Challenges in the Management of Post-COVID-19 Pulmonary Fibrosis for the Latin American Population
Abstract
:1. Introduction
2. Post-COVID-19 Pulmonary Fibrosis
2.1. Pathophysiology
2.2. Risk Factors
3. Challenges in Monitoring and Rehabilitation
4. Ongoing Studies on Medication as Treatment
5. Low Resource Availability and Investment in Latin America
6. Access to Multidisciplinary Teams
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hui, D.S.; Zumla, A. Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features. Infect. Dis. Clin. 2019, 33, 869–889. [Google Scholar] [CrossRef] [PubMed]
- Worobey, M. Dissecting the Early COVID-19 Cases in Wuhan. Science 2021, 374, 1202–1204. [Google Scholar] [CrossRef] [PubMed]
- Abdelkafi, I.; Loukil, S.; Romdhane, Y. Economic Uncertainty during COVID-19 Pandemic in Latin America and Asia. J. Knowl. Econ. 2022, 1–20. [Google Scholar] [CrossRef]
- Thakur, B.; Dubey, P.; Benitez, J.; Torres, J.P.; Reddy, S.; Shokar, N.; Aung, K.; Mukherjee, D.; Dwivedi, A.K. A Systematic Review and Meta-Analysis of Geographic Differences in Comorbidities and Associated Severity and Mortality among Individuals with COVID-19. Sci. Rep. 2021, 11, 8562. [Google Scholar] [CrossRef]
- Statista Research Department. Coronavirus En Latinoamérica: Países Con Más Casos|Statista. Available online: https://es.statista.com/estadisticas/1105121/numero-casos-covid-19-america-latina-caribe-pais/ (accessed on 25 May 2022).
- Alkodaymi, M.S.; Omrani, O.A.; Fawzy, N.A.; Abou Shaar, B.; Almamlouk, R.; Riaz, M.; Obeidat, M.; Obeidat, Y.; Gerberi, D.; Taha, R.M. Prevalence of Post-Acute COVID-19 Syndrome Symptoms at Different Follow-up Periods: A Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2022, 28, 657–666. [Google Scholar] [CrossRef]
- Cherrez-Ojeda, I.; Robles-Velasco, K.; Osorio, M.F.; Cottin, V.; Vergara Centeno, J.; Felix, M. Follow-up of Two Cases of Suspected Interstitial Lung Disease Following Severe COVID-19 Infection Shows Persistent Changes in Imaging and Lung Function. Clin. Case Rep. 2021, 9, e04918. [Google Scholar] [CrossRef]
- Amin, B.J.H.; Kakamad, F.H.; Ahmed, G.S.; Ahmed, S.F.; Abdulla, B.A.; Mikael, T.M.; Salih, R.Q.; Salh, A.M.; Hussein, D.A. Post COVID-19 Pulmonary Fibrosis; a Meta-Analysis Study. Ann. Med. Surg. 2022, 77, 103590. [Google Scholar] [CrossRef]
- Molina, M. Phase-II Randomized Clinical Trial to Evaluate the Effect of Pirfenidone Compared to Placebo in Post-COVID19 Pulmonary Fibrosis. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04607928 (accessed on 23 August 2022).
- Dhooria, S. A Study of the Efficacy and Safety of Pirfenidone vs. Nintedanib in the Treatment of Fibrotic Lung Disease After Coronavirus Disease-19 Pneumonia. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04856111 (accessed on 23 August 2022).
- PureTech. A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial and Open Label Extension to Evaluate the Safety and Efficacy of Deupirfenidone (LYT-100) in Post-Acute COVID-19 Respiratory Disease. 2021. Available online: https://adisinsight.springer.com/trials/700330871 (accessed on 23 August 2022).
- Zhang, H. Efficacy and Safety of Nintedanib Ethanesulfonate Soft Capsule in the Treatment of Pulmonary Fibrosis in Patients With Moderate to Severe COVID-9(COVID 19): A Single-Center, Randomized, Placebo-Controlled Study.2020. Available online: https://adisinsight.springer.com/trials/700320667 (accessed on 23 August 2022).
- Padilla, M.L. Early Nintedanib Deployment in COVID-19 Interstitial Lung Disease. 2022. Available online: https://www.clinicalconnection.com/clinical-trials-from-other-databases/study-details-from-other-databases/551870/56298231/baylor-university-medical-center-dallas (accessed on 23 August 2022).
