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Abstract: Breast cancer (BC) is the most common cancer affecting women and the leading cause
of cancer-related deaths worldwide. Compelling evidence indicates that pyroptosis is inextricably
involved in the development of cancer and may activate tumor-specific immunity and/or enhance the
effectiveness of existing therapies. We constructed a novel prognostic prediction model for BC, based
on pyroptosis-related clusters, according to RNA-seq and clinical data downloaded from TCGA. The
proportions of tumor-infiltrating immune cells differed significantly in the two pyroptosis clusters,
which were determined according to 38 pyroptosis-related genes, and the immune-related pathways
were activated according to GO and KEGG enrichment analysis. A 56-gene signature, constructed
using univariate and multivariate Cox regression, was significantly associated with progression-free
interval (PFI), disease-specific survival (DSS), and overall survival (OS) of patients with BC. Cox
analysis revealed that the signature was significantly associated with the PFI and DSS of patients
with BC. The signature could efficiently distinguish high- and low-risk patients and exhibited high
sensitivity and specificity when predicting the prognosis of patients using KM and ROC analysis.
Combined with clinical risk, patients in both the gene and clinical low-risk subgroup who received
adjuvant chemotherapy had a significantly lower incidence of the clinical event than those who did
not. This study presents a novel 56-gene prognostic signature significantly associated with PFI, DSS,
and OS in patients with BC, which, combined with the TNM stage, might be a potential therapeutic
strategy for individualized clinical decision-making.

Keywords: breast cancer; prognostic signature; pyroptosis clusters; biomarker; TCGA

1. Introduction

Female breast cancer (BC) has become the most commonly diagnosed cancer, with an
estimated 2.3 million new cases, and is the fifth leading cause of cancer mortality worldwide,
with 685,000 deaths occurring in 2020 [1]. Independently of histological subtypes, molecular
subtypes were categorized as Luminal-like (including Luminal A and Luminal B), HER2-
positive, and triple-negative breast cancer (TNBC). These were based on tumor hormonal
status, human epidermal growth factor receptor 2 (HER2) status, and proliferation marker
protein Ki-67 (MKI67) status [2,3]. Based on TNM staging, breast cancer was categorized
into five different stages (0, I II, III, IV) [4]. In the course of clinical personalized treatment,
patients are further subdivided into advanced-stage (stages III and IV) and early-stage
(stages 0, I and II) BC [5,6]. Molecular subtype and clinical staging could assist in deciding
on therapeutic options for patients with BC [7], for instance, endocrine therapy for Luminal-
like BC [8,9], HER2-targeted therapy for HER2-positive BC [10,11], and chemotherapy
for TNBC [12,13]. Moreover, some authors showed that the ADH/ALDH activities are
lower in tumor cells than in normal parenchyma, suggesting that isoenzymes of ADH may
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play an important role in carcinogenesis. Additionally, among all tested classes of ADH
isoenzymes, only class I had higher activity in the serum of patients with breast cancer in
stage IV [14,15]. However, it is still difficult to decide on the most appropriate systemic
therapy or combination of therapies for a patient with BC based on only the traditional
clinicopathological prognostic factors [16].

With the advent of the era of big data and precision medicine, a variety of multigene
prognostic tools, including Oncotype Dx and MammaPrint, have been established to predict
outcomes and aid in adjunct therapy decision-making in patients with ER-positive, HER2-
negative BC that are either lymph-node-negative or node-positive (one to three metastatic
nodes) [17,18]. However, none can predict prognosis in all types of BC, and the prognosis
for some patients with BC is still not good. Additionally, due to the disease heterogeneity,
the variation in treatment responses among patients, and the lack of targeted therapy, there
is an urgent need to improve the therapeutic strategy against BC.

Considering the significance of the host immune system in controlling the progression
and spread of solid tumors, immunotherapy in breast cancer is currently being evaluated as
a new arm of treatment, in combination with existing therapeutic strategies [19]. Recently,
immunotherapy for BC has received more attention and has increasingly been used in
clinical practice. As of 15 September 2020, 82 trials were identified on Clinicaltrials.gov
and EURODACT as investigating immunotherapy for early BC [20]. The efficacy of im-
munotherapy is largely determined by the complex immune microenvironment of the
tumor [21,22]. A complex tumor microenvironment (TME) consisting of immune cells
(regulatory T cells, macrophages, B cells, etc.) and stromal cells (fibroblasts, endothelial
cells, and adipocytes) allows for overt immune escape and tumor progression to occur.
Pyroptosis, an inflammatory type of programmed cell death, accompanied by inflamma-
tory and immune responses, can influence the proliferation, invasion, and metastasis of
tumors [23–26]. Thus, it is imperative to find an effective pyroptosis-related signature for
the prediction of BC prognosis.

Herein, we took advantage of RNA-Seq and clinical datasets from TCGA to construct
a novel prognosis prediction signature for the progression-free interval (PFI) based on
pyroptosis-related clusters, disease-specific survival (DSS), and overall survival (OS) in
patients with BC, which not only provided important insights into the molecular and
signaling pathways of pyroptosis but also provided a theoretical reference that is significant
for individualized clinical decisions for patients with BC.

