J.; Matsuzawa, Y.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Prevalence of Coronary Microvascular Dysfunction Among Patients with Chest Pain and Nonobstructive Coronary Artery Disease. JACC Cardiovasc. Interv. 2015, 8, 1445–1453. [Google Scholar] [CrossRef]
- Mileva, N.; Nagumo, S.; Mizukami, T.; Sonck, J.; Berry, C.; Gallinoro, E.; Monizzi, G.; Candreva, A.; Munhoz, D.; Vassilev, D.; et al. Prevalence of Coronary Microvascular Disease and Coronary Vasospasm in Patients with Nonobstructive Coronary Artery Disease: Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2022, 11, e023207. [Google Scholar] [CrossRef]
- Bøttcher, M.; Botker, H.E.; Sonne, H.; Nielsen, T.T.; Czernin, J. Endothelium-Dependent and -Independent Perfusion Reserve and the Effect of L-Arginine on Myocardial Perfusion in Patients with Syndrome X. Circulation 1999, 99, 1795–1801. [Google Scholar] [CrossRef] [Green Version]
- Buffon, A.; Rigattieri, S.; Santini, S.A.; Ramazzotti, V.; Crea, F.; Giardina, B.; Maseri, A. Myocardial Ischemia-Reperfusion Damage after Pacing-Induced Tachycardia in Patients with Cardiac Syndrome X. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H2627–H2633. [Google Scholar] [CrossRef]
- Tweddel, A.C.; Martin, W.; Hutton, I. Thallium Scans in Syndrome X. Br. Heart J. 1992, 68, 48–50. [Google Scholar] [CrossRef] [Green Version]
- Brainin, P.; Frestad, D.; Prescott, E. The Prognostic Value of Coronary Endothelial and Microvascular Dysfunction in Subjects with Normal or Non-Obstructive Coronary Artery Disease: A Systematic Review and Meta-Analysis. Int. J. Cardiol. 2018, 254, 829–840. [Google Scholar] [CrossRef]
- Wielgosz, A.T.; Fletcher, R.H.; McCants, C.B.; McKinnis, R.A.; Haney, T.L.; Williams, R.B. Unimproved Chest Pain in Patients with Minimal or No Coronary Disease: A Behavioral Phenomenon. Am. Heart J. 1984, 108, 67–72. [Google Scholar] [CrossRef]
- Lutfi, M.F. Anxiety Level and Cardiac Autonomic Modulations in Coronary Artery Disease and Cardiac Syndrome X Patients. PLoS ONE 2017, 12, e0170086. [Google Scholar] [CrossRef]
- Shapiro, L.M.; Crake, T.; Poole-Wilson, P.A. Is Altered Cardiac Sensation Responsible for Chest Pain in Patients with Normal Coronary Arteries? Clinical Observation during Cardiac Catheterisation. Br. Med. J. (Clin. Res. Ed.) 1988, 296, 170–171. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S.; Mehta, P.K.; Bairey Merz, C.N. Cardiac Syndrome X: Update 2014. Cardiol. Clin. 2014, 32, 463–478. [Google Scholar] [CrossRef]
- Kaski, J.C.; Rosano, G.M.; Collins, P.; Nihoyannopoulos, P.; Maseri, A.; Poole-Wilson, P.A. Cardiac Syndrome X: Clinical Characteristics and Left Ventricular Function. Long-Term Follow-up Study. J. Am. Coll. Cardiol. 1995, 25, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Gulati, M.; Cooper-DeHoff, R.M.; McClure, C.; Johnson, B.D.; Shaw, L.J.; Handberg, E.M.; Zineh, I.; Kelsey, S.F.; Arnsdorf, M.F.; Black, H.R.; et al. Adverse Cardiovascular Outcomes in Women with Nonobstructive Coronary Artery Disease: A Report from the Women’s Ischemia Syndrome Evaluation Study and the St James Women Take Heart Project. Arch. Intern. Med. 2009, 169, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Jespersen, L.; Hvelplund, A.; Abildstrøm, S.Z.; Pedersen, F.; Galatius, S.; Madsen, J.K.; Jørgensen, E.; Kelbæk, H.; Prescott, E. Stable Angina Pectoris with No Obstructive Coronary Artery Disease Is Associated with Increased Risks of Major Adverse Cardiovascular Events. Eur. Heart J. 2012, 33, 734–744. [Google Scholar] [CrossRef]
- Parsyan, A.; Pilote, L. Cardiac Syndrome X: Mystery Continues. Can. J. Cardiol. 2012, 28, S3–S6. [Google Scholar] [CrossRef]