- Santos, M.E.; Villatoro, P. A Multidimensional Poverty Index for Latin America. Rev. Income Wealth 2018, 64, 52–82. [Google Scholar] [CrossRef]
- Quijano-Ruiz, A.; Faytong-Haro, M. Maternal Sexual Empowerment and Sexual and Reproductive Outcomes among Female Adolescents: Evidence from a Cross-Sectional Study in Ecuador. SSM—Popul. Health 2021, 14, 100782. [Google Scholar] [CrossRef]
- Gasparini, L.; Lustig, N. The Rise and Fall of Income Inequality in Latin America; Documento de Trabajo; Universidad Nacional de La Plata, Centro de Estudios Distributivos, Laborales y Sociales (CEDLAS): La Plata, Argentina, 2011. [Google Scholar]
- Huber, E.; Nielsen, F.; Pribble, J.; Stephens, J.D. Politics and Inequality in Latin America and the Caribbean. Am. Sociol. Rev. 2006, 71, 943–963. [Google Scholar] [CrossRef]
- Eakin, H.C.; Wehbe, M.B. Linking Local Vulnerability to System Sustainability in a Resilience Framework: Two Cases from Latin America. Clim. Chang. 2009, 93, 355–377. [Google Scholar] [CrossRef]
- Liang, L.-L.; Tseng, C.-H.; Ho, H.J.; Wu, C.-Y. Covid-19 Mortality Is Negatively Associated with Test Number and Government Effectiveness. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rojas, D.; Saavedra, J.; Petrova, M.; Pan, Y.; Szapocznik, J. Predictors of COVID-19 Fatality: A Worldwide Analysis of the Pandemic over Time and in Latin America. J. Epidemiol. Glob. Health 2022, 12, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Bahmer, T.; Borzikowsky, C.; Lieb, W.; Horn, A.; Krist, L.; Fricke, J.; Scheibenbogen, C.; Rabe, K.F.; Maetzler, W.; Maetzler, C. Severity, Predictors and Clinical Correlates of Post-COVID-19 Syndrome (PCS) in Germany: A Prospective, Multi-Centre, Population-Based Cohort Study. EClinicalMedicine 2022, 51, 101549. [Google Scholar] [CrossRef] [PubMed]
- CDC Post-COVID-19 Conditions. Available online: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html (accessed on 26 May 2022).
- Bakhoum, M.F.; Ritter, M.; Garg, A.K.; Chan, A.X.; Bakhoum, C.Y.; Smith, D.M. Subclinical Ocular Inflammation in Persons Recovered from Ambulatory COVID-19 2020, 2020.09.22.20128140. medRxiv 2022. [Google Scholar]
- Wong, A.W.; Fidler, L.; Marcoux, V.; Johannson, K.A.; Assayag, D.; Fisher, J.H.; Hambly, N.; Kolb, M.; Morisset, J.; Shapera, S.; et al. Practical Considerations for the Diagnosis and Treatment of Fibrotic Interstitial Lung Disease During the Coronavirus Disease 2019 Pandemic. Chest 2020, 158, 1069–1078. [Google Scholar] [CrossRef]
- Venkataraman, T.; Coleman, C.M.; Frieman, M.B. Overactive Epidermal Growth Factor Receptor Signaling Leads to Increased Fibrosis after Severe Acute Respiratory Syndrome Coronavirus Infection. J. Virol. 2017, 91, e00182-17. [Google Scholar] [CrossRef]
- Guarnera, A.; Santini, E.; Podda, P. Idiopathic Interstitial Pneumonias and COVID-19 Pneumonia: Review of the Main Radiological Features and Differential Diagnosis. Tomography 2021, 7, 397–411. [Google Scholar] [CrossRef]
- Han, X.; Fan, Y.; Alwalid, O.; Zhang, X.; Jia, X.; Zheng, Y.; Shi, H. Fibrotic Interstitial Lung Abnormalities at 1-Year Follow-up CT after Severe COVID-19. Radiology 2021, 301, E438–E440. [Google Scholar] [CrossRef]
- Damiani, S.; Fiorentino, M.; De Palma, A.; Foschini, M.P.; Lazzarotto, T.; Gabrielli, L.; Viale, P.L.; Attard, L.; Riefolo, M.; D’Errico, A. Pathological Post-mortem Findings in Lungs Infected with SARS-CoV-2. J. Pathol. 2021, 253, 31–40. [Google Scholar] [CrossRef]
- Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Daßler-Plenker, J.; Guerci, P.; Huynh, C.; Knight, J.S. Targeting Potential Drivers of COVID-19: Neutrophil Extracellular Traps. J. Exp. Med. 2020, 217, e20200652. [Google Scholar] [CrossRef] [PubMed]
- Merza, M.Y.; Hwaiz, R.A.; Hamad, B.K.; Mohammad, K.A.; Hama, H.A.; Karim, A.Y. Analysis of Cytokines in SARS-CoV-2 or COVID-19 Patients in Erbil City, Kurdistan Region of Iraq. PLoS ONE 2021, 16, e0250330. [Google Scholar] [CrossRef]
- Aesif, S.W.; Bribriesco, A.C.; Yadav, R.; Nugent, S.L.; Zubkus, D.; Tan, C.D.; Mehta, A.C.; Mukhopadhyay, S. Pulmonary Pathology of COVID-19 Following 8 Weeks to 4 Months of Severe Disease: A Report of Three Cases, Including One with Bilateral Lung Transplantation. Am. J. Clin. Pathol. 2021, 155, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Bae, I.-G.; Hong, K.-W.; Yang, J.W.; Moon, K.; Kim, J.D.; Ju, S.; Cho, M.-C. Persistent Pneumonic Consolidations Due to Secondary Organizing Pneumonia in a Patient Recovering from COVID-19 Pneumonia: A Case Report. 2020. Research Square. Available online: https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/ppcovidwho-306113 (accessed on 23 August 2022).
