A Review of Functional Outcomes after the App-Based Rehabilitation of Patients with TKA and THA
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amankwah-Amoah, J.; Khan, Z.; Wood, G.; Knight, G. COVID-19 and digitalization: The great acceleration. J. Bus. Res. 2021, 136, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Petersen, W.; Karpinski, K.; Backhaus, L.; Bierke, S.; Haner, M. A systematic review about telemedicine in orthopedics. Arch. Orthop. Trauma. Surg. 2021, 141, 1731–1739. [Google Scholar] [CrossRef] [PubMed]
- The Lancet, R. Too long to wait: The impact of COVID-19 on elective surgery. Lancet Rheumatol 2021, 3, e83. [Google Scholar] [CrossRef]
- Statista.com. Number of Smartphone Users Worldwide from 2016 to 2021. Available online: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on 1 April 2022).
- Bahadori, S.; Wainwright, T.W.; Ahmed, O.H. Smartphone apps for total hip replacement and total knee replacement surgery patients: A systematic review. Disabil. Rehabil. 2020, 42, 983–988. [Google Scholar] [CrossRef]
- Constantinescu, D.; Pavlis, W.; Rizzo, M.; Berge, D.V.; Barnhill, S.; Hernandez, V.H. The role of commercially available smartphone apps and wearable devices in monitoring patients after total knee arthroplasty: A systematic review. EFORT Open Rev. 2022, 7, 481–490. [Google Scholar] [CrossRef]
- Bini, S.A.; Schilling, P.L.; Patel, S.P.; Kalore, N.V.; Ast, M.P.; Maratt, J.D.; Schuett, D.J.; Lawrie, C.M.; Chung, C.C.; Steele, G.D. Digital Orthopaedics: A Glimpse Into the Future in the Midst of a Pandemic. J. Arthroplast. 2020, 35, S68. [Google Scholar] [CrossRef]
- Campbell, K.J.; Louie, P.K.; Bohl, D.D.; Edmiston, T.; Mikhail, C.; Li, J.; Khorsand, D.A.; Levine, B.R.; Gerlinger, T.L. A Novel, Automated Text-Messaging System Is Effective in Patients Undergoing Total Joint Arthroplasty. JBJS 2019, 101, 145–151. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Backer, H.C.; Wu, C.H.; Schulz, M.R.G.; Weber-Spickschen, T.S.; Perka, C.; Hardt, S. App-based rehabilitation program after total knee arthroplasty: A randomized controlled trial. Arch. Orthop. Trauma. Surg. 2021, 141, 1575. [Google Scholar] [CrossRef]
- Hardt, S.; Schulz, M.R.G.; Pfitzner, T.; Wassilew, G.; Horstmann, H.; Liodakis, E.; Weber-Spickschen, T.S. Improved early outcome after TKA through an app-based active muscle training programme-a randomized-controlled trial. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3429. [Google Scholar] [CrossRef]
- Correia, F.D.; Nogueira, A.; Magalhaes, I.; Guimaraes, J.; Moreira, M.; Barradas, I.; Molinos, M.; Teixeira, L.; Tulha, J.; Seabra, R.; et al. Medium-Term Outcomes of Digital Versus Conventional Home-Based Rehabilitation after Total Knee Arthroplasty: Prospective, Parallel-Group Feasibility Study. JMIR Rehabil. Assist. Technol. 2019, 6, e13111. [Google Scholar] [CrossRef]
- van Dijk-Huisman, H.C.; Weemaes, A.T.R.; Boymans, T.; Lenssen, A.F.; de Bie, R.A. Smartphone App with an Accelerometer Enhances Patients’ Physical Activity Following Elective Orthopedic Surgery: A Pilot Study. Sensors 2020, 20, 4317. [Google Scholar] [CrossRef]
