Trikafta—Extending Its Success to Less Common Mutations
Author Contributions
Funding
Conflicts of Interest
References
- Keating, D.; Marigowda, G.; Burr, L.D.; Daines, C.; Mall, M.A.; McKone, E.F.; Ramsey, B.W.; Rowe, S.M.; Sass, L.A.; Tullis, E.; et al. VX-445–Tezacaftor–Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles. N. Engl. J. Med. 2018, 379, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Middleton, P.G.; Mall, M.A.; Dřevínek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor–Tezacaftor–Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Heijerman, H.G.M.; McKone, E.F.; Downey, D.G.; Van Braeckel, E.; Rowe, S.M.; Tullis, E.; Mall, M.A.; Welter, J.J.; Ramsey, B.W.; McKee, C.M.; et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: A double-blind, randomised, phase 3 trial. Lancet 2019, 394, 1940–1948. [Google Scholar] [CrossRef]
- Zemanick, E.T.; Taylor-Cousar, J.L.; Davies, J.; Gibson, R.L.; Mall, M.A.; McKone, E.F.; McNally, P.; Ramsey, B.W.; Rayment, J.H.; Rowe, S.M.; et al. A Phase 3 Open-Label Study of Elexacaftor/Tezacaftor/Ivacaftor in Children 6 through 11 Years of Age with Cystic Fibrosis and at Least One F508del Allele. Am. J. Respir. Crit. Care Med. 2021, 203, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Reynaud-Gaubert, M.; Hamidfar, R.; Durieu, I.; Murris-Espin, M.; Danner-Boucher, I.; Chiron, R.; Leroy, S.; Douvry, B.; Grenet, D.; et al. Sustained effectiveness of elexacaftor-tezacaftor-ivacaftor in lung transplant candidates with cystic fibrosis. J. Cyst. Fibros. 2022, 21, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Mall, M.A.; Mayer-Hamblett, N.; Rowe, S.M. Cystic Fibrosis: Emergence of Highly Effective Targeted Therapeutics and Potential Clinical Implications. Am. J. Respir. Crit. Care Med. 2020, 201, 1193–1208. [Google Scholar] [CrossRef] [PubMed]
- Gramegna, A.; Contarini, M.; Bindo, F.; Aliberti, S.; Blasi, F. Elexacaftor–tezacaftor–ivacaftor: The new paradigm to treat people with cystic fibrosis with at least one p.Phe508del mutation. Curr. Opin. Pharmacol. 2021, 57, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Keeling, K.M.; Rowe, S.M. Pharmacological approaches for targeting cystic fibrosis nonsense mutations. Eur. J. Med. Chem. 2020, 200, 112436. [Google Scholar] [CrossRef] [PubMed]
- Kingwell, K. FDA OKs first in vitro route to expanded approval. Nat. Rev. Drug Discov. 2017, 16, 591–592. [Google Scholar] [CrossRef] [PubMed]
- Crawford, K.J.; Downey, D.G. Theratyping in cystic fibrosis. Curr. Opin. Pulm. Med. 2018, 24, 612–617. [Google Scholar] [CrossRef] [Green Version]
- Trikafta, Highlights of Prescribing Information. Available online: https://pi.vrtx.com/files/uspi_elexacaftor_tezacaftor_ivacaftor.pdf (accessed on 10 September 2022).
- Laselva, O.; Ardelean, M.; Bear, C. Phenotyping Rare CFTR Mutations Reveal Functional Expression Defects Restored by TRIKAFTATM. J. Pers. Med. 2021, 11, 301. [Google Scholar] [CrossRef] [PubMed]
- Moya-Quiles, M.R.; Glover, G.; Mondéjar-López, P.; Pastor-Vivero, M.D.; Fernández-Sánchez, A.; Sánchez-Solís, M. CFTR H609R mutation in Ecuadorian patients with cystic fibrosis. J. Cyst. Fibros. 2009, 8, 280–281. [Google Scholar] [CrossRef]
- Han, S.; Rab, A.; Pellicore, M.; Davis, E.F.; McCague, A.F.; Evans, T.A.; Joynt, A.T.; Lu, Z.; Cai, Z.; Raraigh, K.S.; et al. Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators. JCI Insight 2018, 3, 121159. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.B.; Ng, S.K. Impact of host cell line choice on glycan profile. Crit. Rev. Biotechnol. 2017, 38, 851–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bentur, L.; Pollak, M. Trikafta—Extending Its Success to Less Common Mutations. J. Pers. Med. 2022, 12, 1528. https://doi.org/10.3390/jpm12091528
Bentur L, Pollak M. Trikafta—Extending Its Success to Less Common Mutations. Journal of Personalized Medicine. 2022; 12(9):1528. https://doi.org/10.3390/jpm12091528
Chicago/Turabian StyleBentur, Lea, and Mordechai Pollak. 2022. "Trikafta—Extending Its Success to Less Common Mutations" Journal of Personalized Medicine 12, no. 9: 1528. https://doi.org/10.3390/jpm12091528
APA StyleBentur, L., & Pollak, M. (2022). Trikafta—Extending Its Success to Less Common Mutations. Journal of Personalized Medicine, 12(9), 1528. https://doi.org/10.3390/jpm12091528