- Bazdyrev, E.; Rusina, P.; Panova, M.; Novikov, F.; Grishagin, I.; Nebolsin, V. Lung Fibrosis after COVID-19: Treatment Prospects. Pharmaceuticals 2021, 14, 807. [Google Scholar] [CrossRef] [PubMed]
- Aul, R.; Gates, J.; Draper, A.; Dunleavy, A.; Ruickbie, S.; Meredith, H.; Walters, N.; van Zeller, C.; Taylor, V.; Bridgett, M. Complications after Discharge with COVID-19 Infection and Risk Factors Associated with Development of Post-COVID-19 Pulmonary Fibrosis. Respir. Med. 2021, 188, 106602. [Google Scholar] [CrossRef]
- Ali, R.M.M.; Ghonimy, M.B.I. Post-COVID-19 Pneumonia Lung Fibrosis: A Worrisome Sequelae in Surviving Patients. Egypt. J. Radiol. Nucl. Med. 2021, 52, 101. [Google Scholar] [CrossRef]
- Ojo, A.S.; Balogun, S.A.; Williams, O.T.; Ojo, O.S. Pulmonary Fibrosis in COVID-19 Survivors: Predictive Factors and Risk Reduction Strategies. Pulm. Med. 2020, 2020, e6175964. [Google Scholar] [CrossRef]
- Cocconcelli, E.; Bernardinello, N.; Giraudo, C.; Castelli, G.; Giorgino, A.; Leoni, D.; Petrarulo, S.; Ferrari, A.; Saetta, M.; Cattelan, A. Characteristics and Prognostic Factors of Pulmonary Fibrosis after COVID-19 Pneumonia. Front. Med. 2021, 8, 823600. [Google Scholar] [CrossRef]
- Burki, T. COVID-19 in Latin America. Lancet Infect. Dis. 2020, 20, 547–548. [Google Scholar] [CrossRef]
- Aissaoui, H.; Eskenazi, A.; Suteau, V.; Adenis, A.; Drak Alsibai, K. Case Report: Potential Role of Corticosteroids in the Management of Post-COVID-19 Pneumonia. Front. Med. 2021, 8, 686806. [Google Scholar] [CrossRef]
- Mohammadi, A.; Balan, I.; Yadav, S.; Matos, W.F.; Kharawala, A.; Gaddam, M.; Sarabia, N.; Koneru, S.C.; Suddapalli, S.K.; Marzban, S. Post-COVID-19 Pulmonary Fibrosis. Cureus 2022, 14, e22770. [Google Scholar] [CrossRef] [PubMed]
- Andrejak, C.; Cottin, V.; Crestani, B.; Debieuvre, D.; Gonzalez-Bermejo, J.; Morelot-Panzini, C.; Stach, B.; Uzunhan, Y.; Maitre, B.; Raherison, C. Guide for Management of Patients with Possible Respiratory Sequelae after a SARS-CoV-2 Pneumonia. Support Proposals Developed by the French-Speaking Respiratory Medicine Society. Version of 10 November 2020. Rev. Mal. Respir. 2020, 38, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Ranu, H.; Wilde, M.; Madden, B. Pulmonary Function Tests. Ulster Med. J. 2011, 80, 84. [Google Scholar] [PubMed]
- Yin, X.; Min, X.; Nan, Y.; Feng, Z.; Li, B.; Cai, W.; Xi, X.; Wang, L. Assessment of the Severity of Coronavirus Disease: Quantitative Computed Tomography Parameters versus Semiquantitative Visual Score. Korean J. Radiol. 2020, 21, 998. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Zhou, Y.; Yu, H.; Li, R.; Zhan, Q.; Ni, F.; Fang, S.; Lu, Y.; Ding, X.; et al. 3-Month, 6-Month, 9-Month, and 12-Month Respiratory Outcomes in Patients Following COVID-19-Related Hospitalisation: A Prospective Study. Lancet Respir. Med. 2021, 9, 747–754. [Google Scholar] [CrossRef]
- Carfì, A.; Bernabei, R.; Landi, F. Against COVID-19. Post-Acute Care Study Group: For the Gemelli Against CCOVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients after Acute COVID-19. JAMA 2020, 9. [Google Scholar]
- Mandal, S.; Barnett, J.; Brill, S.E.; Brown, J.S.; Denneny, E.K.; Hare, S.S.; Heightman, M.; Hillman, T.E.; Jacob, J.; Jarvis, H.C. ‘Long-COVID’: A Cross-Sectional Study of Persisting Symptoms, Biomarker and Imaging Abnormalities Following Hospitalisation for COVID-19. Thorax 2021, 76, 396–398. [Google Scholar] [CrossRef]
- Zha, L.; Shen, Y.; Pan, L.; Han, M.; Yang, G.; Teng, X.; Tefsen, B. Follow-up Study on Pulmonary Function and Radiological Changes in Critically Ill Patients with COVID-19. J. Infect. 2021, 82, 159–198. [Google Scholar] [CrossRef]