- Wijnen, A.; Hoogland, J.; Munsterman, T.; Gerritsma, C.L.; Dijkstra, B.; Zijlstra, W.P.; Dekker, J.S.; Annegarn, J.; Ibarra, F.; Slager, G.E.; et al. Effectiveness of a Home-Based Rehabilitation Program After Total Hip Arthroplasty Driven by a Tablet App and Remote Coaching: Nonrandomized Controlled Trial Combining a Single-Arm Intervention Cohort With Historical Controls. JMIR Rehabil. Assist. Technol. 2020, 7, e14139. [Google Scholar] [CrossRef]
- Arfaei Chitkar, S.S.; Mohaddes Hakkak, H.R.; Saadati, H.; Hosseini, S.H.; Jafari, Y.; Ganji, R. The effect of mobile-app-based instruction on the physical function of female patients with knee osteoarthritis: A parallel randomized controlled trial. BMC Women’s Health 2021, 21, 333. [Google Scholar] [CrossRef]
- Li, I.; Bui, T.; Phan, H.T.; Llado, A.; King, C.; Scrivener, K. App-based supplemental exercise in rehabilitation, adherence, and effect on outcomes: A randomized controlled trial. Clin. Rehabil. 2020, 34, 1083–1093. [Google Scholar] [CrossRef]
- Pelle, T.; Bevers, K.; van der Palen, J.; van den Hoogen, F.H.J.; van den Ende, C.H.M. Effect of the dr. Bart application on healthcare use and clinical outcomes in people with osteoarthritis of the knee and/or hip in the Netherlands; a randomized controlled trial. Osteoarthr. Cartil. 2020, 28, 418–427. [Google Scholar] [CrossRef] [Green Version]
- Skrepnik, N.; Spitzer, A.; Altman, R.; Hoekstra, J.; Stewart, J.; Toselli, R. Assessing the Impact of a Novel Smartphone Application Compared With Standard Follow-Up on Mobility of Patients With Knee Osteoarthritis Following Treatment With Hylan G-F 20: A Randomized Controlled Trial. JMIR Mhealth Uhealth 2017, 5, e7179. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.; Murray, E.; Raftery, J. Economic Evaluation of Digital Health Interventions: Methodological Issues and Recommendations for Practice. Pharmacoeconomics 2022, 40, 367. [Google Scholar] [CrossRef]
- Wong, S.J.; Robertson, G.A.; Connor, K.L.; Brady, R.R.; Wood, A.M. Smartphone apps for orthopaedic sports medicine-a smart move? BMC Sports Sci. Med. Rehabil. 2015, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Rathleff, M.S.; Bandholm, T.; McGirr, K.A.; Harring, S.I.; Sorensen, A.S.; Thorborg, K. New exercise-integrated technology can monitor the dosage and quality of exercise performed against an elastic resistance band by adolescents with patellofemoral pain: An observational study. J. Physiother. 2016, 62, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Petersen, W.; Ellermann, A.; Gosele-Koppenburg, A.; Best, R.; Rembitzki, I.V.; Bruggemann, G.P.; Liebau, C. Patellofemoral pain syndrome. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 2264–2274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Year | No. Patients | Age (Year) | Gender (Male) (No.) | BMI (kg/m2) | Follow-Up (Months) | Digital Program | Indication | Hospital Stay (Days) | Days of Intervention | Comorbidities (No.) |
---|---|---|---|---|---|---|---|---|---|---|---|
Arfaei Chitkar SS | 2021 | 31 | 57.84 | 27.97 | Application instruction | Knee osteoarthritis | 56 | 7 | |||
Control group | 29 | 58.52 | 26.62 | 56 | 5 | ||||||
Bäcker HC | 2021 | 20 | 62.95 | 8 | 32.33 | 23.73 | Application with sensor | TKA | 6.6 | 1 | |