- Dweck, M.R.; Newby, D.E. Non-Obstructive Coronary Artery Disease Can No Longer Be Ignored. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 489–490. [Google Scholar] [CrossRef]
- Livingston, M.; Robinson, J.C.; Brown, C.E.; Narayanan, R.P.; Holland, D.; Fryer, A.A.; Heald, A.H. Are Cholesterol Levels Being Checked and Managed Appropriately in UK Primary Care Type 2 Diabetes? Int. J. Clin. Pract. 2015, 69, 1389–1391. [Google Scholar] [CrossRef]
- Abdelmonem, Y.Y.; Bakr, A.A.; El-Hossary, H.G.; Ghany, M.M.A. Patients with Non-Obstructive Coronary Artery Disease Admitted with Acute Myocardial Infarction Carry a Better Outcome Compared to Those with Obstructive Coronary Artery Disease. Egypt Heart J. 2017, 69, 191–199. [Google Scholar] [CrossRef]
- Minha, S.; Behar, S.; Krakover, R.; Boyko, V.; Vered, Z.; Blatt, A. Characteristics and Outcome of Patients with Acute Coronary Syndrome and Normal or Near-Normal Coronary Angiography. Coron. Artery Dis. 2010, 21, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Tselepis, A.D.; Elisaf, M.; Goudevenos, J.; Tselegaridis, T.; Bairaktari, E.; Siamopoulos, K.C.; Sideris, D. Lipid Profile in Patients with Microvascular Angina. Eur. J. Clin. Investig. 1996, 26, 1150–1155. [Google Scholar] [CrossRef] [PubMed]
- Choo, E.H.; Chang, K.; Lee, K.Y.; Lee, D.; Kim, J.G.; Ahn, Y.; Kim, Y.J.; Chae, S.C.; Cho, M.C.; Kim, C.J.; et al. Prognosis and Predictors of Mortality in Patients Suffering Myocardial Infarction with Non-Obstructive Coronary Arteries. J. Am. Heart Assoc. 2019, 8, e011990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballesteros-Ortega, D.; Martínez-González, O.; Gómez-Casero, R.B.; Quintana-Díaz, M.; de Miguel-Balsa, E.; Martín-Parra, C.; López-Matamala, B.; Chana-García, M.; Alonso-Fernández, M.Á.; Manso-Álvarez, M. Characteristics of Patients with Myocardial Infarction with Nonobstructive Coronary Arteries (MINOCA) from the ARIAM-SEMICYUC Registry: Development of a Score for Predicting MINOCA. Vasc. Health Risk Manag. 2019, 15, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.R.; Chen, A.Y.; Peterson, E.D.; Newby, L.K.; Pollack, C.V.; Brindis, R.G.; Gibson, C.M.; Kleiman, N.S.; Saucedo, J.F.; Bhatt, D.L.; et al. Prevalence, Predictors, and Outcomes of Patients with Non-ST-Segment Elevation Myocardial Infarction and Insignificant Coronary Artery Disease: Results from the Can Rapid Risk Stratification of Unstable Angina Patients Suppress ADverse Outcomes with Early Implementation of the ACC/AHA Guidelines (CRUSADE) Initiative. Am. Heart J. 2006, 152, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Larsen, A.I.; Galbraith, P.D.; Ghali, W.A.; Norris, C.M.; Graham, M.M.; Knudtson, M.L.; APPROACH Investigators. Characteristics and Outcomes of Patients with Acute Myocardial Infarction and Angiographically Normal Coronary Arteries. Am. J. Cardiol. 2005, 95, 261–263. [Google Scholar] [CrossRef]
- Pizzi, C.; Xhyheri, B.; Costa, G.M.; Faustino, M.; Flacco, M.E.; Gualano, M.R.; Fragassi, G.; Grigioni, F.; Manzoli, L. Nonobstructive Versus Obstructive Coronary Artery Disease in Acute Coronary Syndrome: A Meta-Analysis. J. Am. Heart Assoc. 2016, 5, e004185. [Google Scholar] [CrossRef] [Green Version]
- Villano, A.; Lanza, G.A.; Crea, F. Microvascular Angina: Prevalence, Pathophysiology and Therapy. J. Cardiovasc. Med. 2018, 19 (Suppl. S1), e36–e39. [Google Scholar] [CrossRef]
- Yokoyama, I.; Ohtake, T.; Momomura, S.; Nishikawa, J.; Sasaki, Y.; Omata, M. Reduced Coronary Flow Reserve in Hypercholesterolemic Patients without Overt Coronary Stenosis. Circulation 1996, 94, 3232–3238. [Google Scholar] [CrossRef]