- Ngai, J.C.; Ko, F.W.; Ng, S.S.; TO, K.; Tong, M.; Hui, D.S. The Long-term Impact of Severe Acute Respiratory Syndrome on Pulmonary Function, Exercise Capacity and Health Status. Respirology 2010, 15, 543–550. [Google Scholar] [CrossRef]
- Sanyaolu, A.; Marinkovic, A.; Prakash, S.; Zhao, A.; Balendra, V.; Haider, N.; Jain, I.; Simic, T.; Okorie, C. Post-Acute Sequelae in COVID-19 Survivors: An Overview. SN Compr. Clin. Med. 2022, 4, 91. [Google Scholar] [CrossRef]
- Vázquez-García, J.C.; Pérez-Padilla, R.; Casas, A.; Schönffeldt-Guerrero, P.; Pereira, J.; Vargas-Domínguez, C.; Velázquez-Uncal, M.; Martínez-Briseño, D.; Torre-Bouscoulet, L.; Gochicoa-Rangel, L. Reference Values for the Diffusing Capacity Determined by the Single-Breath Technique at Different Altitudes: The Latin American Single-Breath Diffusing Capacity Reference Project. Respir. Care 2016, 61, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Michalski, J.E.; Kurche, J.S.; Schwartz, D.A. From ARDS to Pulmonary Fibrosis: The next Phase of the COVID-19 Pandemic? Transl. Res. 2021, 241, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Franquet, T.; Giménez, A.; Ketai, L.; Mazzini, S.; Rial, A.; Pomar, V.; Domingo, P. Air Trapping in COVID-19 Patients Following Hospital Discharge: Retrospective Evaluation with Paired Inspiratory/Expiratory Thin-Section CT. Eur. Radiol. 2022, 32, 4427–4436. [Google Scholar] [CrossRef] [PubMed]
- Cherrez-Ojeda, I.; Cottin, V.; Calderón, J.C.; Delgado, C.; Calero, E.; Simanca-Racines, D.; Quadrelli, S.; Cherrez, A. Management and Attitudes about IPF (Idiopathic Pulmonary Fibrosis) among Physicians from Latin America. BMC Pulm. Med. 2018, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.J.; Litrento, P.F.; Provenzano, B.C.; Carneiro, A.S.; Monnerat, L.B.; da Cal, M.S.; Ghetti, A.T.A.; Mafort, T.T. Small Airway Dysfunction on Impulse Oscillometry and Pathological Signs on Lung Ultrasound Are Frequent in Post-COVID-19 Patients with Persistent Respiratory Symptoms. PLoS ONE 2021, 16, e0260679. [Google Scholar] [CrossRef]
- Homedes, N.; Ugalde, A. Why Neoliberal Health Reforms Have Failed in Latin America. Health Policy 2005, 71, 83–96. [Google Scholar] [CrossRef]
- Lechowicz, K.; Drożdżal, S.; Machaj, F.; Rosik, J.; Szostak, B.; Zegan-Barańska, M.; Biernawska, J.; Dabrowski, W.; Rotter, I.; Kotfis, K. COVID-19: The Potential Treatment of Pulmonary Fibrosis Associated with SARS-CoV-2 Infection. J. Clin. Med. 2020, 9, 1917. [Google Scholar] [CrossRef]
- Myall, K.J.; Mukherjee, B.; Castanheira, A.M.; Lam, J.L.; Benedetti, G.; Mak, S.M.; Preston, R.; Thillai, M.; Dewar, A.; Molyneaux, P.L.; et al. Persistent Post–COVID-19 Interstitial Lung Disease. An Observational Study of Corticosteroid Treatment. Ann. Am. Thorac. Soc. 2021, 18, 799–806. [Google Scholar] [CrossRef]
- Safont, B.; Tarraso, J.; Rodriguez-Borja, E.; Fernández-Fabrellas, E.; Sancho-Chust, J.N.; Molina, V.; Lopez-Ramirez, C.; Lope-Martinez, A.; Cabanes, L.; Andreu, A.L.; et al. Lung Function, Radiological Findings and Biomarkers of Fibrogenesis in a Cohort of COVID-19 Patients Six Months After Hospital Discharge. Arch. Bronconeumol. 2022, 58, 142–149. [Google Scholar] [CrossRef]
- Ruwanpura, S.M.; Thomas, B.J.; Bardin, P.G. Pirfenidone: Molecular Mechanisms and Potential Clinical Applications in Lung Disease. Am. J. Respir. Cell Mol. Biol. 2020, 62, 413–422. [Google Scholar] [CrossRef]
- Wollin, L.; Wex, E.; Pautsch, A.; Schnapp, G.; Hostettler, K.E.; Stowasser, S.; Kolb, M. Mode of Action of Nintedanib in the Treatment of Idiopathic Pulmonary Fibrosis. Eur. Respir. J. 2015, 45, 1434–1445. [Google Scholar] [CrossRef] [PubMed]
- Issak, E.R. Impact of Colchicine on the Clinical Outcome of COVID-19 and the Development of Post-COVID-19 Pulmonary Fibrosis: Randomized Controlled Clinical Trial. 2021. Available online: clinicaltrials.gov (accessed on 23 August 2022).
