Accuracy of Three-Dimensional Soft-Tissue Prediction Considering the Facial Aesthetic Units Using a Virtual Planning System in Orthognathic Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Acquisition
2.3. Validation of Soft-Tissue Simulation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mandrekar, P.N.; Dhupar, V.; Akkara, F. Prediction of Soft-Tissue Changes Following Single and Bi-Jaw Surgery: An Evaluative Study. Ann. Maxillofac. Surg. 2021, 11, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Willinger, K.; Guevara-Rojas, G.; Cede, J.; Schicho, K.; Stamm, T.; Klug, C. Accuracy of Soft Tissue Prediction of 2 Virtual Planning Systems in Patients Undergoing Intraoral Quadrangular Le Fort II Osteotomy. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3326. [Google Scholar] [CrossRef]
- Liebregts, J.; Xi, T.; Timmermans, M.; de Koning, M.; Bergé, S.; Hoppenreijs, T.; Maal, T. Accuracy of three-dimensional soft tissue simulation in bimaxillary osteotomies. J. Craniomaxillofac. Surg. 2015, 43, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Resnick, C.M.; Dang, R.R.; Glick, S.J.; Padwa, B.L. Accuracy of three-dimensional soft tissue prediction for Le Fort I osteotomy using Dolphin 3D software: A pilot study. Int. J. Oral Maxillofac. Surg. 2017, 46, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Alves, P.V.; Mazucheli, J.; Vogel, C.J.; Bolognese, A.M. How the lower face soft tissue changes after mandibular advancement or setback. J. Craniofac. Surg. 2008, 19, 593–598. [Google Scholar] [CrossRef]
- Liebregts, J.H.; Timmermans, M.; De Koning, M.J.; Bergé, S.J.; Maal, T.J. Three-dimensional facial simulation in bilateral sagittal split osteotomy: A validation study of 100 patients. J. Oral Maxillofac. Surg. 2015, 73, 961–970. [Google Scholar] [CrossRef]
- Nadjmi, N.; Defrancq, E.; Mollemans, W.; Hemelen, G.V.; Bergé, S. Quantitative validation of a computer-aided maxillofacial planning system, focusing on soft tissue deformations. Ann. Maxillofac. Surg. 2014, 4, 171–175. [Google Scholar] [CrossRef]
- Nam, K.U.; Hong, J. Is Three-Dimensional Soft Tissue Prediction by Software Accurate? J. Craniofac. Surg. 2015, 26, e729. [Google Scholar] [CrossRef]
- Peterman, R.J.; Jiang, S.; Johe, R.; Mukherjee, P.M. Accuracy of Dolphin visual treatment objective (VTO) prediction software on class III patients treated with maxillary advancement and mandibular setback. Prog. Orthod. 2016, 17, 19. [Google Scholar] [CrossRef]
- Demirsoy, K.K.; Kurt, G. Accuracy of 3 Soft Tissue Prediction Methods after Double-Jaw Orthognathic Surgery in Class III Patients. Ann. Plast. Surg. 2022, 88, 323–329. [Google Scholar] [CrossRef]
- Nadjmi, N.; Tehranchi, A.; Azami, N.; Saedi, B.; Mollemans, W. Comparison of soft-tissue profiles in Le Fort I osteotomy patients with Dolphin and Maxilim softwares. Am. J. Orthod. Dentofacial. Orthop. 2013, 144, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Modabber, A.; Baron, T.; Peters, F.; Kniha, K.; Danesh, G.; Hölzle, F.; Ayoub, N.; Möhlhenrich, S.C. Comparison of soft tissue simulations between two planning software programs for orthognathic surgery. Sci. Rep. 2022, 12, 5013. [Google Scholar] [CrossRef] [PubMed]
- Mollemans, W.; Schutyser, F.; Nadjmi, N.; Maes, F.; Suetens, P. Predicting soft tissue deformations for a maxillofacial surgery planning system: From computational strategies to a complete clinical validation. Med. Image Anal. 2007, 11, 282–301. [Google Scholar] [CrossRef] [PubMed]