- Dayanikli, F.; Grambow, D.; Muzik, O.; Mosca, L.; Rubenfire, M.; Schwaiger, M. Early Detection of Abnormal Coronary Flow Reserve in Asymptomatic Men at High Risk for Coronary Artery Disease Using Positron Emission Tomography. Circulation 1994, 90, 808–817. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhou, S.; Qi, S.; Zhao, S.; Minghuib, L. Significance of the Lipid Profile and Endothelium-Dependent Vasodilatation in the Pathogenesis of Microvascular Angina. Cardiol. J. 2008, 15, 324–328. [Google Scholar] [PubMed]
- Tenekecioglu, E.; Yilmaz, M.; Demir, S.; Bekler, A.; Ozluk, O.A.; Aydin, U.; Goncu, T.; Yontar, O.C. HDL-Cholesterol Is Associated with Systemic Inflammation in Cardiac Syndrome X. Minerva Med. 2015, 106, 133–141. [Google Scholar]
- Dogan, A.; Oylumlu, M. Increased Monocyte-to-HDL Cholesterol Ratio Is Related to Cardiac Syndrome X. Acta Cardiol. 2017, 72, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-T.; Zheng, Y.-Y.; Chen, Y.; Yu, Z.-X.; Ma, Y.-T.; Xie, X. Monocyte to High-Density Lipoprotein Cholesterol Ratio as Long-Term Prognostic Marker in Patients with Coronary Artery Disease Undergoing Percutaneous Coronary Intervention. Lipids Health Dis. 2019, 18, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Z.; Hou, J.; Zhang, Q.; Zhong, W.; Li, B.; Li, C.; Liu, Z.; Yang, M.; Zhao, P. Assessment of the LDL-C/HDL-C Ratio as a Predictor of One Year Clinical Outcomes in Patients with Acute Coronary Syndromes after Percutaneous Coronary Intervention and Drug-Eluting Stent Implantation. Lipids Health Dis. 2019, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.-Y.; Zheng, Y.-Y.; Tang, J.-N.; Yang, X.-M.; Guo, Q.-Q.; Zhang, J.-C.; Cheng, M.-D.; Song, F.-H.; Liu, Z.-Y.; Wang, K.; et al. Triglyceride to High-Density Lipoprotein Cholesterol Ratio as a Predictor of Long-Term Mortality in Patients with Coronary Artery Disease after Undergoing Percutaneous Coronary Intervention: A Retrospective Cohort Study. Lipids Health Dis. 2019, 18, 210. [Google Scholar] [CrossRef] [Green Version]
- Anderson, T.J.; Meredith, I.T.; Yeung, A.C.; Frei, B.; Selwyn, A.P.; Ganz, P. The Effect of Cholesterol-Lowering and Antioxidant Therapy on Endothelium-Dependent Coronary Vasomotion. N. Engl. J. Med. 1995, 332, 488–493. [Google Scholar] [CrossRef]
- Oxner, A.; Elbaz-Greener, G.; Qui, F.; Masih, S.; Zivkovic, N.; Alnasser, S.; Cheema, A.N.; Wijeysundera, H.C. Variations in Use of Optimal Medical Therapy in Patients with Nonobstructive Coronary Artery Disease: A Population-Based Study. J. Am. Heart Assoc. 2017, 6, e007526. [Google Scholar] [CrossRef] [Green Version]
- Arbel, Y.; Finkelstein, A.; Halkin, A.; Birati, E.Y.; Revivo, M.; Zuzut, M.; Shevach, A.; Berliner, S.; Herz, I.; Keren, G.; et al. Neutrophil/Lymphocyte Ratio Is Related to the Severity of Coronary Artery Disease and Clinical Outcome in Patients Undergoing Angiography. Atherosclerosis 2012, 225, 456–460. [Google Scholar] [CrossRef]
- Tanındı, A.; Erkan, A.F.; Ekici, B.; Alhan, A.; Töre, H.F. Neutrophil to Lymphocyte Ratio Is Associated with More Extensive, Severe and Complex Coronary Artery Disease and Impaired Myocardial Perfusion. Turk. Kardiyol. Dern. Ars. 2014, 42, 125–130. [Google Scholar] [CrossRef]
- Sunbul, M.; Gerin, F.; Durmus, E.; Kivrak, T.; Sari, I.; Tigen, K.; Cincin, A. Neutrophil to Lymphocyte and Platelet to Lymphocyte Ratio in Patients with Dipper versus Non-Dipper Hypertension. Clin. Exp. Hypertens. 2014, 36, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Gökhan, S.; Ozhasenekler, A.; Mansur Durgun, H.; Akil, E.; Ustündag, M.; Orak, M. Neutrophil Lymphocyte Ratios in Stroke Subtypes and Transient Ischemic Attack. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 653–657. [Google Scholar] [PubMed]
- Okyay, K.; Yilmaz, M.; Yildirir, A.; Eroglu, S.; Sade, E.; Sahinarslan, A.; Aydinalp, A.; Muderrisoglu, H. Relationship between Neutrophil-to-Lymphocyte Ratio and Impaired Myocardial Perfusion in Cardiac Syndrome X. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1881–1887. [Google Scholar] [PubMed]