- Skurikhin, E.; Nebolsin, V.; Widera, D.; Ermakova, N.; Pershina, O.; Pakhomova, A.; Krupin, V.; Pan, E.; Zhukova, M.; Novikov, F. Antifibrotic and Regenerative Effects of Treamid in Pulmonary Fibrosis. Int. J. Mol. Sci. 2020, 21, 8380. [Google Scholar] [CrossRef] [PubMed]
- Chenghai, L. Efficacy and Safety of Fuzheng Huayu Tablets in Post-COVID-19 Patients With Pulmonary Inflammation and Fibrosis: A Multicenter Double-Blind Randomized Controlled Trial. 2021. Available online: https://ichgcp.net/clinical-trials-registry/NCT04279197 (accessed on 23 August 2022).
- Vitiello, A.; Pelliccia, C.; Ferrara, F. COVID-19 Patients with Pulmonary Fibrotic Tissue: Clinical Pharmacological Rational of Antifibrotic Therapy. SN Compr. Clin. Med. 2020, 2, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- King Jr, T.E.; Bradford, W.Z.; Castro-Bernardini, S.; Fagan, E.A.; Glaspole, I.; Glassberg, M.K.; Gorina, E.; Hopkins, P.M.; Kardatzke, D.; Lancaster, L. A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2014, 370, 2083–2092. [Google Scholar] [CrossRef]
- Richeldi, L.; Du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y. Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2014, 370, 2071–2082. [Google Scholar] [CrossRef]
- Kotfis, K. The Use of a Mineralocorticoid Receptor Antagonist (Spironolactone) in the Treatment of Pulmonary Fibrosis Associated With SARS-CoV-2 Infection. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04912011 (accessed on 23 August 2022).
- NPO Petrovax. Multicenter, Open-Label Prospective Cohort Study of the Efficacy and Safety of the Inclusion of Longidaze in the Prevention and Treatment of Post-Inflammatory Pulmonary Fibrosis and Interstitial Lung Diseases Caused by COVID-19. 2021. Available online: https://www.researcher-app.com/paper/6408795 (accessed on 23 August 2022).
- Guy’s and St Thomas’ NHS Foundation Trust. Phase I/II MONACO Cell Therapy Study: Monocytes as an Antifibrotic Treatment After COVID-19. 2021. Available online: https://www.medifind.com/articles/clinical-trial/255656033 (accessed on 23 August 2022).
- Humanetics Corporation. A Phase 2 Study of BIO 300 Oral Suspension in Discharged COVID-19 Patients. 2022. Available online: https://www.niaid.nih.gov/clinical-trials/phase-2-study-bio-300-oral-suspension-discharged-covid-19-patients (accessed on 23 August 2022).
- Rashad, A. Short Term Low Dose Corticosteroids for Management of Post Covid-19 Pulmonary Fibrosis. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04551781 (accessed on 23 August 2022).
- Vitti Labs, LLC. Safety and Effectiveness of EV-Pure + WJ-Pure Treatment on Pulmonary Fibrosis Secondary to Covid-19. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT05387239 (accessed on 23 August 2022).
- Instituto Oncológico Dr Rosell. Phase Ib Controlled Exploratory Trial for Treatment of Fibrosing Interstitial Lung Disease Patients Secondary to SARS-CoV-2 Infection With IN01 Vaccine (COVINVAC). 2020. Available online: https://data.cochrane.org/concepts/GEn3ooKangHqBO (accessed on 23 August 2022).
- Rosas, I.O.; Richards, T.J.; Konishi, K.; Zhang, Y.; Gibson, K.; Lokshin, A.E.; Lindell, K.O.; Cisneros, J.; MacDonald, S.D.; Pardo, A. MMP1 and MMP7 as Potential Peripheral Blood Biomarkers in Idiopathic Pulmonary Fibrosis. PLoS Med. 2008, 5, e93. [Google Scholar] [CrossRef]
- Clinical Trials Home—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ (accessed on 17 June 2022).