- Leibinger, H. Personal Correspondence IPS Case Designer; KLS Martin Group: Jacksonville, FL, USA, 2022. [Google Scholar]
- Delingette, H.; Cotin, S.; Ayache, N. Efficient linear elastic models of soft tissues for real-time surgery simulation. Stud. Health Technol. Inform. 1999, 62, 100. [Google Scholar]
- Schwartz, J.M.; Denninger, M.; Rancourt, D.; Moisan, C.; Laurendeau, D. Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Med. Image Anal. 2005, 9, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.J.; Shevchenko, L.; Gateno, J.; Teichgraeber, J.F.; Taylor, T.D.; Lasky, R.E.; English, J.D.; Kau, C.H.; McGrory, K.R. Outcome study of computer-aided surgical simulation in the treatment of patients with craniomaxillofacial deformities. J. Oral Maxillofac. Surg. 2011, 69, 2014–2024. [Google Scholar] [CrossRef] [PubMed]
- Polley, J.W.; Figueroa, A.A. Orthognathic positioning system: Intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery. J. Oral Maxillofac. Surg. 2013, 71, 911–920. [Google Scholar] [CrossRef]
- Tonin, R.H.; Iwaki Filho, L.; Yamashita, A.L.; Ferraz, F.; Tolentino, E.S.; Previdelli, I.; Brum, B.; Iwaki, L.C.V. Accuracy of 3D virtual surgical planning for maxillary positioning and orientation in orthognathic surgery. Orthod. Craniofac. Res. 2020, 23, 229–236. [Google Scholar] [CrossRef]
- Stokbro, K.; Thygesen, T. Surgical Accuracy in Inferior Maxillary Reposition. J. Oral Maxillofac. Surg. 2018, 76, 2618–2624. [Google Scholar] [CrossRef]
- Stokbro, K.; Liebregts, J.; Baan, F.; Bell, R.B.; Maal, T.; Thygesen, T.; Xi, T. Does Mandible-First Sequencing Increase Maxillary Surgical Accuracy in Bimaxillary Procedures? J. Oral Maxillofac. Surg. 2019, 77, 1882–1893. [Google Scholar] [CrossRef]
- Badiali, G.; Roncari, A.; Bianchi, A.; Taddei, F.; Marchetti, C.; Schileo, E. Navigation in Orthognathic Surgery: 3D Accuracy. Facial Plast. Surg. 2015, 31, 463–473. [Google Scholar] [PubMed]
- Kaipatur, N.; Al-Thomali, Y.; Flores-Mir, C. Accuracy of computer programs in predicting orthognathic surgery hard tissue response. J. Oral Maxillofac. Surg. 2009, 67, 1628–1639. [Google Scholar] [CrossRef] [PubMed]
- Hing, N.R. The accuracy of computer generated prediction tracings. Int. J. Oral Maxillofac. Surg. 1989, 18, 148–151. [Google Scholar] [CrossRef]
- Kazandjian, S.; Sameshima, G.T.; Champlin, T.; Sinclair, P.M. Accuracy of video imaging for predicting the soft tissue profile after mandibular set-back surgery. Am. J. Orthod. Dentofac. Orthop. 1999, 115, 382–389. [Google Scholar] [CrossRef]
- Cousley, R.R.; Grant, E. The accuracy of preoperative orthognathic predictions. Br. J. Oral Maxillofac. Surg. 2004, 42, 96–104. [Google Scholar] [CrossRef]
- Liang, X.; Lambrichts, I.; Sun, Y.; Denis, K.; Hassan, B.; Li, L.; Pauwels, R.; Jacobs, R. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy. Eur. J. Radiol. 2010, 75, 270–274. [Google Scholar] [CrossRef]
- Bianchi, A.; Muyldermans, L.; Di Martino, M.; Lancellotti, L.; Amadori, S.; Sarti, A.; Marchetti, C. Facial soft tissue esthetic predictions: Validation in craniomaxillofacial surgery with cone beam computed tomography data. J. Oral Maxillofac. Surg. 2010, 68, 1471–1479. [Google Scholar] [CrossRef]
- Marchetti, C.; Bianchi, A.; Muyldermans, L.; Di Martino, M.; Lancellotti, L.; Sarti, A. Validation of new soft tissue software in orthognathic surgery planning. Int. J. Oral Maxillofac. Surg. 2011, 40, 26–32. [Google Scholar] [CrossRef]
- Schendel, S.A.; Jacobson, R.; Khalessi, S. 3-Dimensional facial simulation in orthognathic surgery: Is it accurate? J. Oral Maxillofac. Surg. 2013, 71, 1406–1414. [Google Scholar] [CrossRef]