- Verma, S.; Wang, C.-H.; Li, S.-H.; Dumont, A.S.; Fedak, P.W.M.; Badiwala, M.V.; Dhillon, B.; Weisel, R.D.; Li, R.-K.; Mickle, D.A.G.; et al. A Self-Fulfilling Prophecy: C-Reactive Protein Attenuates Nitric Oxide Production and Inhibits Angiogenesis. Circulation 2002, 106, 913–919. [Google Scholar] [CrossRef]
- Verma, S.; Kuliszewski, M.A.; Li, S.-H.; Szmitko, P.E.; Zucco, L.; Wang, C.-H.; Badiwala, M.V.; Mickle, D.A.G.; Weisel, R.D.; Fedak, P.W.M.; et al. C-Reactive Protein Attenuates Endothelial Progenitor Cell Survival, Differentiation, and Function: Further Evidence of a Mechanistic Link between C-Reactive Protein and Cardiovascular Disease. Circulation 2004, 109, 2058–2067. [Google Scholar] [CrossRef] [Green Version]
- Yudkin, J.S.; Kumari, M.; Humphries, S.E.; Mohamed-Ali, V. Inflammation, Obesity, Stress and Coronary Heart Disease: Is Interleukin-6 the Link? Atherosclerosis 2000, 148, 209–214. [Google Scholar] [CrossRef]
- Koenig, W.; Sund, M.; Fröhlich, M.; Fischer, H.G.; Löwel, H.; Döring, A.; Hutchinson, W.L.; Pepys, M.B. C-Reactive Protein, a Sensitive Marker of Inflammation, Predicts Future Risk of Coronary Heart Disease in Initially Healthy Middle-Aged Men: Results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 1999, 99, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Cushman, M.; Stampfer, M.J.; Tracy, R.P.; Hennekens, C.H. Inflammation, Aspirin, and the Risk of Cardiovascular Disease in Apparently Healthy Men. N. Engl. J. Med. 1997, 336, 973–979. [Google Scholar] [CrossRef]
- Ridker, P.M.; Buring, J.E.; Shih, J.; Matias, M.; Hennekens, C.H. Prospective Study of C-Reactive Protein and the Risk of Future Cardiovascular Events among Apparently Healthy Women. Circulation 1998, 98, 731–733. [Google Scholar] [CrossRef] [Green Version]
- Sara, J.D.S.; Prasad, M.; Zhang, M.; Lennon, R.J.; Herrmann, J.; Lerman, L.O.; Lerman, A. High-Sensitivity C-Reactive Protein Is an Independent Marker of Abnormal Coronary Vasoreactivity in Patients with Non-Obstructive Coronary Artery Disease. Am. Heart J. 2017, 190, 1–11. [Google Scholar] [CrossRef]
- Aldous, S.; Elliott, J.; McClean, D.; Puri, A.; Richards, A.M. Outcomes in Patients Presenting with Symptoms Suggestive of Acute Coronary Syndrome with Elevated Cardiac Troponin but Non-Obstructive Coronary Disease on Angiography. Heart Lung Circ. 2015, 24, 869–878. [Google Scholar] [CrossRef]
- Mommersteeg, P.M.C.; Meeuwis, S.H.; Denollet, J.; Widdershoven, J.W.; Aarnoudse, W.; Westerhuis, B.L.W.J.J.M.; Kop, W.J. C-Reactive Protein and Fibrinogen in Non-Obstructive Coronary Artery Disease as Related to Depressive Symptoms and Anxiety: Findings from the TweeSteden Mild Stenosis Study (TWIST). J. Psychosom. Res. 2014, 77, 426–429. [Google Scholar] [CrossRef] [PubMed]
- AlBadri, A.; Lai, K.; Wei, J.; Landes, S.; Mehta, P.K.; Li, Q.; Johnson, D.; Reis, S.E.; Kelsey, S.F.; Bittner, V.; et al. Inflammatory Biomarkers as Predictors of Heart Failure in Women without Obstructive Coronary Artery Disease: A Report from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). PLoS ONE 2017, 12, e0177684. [Google Scholar] [CrossRef] [PubMed]
- Al-Badri, A.; Tahhan, A.S.; Sabbak, N.; Alkhoder, A.; Liu, C.; Ko, Y.-A.; Vaccarino, V.; Martini, A.; Sidoti, A.; Goodwin, C.; et al. Soluble Urokinase-Type Plasminogen Activator Receptor and High-Sensitivity Troponin Levels Predict Outcomes in Nonobstructive Coronary Artery Disease. J. Am. Heart Assoc. 2020, 9, e015515. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, G.; Corban, M.T.; Hung, O.Y.; Eshtehardi, P.; Eapen, D.J.; Al-Kassem, H.; Rasoul-Arzrumly, E.; Gogas, B.D.; McDaniel, M.C.; Pielak, T.; et al. Plasma Soluble Urokinase-Type Plasminogen Activator Receptor Level Is Independently Associated with Coronary Microvascular Function in Patients with Non-Obstructive Coronary Artery Disease. Atherosclerosis 2015, 239, 55–60. [Google Scholar] [CrossRef]