- Bahri, S.; Ali, R.B.; Abidi, A.; Jameleddine, S. The Efficacy of Plant Extract and Bioactive Compounds Approaches in the Treatment of Pulmonary Fibrosis: A Systematic Review. Biomed. Pharmacother. 2017, 93, 666–673. [Google Scholar] [CrossRef]
- You, H.; Wei, L.; Sun, W.-L.; Wang, L.; Yang, Z.-L.; Liu, Y.; Zheng, K.; Wang, Y.; Zhang, W.-J. The Green Tea Extract Epigallocatechin-3-Gallate Inhibits Irradiation-Induced Pulmonary Fibrosis in Adult Rats. Int. J. Mol. Med. 2014, 34, 92–102. [Google Scholar] [CrossRef]
- Zhou, X.-M.; Huang, M.-M.; He, C.-C.; Li, J.-X. Inhibitory Effects of Citrus Extracts on the Experimental Pulmonary Fibrosis. J. Ethnopharmacol. 2009, 126, 143–148. [Google Scholar] [CrossRef]
- Nuttall, S.; Kendall, M.; Bombardelli, E.; Morazzoni, P. An Evaluation of the Antioxidant Activity of a Standardized Grape Seed Extract, Leucoselect®. J. Clin. Pharm. Ther. 1998, 23, 385–389. [Google Scholar] [CrossRef]
- Yang, L.-T.; Liu, X.; Cheng, D.-Y.; Fang, X.; Mu, M.; Hu, X.-B.; Nie, L. Effects of Diterpene Phenol Extract of Rosmarinus Officinalis on TGFbeta1 and MRNA Expressions of Its Signaling Pathway Molecules in the Lung Tissue of Pulmonary Fibrosis Rats. Zhongguo Zhong Xi Yi Jie He Za Zhi Zhongguo Zhongxiyi Jiehe Zazhi Chin. J. Integr. Tradit. West. Med. 2013, 33, 819–824. [Google Scholar]
- Kandhare, A.D.; Bodhankar, S.L.; Mohan, V.; Thakurdesai, P.A. Effect of Glycosides Based Standardized Fenugreek Seed Extract in Bleomycin-Induced Pulmonary Fibrosis in Rats: Decisive Role of Bax, Nrf2, NF-ΚB, Muc5ac, TNF-α and IL-1β. Chem. Biol. Interact. 2015, 237, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, Y.; Huang, C.; Lv, X.; Liu, L.; Wang, Y.; Li, J. Antifibrosis Effects of Triterpene Acids of Eriobotrya Japonica (Thunb.) Lindl. Leaf in a Rat Model of Bleomycin-Induced Pulmonary Fibrosis. J. Pharm. Pharmacol. 2012, 64, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, D.; Talero, E.; Siracusa, R.; Alcaide, A.; Cordaro, M.; Zubelia, J.M.; Bruschetta, G.; Crupi, R.; Esposito, E.; Cuzzocrea, S. Protective Effect of Polyphenols in an Inflammatory Process Associated with Experimental Pulmonary Fibrosis in Mice. Br. J. Nutr. 2015, 114, 853–865. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, R.; Liu, X.; Xie, J.; Si, K.; Duan, L. Effects of Matrine on JAK-STAT Signaling Transduction Pathways in Bleomycin-Induced Pulmonary Fibrosis. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 442–448. [Google Scholar] [CrossRef]
- Abidi, A.; Serairi, R.; Kourda, N.; Ben Ali, R.; Ben Khamsa, S.; Feki, M. Therapeutic Effect of Flaxseed Oil on Experimental Pulmonary Fibrosis Induced by Bleomycin in Rats. Eur. J. Inflamm. 2016, 14, 133–143. [Google Scholar] [CrossRef]
- Pirfenidona (Esbriet) y Nintedanib (Ofev) Para La Fibrosis Pulmonar Idiopática—Info-Farmacia. Available online: http://www.info-farmacia.com/medico-farmaceuticos/informes-tecnicos/pirfenidona-esbriet-y-nintedanib-ofev-para-la-fibrosis-pulmonar-idiopatica (accessed on 29 July 2022).
- Feldman, D.J. OFEV (Nintedanib) to Treat Idiopathic Pulmonary Fibrosis. Idiopathic Pulm. Fibros. 2015. [Google Scholar]
- Dempsey, T.M.; Payne, S.; Sangaralingham, L.; Yao, X.; Shah, N.D.; Limper, A.H. Adoption of the Antifibrotic Medications Pirfenidone and Nintedanib for Patients with Idiopathic Pulmonary Fibrosis. Ann. Am. Thorac. Soc. 2021, 18, 1121–1128. [Google Scholar] [CrossRef]
- Salisbury, M.L.; Conoscenti, C.S.; Culver, D.A.; Yow, E.; Neely, M.L.; Bender, S.; Hartmann, N.; Palmer, S.M.; Leonard, T.B. Antifibrotic Drug Use in Patients with Idiopathic Pulmonary Fibrosis. Data from the IPF-PRO Registry. Ann. Am. Thorac. Soc. 2020, 17, 1413–1423. [Google Scholar] [CrossRef]
- Holland, M.; Vieira, F.V.; Canuto, O.; Holland, M.; Vieira, F.V.; Canuto, O. Economic Growth and the Balance-of-Payments Constraint in Latin America. Investig. Económica 2004, 63, 45–74. [Google Scholar]
- Wallace, S.P.; Gutiérrez, V.F. Equity of Access to Health Care for Older Adults in Four Major Latin American Cities. Rev. Panam. Salud Pública 2005, 17, 394–409. [Google Scholar] [CrossRef] [PubMed]
- International Labour Organization More than 140 Million Denied Access to Health Care in Latin America and the Caribbean. Available online: http://www.ilo.org/global/about-the-ilo/newsroom/news/WCMS_007961/lang--en/index.htm (accessed on 26 May 2022).