Control group | 15 | 66.27 | 6 | 33.79 | 23.35 | 6.9 | 1 | ||||
Correia FD | 2019 | 38 | 67.3 | 32 | 31.0 | 6 | Application with motion tracker | TKA | 6.0 | 56 | Detailed listing |
Control group | 31 | 70.0 | 22 | 30.8 | 6 | 6.0 | 56 | Detailed listing | |||
Hardt S | 2018 | 22 | 63.3 | 10 | 31.6 | 7 | Application with sensor | TKA | 6.6 | 6.6 | 1 |
Control group | 25 | 67.6 | 10 | 32.4 | 7 | 6.9 | 6.9 | 1 | |||
Li I | 2020 | 44 | 65 | Application instruction | Arthritis | 14.7 | 14.7 | 4 | |||
Control group | 44 | 66 | 14.2 | 14.2 | 4 | ||||||
Pelle T | 2020 | 214 | 62.1 | 67 | 27.8 | Application instruction | Osteoarthritis | ||||
Control group | 213 | 62.1 | 54 | 27.3 | |||||||
Skrepnik N | 2017 | 107 | 61.6 | 48 | 29.4 | 3 | Application with sensor | Osteoarthritis | |||
Control group | 104 | 63.6 | 57 | 29.3 | 3 | ||||||
Control group | 61 | 66.0 | 40 | 27.73 | |||||||
Van Dijk-Huisman HC | 2020 | 27 | 65.1 | 15 | 27.47 | Application with sensor | TKA | 31 | |||
Control group | 61 | 66.0 | 40 | 27.73 | 31 | ||||||
Wijnen A | 2020 | 15 | 59.3 | 5 | 26.7 | 6 | Application instruction | THA | 84 | ||
Control group | 15 | 59.3 | 5 | 28 | 84 | ||||||
Control group | 12 | 59.3 | 5 | 31.1 | 84 | ||||||
Intervention group | 518 | 62.7 + 2.9 | 443 (41.8%) | 29.3 + 2.1 | 9.2 + 8.3 | 9.1 + 4.9 | 3.3 + 2.9 | ||||
Control group | 549 | 63.9 + 3.9 | 467 (41.8%) | 29.7 + 2.5 | 9.8 + 9.2 | 9.0 + 4.5 | 2.8 + 2.1 | ||||
p-value | 0.243 | 0.449 | 0.368 | 0.454 | 0.493 | 0.393 |
No. Patients | Six-Minute Endurance | ST | Walking Speed (10 min) | ST | Change in Disability | ST | Score | Pain | ST | LT | Symptoms | ST | LT | Function in ADL | ST | LT | Sport/Recreation | ST | LT | Quality of Life | ST | LT | R-VAS | ST | LT | A-VAS | ST | LT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Arfaei Chitkar SS | 31 | WOMAC | 18.5 | 5.6 | 48.3 | ||||||||||||||||||||||||
Control group | 29 | WOMAC | 17.2 | 5.6 | 49.6 | ||||||||||||||||||||||||
Bäcker HC | 20 | 11.77 | 19.66 | KOOS | 42.4 | 56.0 | 81.7 | 50.6 | 61.7 | 64.5 | 45.8 | 54.6 | 77.2 | 16.0 | 9.5 | 48.6 | 18.4 | 26.7 | 68.4 | 3.6 | 2.7 | 0.9 | 7.6 | 4.0 | 2.7 | ||||
Control group | 15 | 12.39 | 27.08 | KOOS | 37.8 | 53.2 | 80.7 | 48.6 | 63.1 | 61.6 | 40.8 | 51.0 | 77.1 | 9.3 | 8.1 | 47.3 | 14.2 | 30.8 | 67.9 | 4.3 | 3.6 | 0.9 | 6.7 | 5.1 | 2.8 | ||||
Correia FD | 38 | KOOS | 33.0 | 95.5 | 100.0 | 34.0 | 51.5 | 96.0 | 34.0 | 93.0 | 97.0 | 0 | 30.0 | 42.5 | 13.0 | 81.0 | 94.0 | ||||||||||||
Control group | 31 | KOOS | 47.0 | 86.0 | 86.0 | 50.0 | 82.0 | 86.0 | 41.0 | 87.0 | 87.0 | 5.0 | 20.0 | 20.0 | 25.0 | 56.0 | 63.0 | ||||||||||||
Hardt S | 22 | 0.9 | 0.6 | KOOS | 45.0 | 56.0 | 62.0 | 60.0 | 47.0 | 54.0 | 14.0 | 10.0 | 17.0 | 30.0 | 4.0 | 2.0 | 7.0 | 4.0 | |||||||||||
Control group | 25 | 0.8 | 0.5 | KOOS | 36.0 | 50.0 | 58.0 | 59.0 | 39.0 | 42.0 | 12.0 | 5.0 | 18.0 | 26.0 | 4.0 | 4.0 | 7.0 | 5.0 | |||||||||||
Li I | 44 | delta = 115.6 | delta = 0.4 | 17.3 | 118.2 | ||||||||||||||||||||||||
Control group | 44 | delta = 103.3 | delta = 0.4 | 18.0 | 117.5 | ||||||||||||||||||||||||