- Hung, M.-Y.; Hsu, K.-H.; Hung, M.-J.; Cheng, C.-W.; Cherng, W.-J. Interactions among Gender, Age, Hypertension and C-Reactive Protein in Coronary Vasospasm. Eur. J. Clin. Investig. 2010, 40, 1094–1103. [Google Scholar] [CrossRef]
- Mommersteeg, P.M.C.; Naudé, P.J.W.; Bagijn, W.; Widdershoven, J.; Westerhuis, B.W.J.J.M.; Schoemaker, R.G. Gender Differences in Associations of Depressive Symptoms and Anxiety with Inflammatory Markers in Patients with Non-Obstructive Coronary Artery Disease. J. Psychosom. Res. 2019, 125, 109779. [Google Scholar] [CrossRef]
- Dokainish, H.; Pillai, M.; Murphy, S.A.; DiBattiste, P.M.; Schweiger, M.J.; Lotfi, A.; Morrow, D.A.; Cannon, C.P.; Braunwald, E.; Lakkis, N.; et al. Prognostic Implications of Elevated Troponin in Patients with Suspected Acute Coronary Syndrome but No Critical Epicardial Coronary Disease: A TACTICS-TIMI-18 Substudy. J. Am. Coll. Cardiol. 2005, 45, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Myint, P.K.; Al-Jawad, M.; Chacko, S.M.; Chu, G.S.; Vowler, S.L.; May, H.M. Prevalence, Characteristics and Outcomes of People Aged 65 Years and over with an Incidental Rise in Cardiac Troponin I. An Observational Prospective Cohort Study. Cardiology 2008, 110, 62–67. [Google Scholar] [CrossRef]
- de Lange, T.S.; Tijssen, R.Y.G.; Damman, P.; van Bergen, P.F.M.M. Clinical Characteristics of Patients with Suspected Cardiac Chest Pain and Angiographically Normal Coronary Arteries in a Secondary Care Hospital. Neth. Heart J. 2017, 25, 370–375. [Google Scholar] [CrossRef] [Green Version]
- Mordi, I.; Tzemos, N. The Prognostic Value of CT Coronary Angiography in Patients Attending Hospital with Troponin-Negative Acute Chest Pain and Inconclusive Exercise Treadmill Tests. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 542–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, U.; Bamberg, F.; Chae, C.U.; Nichols, J.H.; Rogers, I.S.; Seneviratne, S.K.; Truong, Q.A.; Cury, R.C.; Abbara, S.; Shapiro, M.D.; et al. Coronary Computed Tomography Angiography for Early Triage of Patients with Acute Chest Pain: The ROMICAT (Rule Out Myocardial Infarction Using Computer Assisted Tomography) Trial. J. Am. Coll. Cardiol. 2009, 53, 1642–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasis, A.; Meredith, I.T.; Nerlekar, N.; Cameron, J.D.; Antonis, P.R.; Mottram, P.M.; Leung, M.C.; Troupis, J.M.; Crossett, M.; Kambourakis, A.G.; et al. Acute Chest Pain Investigation: Utility of Cardiac CT Angiography in Guiding Troponin Measurement. Radiology 2011, 260, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Wassef, N.Z.K.; Ehtisham, J.; Petal, N.; Shaukat, N. Prognosis of Troponin-Positive Patients with Non-Obstructive Coronary Artery Disease. Cardiol. Ther. 2014, 3, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samman Tahhan, A.; Sandesara, P.; Hayek, S.S.; Hammadah, M.; Alkhoder, A.; Kelli, H.M.; Topel, M.; O’Neal, W.T.; Ghasemzadeh, N.; Ko, Y.-A.; et al. High-Sensitivity Troponin I Levels and Coronary Artery Disease Severity, Progression, and Long-Term Outcomes. J. Am. Heart Assoc. 2018, 7, e007914. [Google Scholar] [CrossRef] [Green Version]
- Ouellette, M.L.; Löffler, A.I.; Beller, G.A.; Workman, V.K.; Holland, E.; Bourque, J.M. Clinical Characteristics, Sex Differences, and Outcomes in Patients with Normal or Near-Normal Coronary Arteries, Non-Obstructive or Obstructive Coronary Artery Disease. J. Am. Heart Assoc. 2018, 7, e007965. [Google Scholar] [CrossRef] [Green Version]