- Knoops, P.G.M.; Borghi, A.; Breakey, R.W.F.; Ong, J.; Jeelani, N.U.O.; Bruun, R.; Schievano, S.; Dunaway, D.J.; Padwa, B.L. Three-dimensional soft tissue prediction in orthognathic surgery: A clinical comparison of Dolphin, ProPlan CMF, and probabilistic finite element modelling. Int. J. Oral Maxillofac. Surg. 2019, 48, 511–518. [Google Scholar] [CrossRef]
- DeSesa, C.R.; Metzler, P.; Sawh-Martinez, R.; Steinbacher, D.M. Three-dimensional Nasolabial Morphologic Alterations Following Le Fort I. Plast. Reconstr. Surg. Glob. Open 2016, 4, e848. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Akhoundi, M.S.; Shirani, G.; Arshad, M.; Heidar, H.; Sodagar, A. Comparison of an imaging software and manual prediction of soft tissue changes after orthognathic surgery. J. Dent. 2012, 9, 178–187. [Google Scholar]
- Maal, T.J.; de Koning, M.J.; Plooij, J.M.; Verhamme, L.M.; Rangel, F.A.; Bergé, S.J.; Borstlap, W.A. One year postoperative hard and soft tissue volumetric changes after a BSSO mandibular advancement. Int. J. Oral Maxillofac. Surg. 2012, 41, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Dantas, W.R.; Silveira, M.M.; Vasconcelos, B.C.; Porto, G.G. Evaluation of the nasal shape after orthognathic surgery. Braz. J. Otorhinolaryngol. 2015, 81, 19–23. [Google Scholar] [CrossRef]
- Steinhäuser, S.; Richter, U.; Richter, F.; Bill, J.; Rudzki-Janson, I. Profile changes following maxillary impaction and autorotation of the mandible. J. Orofac. Orthop. 2008, 69, 31–41. [Google Scholar] [CrossRef]
Angle Class II/III | Displacement Distance <5 mm/>5 mm | Anterior Bite Situation Deep/Neutral/Open | Age <30a/30–40a/>40a | Gender Male/Female | |
---|---|---|---|---|---|
Number | 9/11 | 10/10 | 8/7/5 | 11/5/4 | 10/10 |
Face Total | Nose | Upper Cheek | Lower Cheek | Upper Lip | Lower Lip | Both Lips | Chin | |
---|---|---|---|---|---|---|---|---|
Parameter | p | p | p | p | p | p | p | p |
Angle class | 0.428 | 0.165 | 0.648 | 0.977 | 0.899 | 0.383 | 0.463 | 0.132 |
Displacement distance | 0.097 | 0.227 | 0.335 | 0.063 | 0.323 | 0.170 | 0.376 | 0.640 |
Bite situation | 0.761 | 0.149 | 0.403 | 0.072 | 0.408 | 0.866 | 0.604 | 0.497 |
Age | 0.973 | 0.253 | 0.362 | 0.902 | 0.648 | 0.966 | 0.870 | 0.717 |
Gender | 0.644 | 0.060 | 0.257 | 0.127 | 0.543 | 0.443 | 0.629 | 0.502 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, D.; Reinert, S.; Kluba, S. Accuracy of Three-Dimensional Soft-Tissue Prediction Considering the Facial Aesthetic Units Using a Virtual Planning System in Orthognathic Surgery. J. Pers. Med. 2022, 12, 1379. https://doi.org/10.3390/jpm12091379
Awad D, Reinert S, Kluba S. Accuracy of Three-Dimensional Soft-Tissue Prediction Considering the Facial Aesthetic Units Using a Virtual Planning System in Orthognathic Surgery. Journal of Personalized Medicine. 2022; 12(9):1379. https://doi.org/10.3390/jpm12091379
Chicago/Turabian StyleAwad, Daniel, Siegmar Reinert, and Susanne Kluba. 2022. "Accuracy of Three-Dimensional Soft-Tissue Prediction Considering the Facial Aesthetic Units Using a Virtual Planning System in Orthognathic Surgery" Journal of Personalized Medicine 12, no. 9: 1379. https://doi.org/10.3390/jpm12091379
APA StyleAwad, D., Reinert, S., & Kluba, S. (2022). Accuracy of Three-Dimensional Soft-Tissue Prediction Considering the Facial Aesthetic Units Using a Virtual Planning System in Orthognathic Surgery. Journal of Personalized Medicine, 12(9), 1379. https://doi.org/10.3390/jpm12091379