Pelle T | 214 | Self-management behavior | 57.5 | 59.5 | 59.4 | 57.7 | 57.3 | 57.3 | 58.5 | 61.4 | 62.1 | 32.6 | 31.9 | 33.4 | 38.0 | ||||||||||||||
Control group | 213 | Self-management behavior | 58.2 | 57.4 | 57.5 | 57.0 | 56.2 | 55.2 | 59.4 | 58.5 | 58.6 | 32.5 | 33.2 | 33.2 | 38.3 | ||||||||||||||
Skrepnik N | 107 | 402.8 | 18.2 | 4.6 | delta = −55.3 | ||||||||||||||||||||||||
Control group | 104 | 395.6 | 6.3 | 5.1 | delta = −33.8 | ||||||||||||||||||||||||
Van Dijk-Huisman HC | 27 | Standing walking time/functional recovery | 70.9 | −0.3 | |||||||||||||||||||||||||
Control group | 61 | 103.0 | 1.0 | ||||||||||||||||||||||||||
Wijnen A | 15 | HOOS | 48.9 | 88.8 | 98.7 | 50.0 | 75.3 | 91.0 | 52.7 | 76.5 | 96.8 | 23.3 | 70.0 | 82.5 | 19.2 | 50.8 | 88.8 | ||||||||||||
Control group | 15 | HOOS | 35.5 | 71.7 | 85.1 | 29.3 | 68 | 76.3 | 34.0 | 60.6 | 80 | 16.3 | 26.7 | 59.6 | 22.9 | 45.8 | 71.3 | ||||||||||||
Control group | 12 | HOOS | 36.3 | 73.5 | 85.6 | 41.7 | 62.1 | 77.5 | 37.1 | 58.1 | 79.1 | 20.8 | 29.7 | 64.9 | 24.5 | 43.2 | 69.3 | ||||||||||||
Intervention group | 518 | 402.8 | 18.2 | 6.34 | 10.13 | 17.3 | 118.2 | 45.36 | 71.16 | 84.95 | 50.86 | 61.16 | 77.2 | 47.6 | 67.9 | 83.275 | 17.18 | 30.28 | 51.75 | 21.12 | 4.07 | 2.35 | 0.9 | 7.3 | 4 | 2.7 | |||
Std. | N/A | N/A | 7.69 | 13.48 | N/A | N/A | 8.97 | 19.36 | 18.96 | 10.68 | 8.80 | 19.16 | 9.13 | 16.71 | 16.90 | 12.06 | 24.61 | 21.43 | 9.73 | 0.50 | 0.49 | N/A | 0.42 | 0 | N/A | ||||
Control group | 549 | 395.6 | 6.3 | 6.60 | 13.79 | 18.0 | 41.80 | 65.30 | 78.98 | 47.43 | 65.07 | 71.32 | 41.88 | 59.53 | 76.36 | 15.98 | 20.45 | 45 | 23.82 | 40.36 | 67.88 | 4.47 | 3.8 | 0.9 | 6.85 | 5.05 | 2.8 | ||
Std. | N/A | N/A | 8.20 | 18.79 | N/A | N/A | 9.12 | 14.00 | 12.20 | 10.70 | 9.20 | 12.58 | 8.97 | 15.09 | 10.61 | 9.77 | 11.65 | 18.57 | 8.23 | 12.04 | 3.54 | 0.57 | 0.28 | N/A | 0.21 | 0.07 | N/A | ||
p-value | N/A | N/A | 0.977 | 0.844 | N/A | N/A | 0.532 | 0.574 | 0.583 | 0.609 | 0.493 | 0.595 | 0.324 | 0.405 | 0.475 | 0.859 | 0.405 | 0.628 | 0.630 | 0.607 | 0.069 | 0.413 | 0.069 | N/A | 0.312 | 0.002 | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bäcker, H.C.; Wu, C.H.; Pförringer, D.; Petersen, W.; Stöckle, U.; Braun, K.F. A Review of Functional Outcomes after the App-Based Rehabilitation of Patients with TKA and THA. J. Pers. Med. 2022, 12, 1342. https://doi.org/10.3390/jpm12081342
Bäcker HC, Wu CH, Pförringer D, Petersen W, Stöckle U, Braun KF. A Review of Functional Outcomes after the App-Based Rehabilitation of Patients with TKA and THA. Journal of Personalized Medicine. 2022; 12(8):1342. https://doi.org/10.3390/jpm12081342
Chicago/Turabian StyleBäcker, Henrik Constantin, Chia H. Wu, Dominik Pförringer, Wolf Petersen, Ulrich Stöckle, and Karl F. Braun. 2022. "A Review of Functional Outcomes after the App-Based Rehabilitation of Patients with TKA and THA" Journal of Personalized Medicine 12, no. 8: 1342. https://doi.org/10.3390/jpm12081342
APA StyleBäcker, H. C., Wu, C. H., Pförringer, D., Petersen, W., Stöckle, U., & Braun, K. F. (2022). A Review of Functional Outcomes after the App-Based Rehabilitation of Patients with TKA and THA. Journal of Personalized Medicine, 12(8), 1342. https://doi.org/10.3390/jpm12081342