- Ye, S.; Kronish, I.; Fleck, E.; Fleischut, P.; Homma, S.; Masini, D.; Moise, N. Telemedicine Expansion During the COVID-19 Pandemic and the Potential for Technology-Driven Disparities. J. Gen. Intern. Med. 2021, 36, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Cantor, J.H.; McBain, R.K.; Pera, M.F.; Bravata, D.M.; Whaley, C.M. Who Is (and Is Not) Receiving Telemedicine Care During the COVID-19 Pandemic. Am. J. Prev. Med. 2021, 61, 434–438. [Google Scholar] [CrossRef]
- Camacho-Leon, G.; Faytong-Haro, M.; Carrera, K.; Molero, M.; Melean, F.; Reyes, Y.; Mautong, H.; De La Hoz, I.; Cherrez-Ojeda, I. A Narrative Review of Telemedicine in Latin America during the COVID-19 Pandemic; Multidisciplinary Digital Publishing Institute: Base, Switzerland, 2022; Volume 10, p. 1361. [Google Scholar]
- Christe, A.; Peters, A.A.; Drakopoulos, D.; Heverhagen, J.T.; Geiser, T.; Stathopoulou, T.; Christodoulidis, S.; Anthimopoulos, M.; Mougiakakou, S.G.; Ebner, L. Computer-Aided Diagnosis of Pulmonary Fibrosis Using Deep Learning and CT Images. Investig. Radiol. 2019, 54, 627. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.-N.; Sun, L.; Wang, B.-R.; Zou, Y.; Xu, S.; Ding, Y.-J.; Shen, L.-J.; Huang, W.-C.; Jiang, X.-J.; Chen, S.-M. The Characteristics and Evolution of Pulmonary Fibrosis in COVID-19 Patients as Assessed by AI-Assisted Chest HRCT. PLoS ONE 2021, 16, e0248957. [Google Scholar] [CrossRef]
- Wang, R.; Jiao, Z.; Yang, L.; Choi, J.W.; Xiong, Z.; Halsey, K.; Tran, T.M.L.; Pan, I.; Collins, S.A.; Feng, X. Artificial Intelligence for Prediction of COVID-19 Progression Using CT Imaging and Clinical Data. Eur. Radiol. 2022, 32, 205–212. [Google Scholar] [CrossRef]
- The World Bank Physicians (per 1000 People)|Data. Available online: https://data.worldbank.org/indicator/SH.MED.PHYS.ZS (accessed on 26 May 2022).
- Torre-Bouscoulet, L. Especialistas líderes en Medicina Respiratoria. Neumol. Cir. Tórax 2018, 77, 4–5. [Google Scholar]
- Consejo Mexicano de Neurología Neurólogos Certificados|Consejo Mexicano de Neurología. Available online: https://www.consejomexicanodeneurologia.org/neurologos-certificados/ (accessed on 26 May 2022).