- El Sabbagh, A.; Prasad, M.; Zack, C.J.; Widmer, R.J.; Karon, B.S.; Lerman, A.; Jaffe, A.S. High-Sensitivity Troponin in Patients with Coronary Artery Endothelial Dysfunction. J. Invasive Cardiol. 2018, 30, 406–410. [Google Scholar]
- Bil, J.; MoŻeŃska, O.; Segiet-ŚwiĘcicka, A.; Gil, R.J. Revisiting the Use of the Provocative Acetylcholine Test in Patients with Chest Pain and Nonobstructive Coronary Arteries: A Five-Year Follow-up of the AChPOL Registry, with Special Focus on Patients with MINOCA. Transl. Res. 2021, 231, 64–75. [Google Scholar] [CrossRef]
- Kannel, W.B.; McGee, D.L. Diabetes and Cardiovascular Disease. The Framingham Study. JAMA 1979, 241, 2035–2038. [Google Scholar] [CrossRef]
- Fuller, J.H.; Shipley, M.J.; Rose, G.; Jarrett, R.J.; Keen, H. Mortality from Coronary Heart Disease and Stroke in Relation to Degree of Glycaemia: The Whitehall Study. Br. Med. J. (Clin. Res. Ed.) 1983, 287, 867–870. [Google Scholar] [CrossRef] [Green Version]
- Haffner, S.M. Coronary Heart Disease in Patients with Diabetes. N. Engl. J. Med. 2000, 342, 1040–1042. [Google Scholar] [CrossRef] [PubMed]
- Boras, J.; Brkljacic, N.; Ljubičić, A.; Ljubić, S. Silent Ischemia and Diabetes Mellitus. Diabetol. Croat. 2010, 39, 57–65. [Google Scholar]
- Ziegler, D.; Gries, F.A.; Spüler, M.; Lessmann, F. The Epidemiology of Diabetic Neuropathy. Diabetic Cardiovascular Autonomic Neuropathy Multicenter Study Group. J. Diabetes Complicat. 1992, 6, 49–57. [Google Scholar] [CrossRef]
- DeVon, H.A.; Penckofer, S.; Larimer, K. The Association of Diabetes and Older Age with the Absence of Chest Pain during Acute Coronary Syndromes. West. J. Nurs. Res. 2008, 30, 130–144. [Google Scholar] [CrossRef]
- Wackers, F.J.T.; Young, L.H.; Inzucchi, S.E.; Chyun, D.A.; Davey, J.A.; Barrett, E.J.; Taillefer, R.; Wittlin, S.D.; Heller, G.V.; Filipchuk, N.; et al. Detection of Silent Myocardial Ischemia in Asymptomatic Diabetic Subjects: The DIAD Study. Diabetes Care 2004, 27, 1954–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazzini, P.F.; Prati, P.L.; Rovelli, F.; Antoniucci, D.; Menghini, F.; Seccareccia, F.; Menotti, A. Epidemiology of Silent Myocardial Ischemia in Asymptomatic Middle-Aged Men (the ECCIS Project). Am. J. Cardiol. 1993, 72, 1383–1388. [Google Scholar] [CrossRef]
- Gallinoro, E.; Paolisso, P.; Candreva, A.; Bermpeis, K.; Fabbricatore, D.; Esposito, G.; Bertolone, D.; Fernandez Peregrina, E.; Munhoz, D.; Mileva, N.; et al. Microvascular Dysfunction in Patients with Type II Diabetes Mellitus: Invasive Assessment of Absolute Coronary Blood Flow and Microvascular Resistance Reserve. Front. Cardiovasc. Med. 2021, 8, 765071. [Google Scholar] [CrossRef]
- Sara, J.D.; Taher, R.; Kolluri, N.; Vella, A.; Lerman, L.O.; Lerman, A. Coronary Microvascular Dysfunction Is Associated with Poor Glycemic Control amongst Female Diabetics with Chest Pain and Non-Obstructive Coronary Artery Disease. Cardiovasc. Diabetol. 2019, 18, 22. [Google Scholar] [CrossRef]
- Min, J.K.; Dunning, A.; Lin, F.Y.; Achenbach, S.; Al-Mallah, M.; Budoff, M.J.; Cademartiri, F.; Callister, T.Q.; Chang, H.-J.; Cheng, V.; et al. Age- and Sex-Related Differences in All-Cause Mortality Risk Based on Coronary Computed Tomography Angiography Findings Results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 Patients without Known Coronary Artery Disease. J. Am. Coll. Cardiol. 2011, 58, 849–860. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, A.; Schrader, G.; Tucker, G.; Adams, R.; Tavella, R.; Beltrame, J.F. Prevalence of Depression in Patients with Chest Pain and Non-Obstructive Coronary Artery Disease. Am. J. Cardiol. 2013, 112, 656–659. [Google Scholar] [CrossRef]
Parameter | NOCAD Group N (% Value) or Median (q1–q3) | OCAD Group N (% Value) or Median (q1–q3) | p-Value |
---|---|---|---|
Number of participants | 136 (100%) | 128 (100%) | |
Personal characteristics | |||
Gender (females) ** | 61 (45%) | 37 (29%) | p = 0.007 |
Living in the countryside/in the city | 100/36 (74%/26%) | 82/46 (64%/36%) | p = 0.088 |
Age | 66.00 (59.00–73.00) | 68.00 (61.00–74.50) | p = 0.149 |
BMI (kg/m2) | 28.26 (24.84–31.48) | 28.05 (25.49–31.89) | p = 0.607 |
Comorbidities | |||
Arterial hypertension *** | 86 (63%) | 116 (91%) | p < 0.001 |
Diabetes mellitus (all types) * | 32 (24%) | 46 (36%) | p = 0.027 |
DM2 | 31 (23%) | 43 (34%) | p = 0.051 |
Heart failure | 42 (31%) | 39 (30%) | p = 0.941 |
Past myocardial infarction *** | 13 (10%) | 54 (42%) | p < 0.001 |
Past PCI (at least one) *** | 12 (9%) | 79 (62%) | p < 0.001 |
Family history of CVD | 66 (60%) Total N: 110 (100%) a | 63 (57%) Total N: 110 (100%) a | p = 0.681 |
Addictions | |||
Alcohol consumption | Total N: 73 (100%) a | Total N: 83 (100%) a | |
No | 57 (78%) | 69 (83%) | p = 0.645 |
Occasionally | 14 (19%) | 13 (16%) | |
Frequently | 2 (3%) | 1(1%) | |
Smoking | Total N: 113 (100%) a | Total N: 109 (100%) a | |
Never | 60 (53%) | 53 (49%) | p = 0.728 |
Active smoker | 23 (20%) | 22 (20%) | |
Smoking in the past | 30 (27%) | 34 (31%) |
Parameter | Unit | NOCAD Group Median (q1–q3) | OCAD Group Median (q1–q3) | p-Value |
---|---|---|---|---|
Lipid parameters | ||||
TC * | mmol/L | 4.40 (3.78–5.63) | 4.12 (3.42–5.01) | p = 0.026 |
LDL-C ** | mmol/L | 2.32 (1.80–3.50) | 2.10 (1.50–2.70) | p = 0.003 |
HDL-C | mmol/L | 1.42 (1.15–1.76) | 1.43 (1.14–1.68) | p = 0.580 |
Non-HDL-C * | mmol/L | 2.89 (2.29–4.19) | 2.66 (2.06–3.39) | p = 0.045 |
TG | mmol/L | 1.17 (0.81–1.55) | 1.18 (0.84–1.65) | p = 0.849 |
LDL-C/HDL-C ratio * | 1 | 1.75 (1.22–2.60) | 1.50 (1.10–1.95) | p = 0.018 |
Non-HDL-C/HDL-C ratio | 1 | 2.18 (1.41–3.17) | 1.93 (1.45–2.63) | p = 0.131 |
White blood parameters and C-reactive protein | ||||
White blood count | 109/L | 7.33 (6.12–8.89) | 7.02 (5.87–8.95) | p = 0.452 |
Neutrophil count | 109/L | 4.87 (3.76–6.04) | 4.52 (3.66–6.08) | p = 0.481 |
Eosinophil count | 109/L | 0.12 (0.06–0.18) | 0.13 (0.07–0.21) | p = 0.214 |
Basophil count | 109/L | 0.03 (0.02–0.05) | 0.03 (0.02–0.04) | p = 0.277 |
Lymphocyte count | 109/L | 1.55 (1.19–1.98) | 1.60 (1.26–1.95) | p = 0.354 |
Monocyte count | 109/L | 0.44 (0.35–0.54) | 0.43 (0.34–0.53) | p = 0.492 |
NLR | 1 | 3.14 (2.24–4.36) | 2.84 (2.18–4.01) | p = 0.294 |
LMR | 1 | 3.57 (2.69–4.72) | 3.76 (2.80–4.60) | p = 0.416 |
hs-CRP | mg/L | 2.90 (1.60–5.40) | 5.15 (3.00–7.10) | p = 0.096 |
Troponins | ||||
cTnI ** | ng/mL | 0.000 (0.000–0.007) | 0.002 (0.000–0.015) | p = 0.004 |
Echocardiographic parameters | ||||
EF *** | % | 60.00 (55.00–60.00) | 55.00 (50.00–60.00) | p < 0.001 |
LA diameter | mm | 42.00 (38.00–46.00) | 42.50 (39.00–47.00) | p = 0.464 |
LVEDD | mm | 49.00 (45.00–54.00) | 52.00 (47.00–56.00) | p = 0.059 |
RVD | mm | 31.00 (29.00–36.00) | 32.00 (30.00–35.00) | p = 0.384 |
IVS thickness | mm | 11.00 (10.00–12.00) | 11.00 (10.00–12.00) | p = 0.898 |
PW thickness | mm | 11.00 (10.00–12.00) | 11.00 (10.00–12.00) | p = 0.611 |
Parameter | OR | 95% CI | p-Value |
---|---|---|---|
Model 1 | |||
Arterial hypertension *** | 0.21 | 0.10–0.43 | p < 0.001 |
Diabetes mellitus (all types) | 0.64 | 0.35–1.16 | p = 0.139 |
Female sex ** | 2.37 | 1.33–4.20 | p = 0.003 |
LDL-C/HDL-C ** | 1.65 | 1.19–2.29 | p = 0.003 |
Model 2 | |||
Arterial hypertension *** | 0.20 | 0.10–0.41 | p < 0.001 |
Diabetes mellitus (all types) | 0.62 | 0.34–1.13 | p = 0.119 |
Female sex * | 1.96 | 1.12–3.43 | p = 0.018 |
LDL-C * | 1.39 | 1.08–1.79 | p = 0.010 |