- Benavides-Cordoba, V.; Barros-Poblete, M.; Vieira, R.P.; Mazzucco, G.; Fregonezi, G.; Torres-Castro, R. Provision of Pulmonary Rehabilitation in Latin America 18 Months after the COVID-19 Pandemic: A Survey of the Latin American Thoracic Association. Chron. Respir. Dis. 2022, 19, 14799731221104102. [Google Scholar] [CrossRef]
- Cherrez-Ojeda, I.; Vanegas, E.; Felix, M.; Farfán Bajaña, M.J.; Sarfraz, A.; Sarfraz, Z.; Camacho, G.; Barrios-Ruiz, A.; Michel, J. Physician’s Attitudes on Pulmonary Rehabilitation Following COVID-19: A Brief Perspective from a Developing Country. Multidiscip. Respir. Med. 2022, 17, 837. [Google Scholar] [CrossRef]
- Spruit, M.A.; Holland, A.E.; Singh, S.J.; Tonia, T.; Wilson, K.C.; Troosters, T. COVID-19: Interim Guidance on Rehabilitation in the Hospital and Post-Hospital Phase from a European Respiratory Society- and American Thoracic Society-Coordinated International Task Force. Eur. Respir. J. 2020, 56, 2002197. [Google Scholar] [CrossRef]
- Gloeckl, R.; Leitl, D.; Jarosch, I.; Schneeberger, T.; Nell, C.; Stenzel, N.; Vogelmeier, C.F.; Kenn, K.; Koczulla, A.R. Benefits of Pulmonary Rehabilitation in COVID-19: A Prospective Observational Cohort Study. ERJ Open Res. 2021, 7, 00108-2021. [Google Scholar] [CrossRef] [PubMed]
- Barker-Davies, R.M.; O’Sullivan, O.; Senaratne, K.P.P.; Baker, P.; Cranley, M.; Dharm-Datta, S.; Ellis, H.; Goodall, D.; Gough, M.; Lewis, S. The Stanford Hall Consensus Statement for Post-COVID-19 Rehabilitation. Br. J. Sports Med. 2020, 54, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Aytür, Y.K.; Köseoğlu, B.F.; Taşkıran, Ö.Ö.; Ordu-Gökkaya, N.K.; Delialioğlu, S.Ü.; Tur, B.S.; Sarıkaya, S.; Şirzai, H.; Tiftik, T.T.; Alemdaroğlu, E. Pulmonary Rehabilitation Principles in SARS-COV-2 Infection (COVID-19): A Guideline for the Acute and Subacute Rehabilitation. Turk. J. Phys. Med. Rehabil. 2020, 66, 104. [Google Scholar] [CrossRef] [PubMed]
Name | Mechanism of Action | Clinical Trial | Primary Outcomes |
---|---|---|---|
Pirfenidone | Impacts TGF-β and TGF-β-induced downstream mediators and products such as SMAD3; α-SMA; tenascin-c; fibronectin; collagen type I, II, and III; and the collagen-specific chaperone HSP47. Regulates growth factors, PDGF and bFGF, thereby modulating collagen production.Inhibits the expression of MMP-9, TIMP1, and MMP-2 directly or by reducing the synthesis of TGF-β and downstream mediators. Reduces TGF-β activation by MMPs [59] | FIBRO-COVID NCT04607928 |
|
PINCER NCT04856111 |
| ||
Deupirfenidone | An orally bioavailable and deuterated form of Pirfenidone. Inhibits various proinflammatory mediators, such as IL-6, TNF-α, and TGF-β | NCT04652518 |
|
Nintedanib | An ATP-competitive inhibitor of FGFR-1, VEGFR-2, and PDGFR-α and -β [60] | NCT04338802 |
|
ENDCOV-I NCT04619680 |
| ||
PINCER NCT04856111 |
| ||
IN01 vaccine | Anti-EGF polyclonal neutralizing antibodies, thereby preventing the binding of this factor to its receptors, blocking the signaling of pathways related to the growth of tumor growth factor and fibrosis | COVINVAC NCT04537130 |
|
Colchicine | An anti-inflammatory drug that inhibits the synthesis of TNF-α, IL-6, monocyte migration, and secretion of MMP-9, all of these effects diminish the fibrotic impact of COVID-19 [61] | NCT04818489 |
|
Treamid | A metal chelator that mediates inflammation reduction, and fibrosis reduces the deposition of hydroxyproline and collagen type I, fibronectin, and CTGF [62] | NCT04527354 |
|
Fuzheng Huayu | FZHY drug serum can inhibit the expression of α–SMA and collagen synthesis in a dose-dependent manner [63] | NCT04279197 |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherrez-Ojeda, I.; Cortés-Telles, A.; Gochicoa-Rangel, L.; Camacho-Leon, G.; Mautong, H.; Robles-Velasco, K.; Faytong-Haro, M. Challenges in the Management of Post-COVID-19 Pulmonary Fibrosis for the Latin American Population. J. Pers. Med. 2022, 12, 1393. https://doi.org/10.3390/jpm12091393
Cherrez-Ojeda I, Cortés-Telles A, Gochicoa-Rangel L, Camacho-Leon G, Mautong H, Robles-Velasco K, Faytong-Haro M. Challenges in the Management of Post-COVID-19 Pulmonary Fibrosis for the Latin American Population. Journal of Personalized Medicine. 2022; 12(9):1393. https://doi.org/10.3390/jpm12091393
Chicago/Turabian StyleCherrez-Ojeda, Ivan, Arturo Cortés-Telles, Laura Gochicoa-Rangel, Génesis Camacho-Leon, Hans Mautong, Karla Robles-Velasco, and Marco Faytong-Haro. 2022. "Challenges in the Management of Post-COVID-19 Pulmonary Fibrosis for the Latin American Population" Journal of Personalized Medicine 12, no. 9: 1393. https://doi.org/10.3390/jpm12091393
APA StyleCherrez-Ojeda, I., Cortés-Telles, A., Gochicoa-Rangel, L., Camacho-Leon, G., Mautong, H., Robles-Velasco, K., & Faytong-Haro, M. (2022). Challenges in the Management of Post-COVID-19 Pulmonary Fibrosis for the Latin American Population. Journal of Personalized Medicine, 12(9), 1393. https://doi.org/10.3390/jpm12091393