Model 3 | |||
Arterial hypertension *** | 0.20 | 0.10–0.41 | p < 0.001 |
Diabetes mellitus (all types) | 0.62 | 0.34–1.12 | p = 0.110 |
Female sex ** | 2.31 | 1.30–4.09 | p = 0.004 |
Non-HDL-C/HDL-C * | 1.36 | 1.06–1.75 | p = 0.015 |
Model 4 | |||
Arterial hypertension *** | 0.20 | 0.10–0.40 | p < 0.001 |
Diabetes mellitus (all types) | 0.64 | 0.35–1.14 | p = 0.131 |
Female sex * | 1.96 | 1.13–3.40 | p = 0.017 |
Non-HDL-C * | 1.26 | 1.01–1.56 | p = 0.039 |
Model 5 | |||
Arterial hypertension *** | 0.13 | 0.05–0.35 | p < 0.001 |
Diabetes mellitus (all types) | 0.67 | 0.31–1.42 | p = 0.293 |
Female sex * | 2.45 | 1.21–4.94 | p = 0.013 |
Approximate atorvastatin dose a ** | 0.97 | 0.96–0.99 | p = 0.003 |
Medicine | Number of Participants N (% Value) Total N: 253 a | p-Value | |
---|---|---|---|
NOCAD N: 128 (100%) | OCAD N: 125 (100%) | ||
ACE-I/ARB *** | 78 (60.94%) | 105 (84.00%) | p < 0.001 |
Acetylsalicylic Acid *** | 57 (44.53%) | 100 (80.00%) | p < 0.001 |
b-Blockers | 97 (75.78%) | 93 (74.40%) | p = 0.721 |
Ca-blockers * | 32 (25.00%) | 47 (37.60%) | p = 0.035 |
Diuretics (thiazides + loop diuretics) | 67 (52.34%) | 64 (51.20%) | p = 0.805 |
Metformin | 21 (16.40%) | 33 (26.40%) | p = 0.057 |
MRA | 37 (28.91%) | 28 (22.40%) | p = 0.223 |
Nitrates * | 3 (2.34%) | 11 (8.80%) | p = 0.026 |
Trimetazidine | 14 (10.94%) | 20 (16.00%) | p = 0.249 |
NOAC * | 26 (20.31%) | 14 (11.20%) | p = 0.044 |
VKA ** | 35 (27.34%) | 16 (12.80%) | p = 0.004 |
Lipid-Lowering Therapy | Number of Participants N (% Value) Total N: 253 a or Median (q1–q3) | p-Value | |
---|---|---|---|
NOCAD N: 128 (100%) | OCAD N: 125 (100%) | ||
No treatment *** | 58 (45.31%) | 21 (16.80%) | p < 0.001 |
Statin treatment *** | 70 (54.69%) | 104 (83.20%) | p < 0.001 |
+10 mg/d ezetimibe | 1 (0.78%) | 3 (2.40%) | p = 0.305 |
+fenofibrate * | 1 (0.78%) | 7 (5.60%) | p = 0.031 |
median dose (mg/d) * | 267 (267–267) | 215 (160–215) | p = 0.045 |
Atorvastatin | 43 (33.59%) | 53 (42.40%) | p = 0.149 |
median dose (mg/d) ** | 20 (20–40) | 40 (20–40) | p = 0.001 |
Rosuvastatin *** | 25 (19.53%) | 48 (38.40%) | p < 0.001 |
median dose (mg/d) | 20 (10–20) | 20 (20–40) | p = 0.120 |
Simvastatin | 2 (1.56%) | 3 (2.40%) | p = 0.681 |
median dose (mg/d) *** | 15 (10–20) | 40 (40–40) | p = 0.007 |
All statins converted into approximate atorvastatin dose b *** | 20 (20–40) | 40 (20–40) | p < 0.001 |
>20 mg/d *** | 30 (23.44%) | 76 (60.80%) | p < 0.001 |
≤20 mg/d *** | 98 (76.56%) | 49 (39.20%) | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewski, O.W.; Dydowicz, F.; Salamaga, S.; Skulik, P.; Migaj, J.; Kałużna-Oleksy, M. Risk Factors Predisposing to Angina in Patients with Non-Obstructive Coronary Arteries: A Retrospective Analysis. J. Pers. Med. 2022, 12, 1049. https://doi.org/10.3390/jpm12071049
Wiśniewski OW, Dydowicz F, Salamaga S, Skulik P, Migaj J, Kałużna-Oleksy M. Risk Factors Predisposing to Angina in Patients with Non-Obstructive Coronary Arteries: A Retrospective Analysis. Journal of Personalized Medicine. 2022; 12(7):1049. https://doi.org/10.3390/jpm12071049
Chicago/Turabian StyleWiśniewski, Oskar Wojciech, Franciszek Dydowicz, Szymon Salamaga, Przemysław Skulik, Jacek Migaj, and Marta Kałużna-Oleksy. 2022. "Risk Factors Predisposing to Angina in Patients with Non-Obstructive Coronary Arteries: A Retrospective Analysis" Journal of Personalized Medicine 12, no. 7: 1049. https://doi.org/10.3390/jpm12071049
APA StyleWiśniewski, O. W., Dydowicz, F., Salamaga, S., Skulik, P., Migaj, J., & Kałużna-Oleksy, M. (2022). Risk Factors Predisposing to Angina in Patients with Non-Obstructive Coronary Arteries: A Retrospective Analysis. Journal of Personalized Medicine, 12(7), 1049. https://doi.org/10.3390/jpm12071049