2. Methods
2.1. RNA-Seq and Clinical Datasets

Level 3 RNA-seq data (tumor, N = 1110 and normal, N = 113) and accompany-
ing clinical datasets were obtained through the TCGA Genomic Data Commons portal
(GDC, https://cancergenome.nih.gov/ (Data Release 31.0—29 October 2021)). Differential
pyroptosis-related gene expression analysis was achieved using RNA-seq data. Then,
samples from 1025 female patients with BC, cataloged by TCGA, for which clinical features
and RNA-seq data were available, were selected for further analyses. The BC dataset used,
from TGCA, was last updated on 29 October 2021. The presented results are completely
based on data generated by TCGA Research Network.

2.2. Identification of Pyroptosis-Related Clusters

Strawberry Perl software was used to merge RNA-seq files, and the Normalize Quan-
tiles (edgeR, R package) was used to normalize RNA expression levels. A total of 51
pyroptosis-related genes were obtained from the Reactome website (https://reactome.org/
(accessed on 31 October 2021)), and 38 differential pyroptosis-related genes were de-
termined using the R package “limma” (FDR ≤ 0.05). According to the 38 differential
pyroptosis-related genes, pyroptosis-related clusters were built by the R package “Con-
sensusClusterPlus (version 1.50.0, Wilkerson MD, Hayes DN. Lineberger Comprehensive
Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA)”.

Clinicaltrials.gov
https://cancergenome.nih.gov/
https://reactome.org/
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2.3. Bioinformatic Analysis of the Two Pyroptosis-Related Clusters

A total of 434 DEGs associated with the two pyroptosis-related clusters were identi-
fied. GO functional enrichment and KEGG pathway analysis were performed to discover
biological processes overrepresented in the 434 gene list by R package “clusterProfiler”,
“org.Hs.eg.db”, “enrichplot”, “ggplot2”, and “graphlayouts”. To identify potential interac-
tions between DEGs, a protein–protein interaction (PPI) network was analyzed using the
String database (http://string-db.org/ (accessed on 12 November 2021)).

2.4. Risk Prognostic Model Construction and Evaluation

The dataset (N = 1025) was used to develop a clinical prognostic prediction model, and
half of the dataset (N = 512) was randomly selected as a validation dataset, which was used
to verify the accuracy of the RNA-based prognostic model as a predictor of PFI of patients
with BC. Univariate and multivariate Cox proportional hazard models were constructed
as risk prognostic models, and area under the curve (AUC) analysis was conducted to
evaluate their accuracy.

2.5. Nomogram Construction

The independent predictors, evaluated by univariate and multivariate Cox regression,
were included to establish a nomogram model by the R package “rms”, “foreign”, and
“survival”, aiming to evaluate the predictive power of independent predictors for 5-year,
and 10-year PFI and DSS rates. Subsequently, a calibration plot was established to evaluate
the accuracy of the nomogram prediction with the R package “rms” and “survival”.

2.6. Statistical Analyses

Statistical analyses were conducted using SPSS statistical suite version 25.0 (IBM SPSS
Statistics, Chicago, USA), Strawberry Perl version 5.32.1.1 (https://strawberryperl.com/
release-notes/5.32.1.1-32bit.html (accessed on 12 November 2021)), and R version 3.6.1 (R
Project for Statistical Computing, https://www.r-project.org (accessed on 12 November
2021)). Statistical significance was defined as a two-sided p-value or adjusted p-value
≤ 0.05. The primary outcome in this study was PFI, the secondary outcome was DSS,
and the event times of PFI, DSS, and OS were defined according to the guidelines for
time-to-event endpoint definitions in the BC trial [27]. The PFI, DSS, and OS event times
for the individual patients enrolled in this retrospective study were manually retrieved
from TCGA clinical records and a previous study [28,29]. The Wilcoxon test (FDR ≤ 0.05)
was used to identify the DEGs for variables of two groups using the R package “limma”.
The DEGs with prognostic value, identified using univariate Cox proportional hazard
models (p-value ≤ 0.05), were further analyzed by multivariate Cox regression (default
settings: backward, conditional, entry 0.05, removal 0.10), and 56 pyroptosis-related DEGs
identified by this analysis were used to construct a formula for the calculation of prognostic
risk scores. The results of univariate and multivariate Cox regression are presented as a
hazard ratio (HR), with a 95% confidence interval (CI). The cut-off point was calculated
by the R package “ggrisk”. Next, BC cases were categorized as “low risk” or “high risk”
based on risk scores being higher or lower than the cut-off point. Chi-square analysis was
used to assess the correlation between BC clinicopathological features and risk subgroups.
Kaplan–Meier (KM) analyses were applied to generate survival curves and the log-rank test
was used to establish the significance of differences between curves. The receiver operating
characteristic (ROC) curve was constructed to assess the prognostic performance of the risk
score. A prognostic nomogram to predict individual survival based on the signature and
clinical risk factors was constructed by Cox regression. The accuracy of the risk prognostic
model was tested using AUC (95% CI) values.

http://string-db.org/
https://strawberryperl.com/release-notes/5.32.1.1-32bit.html
https://strawberryperl.com/release-notes/5.32.1.1-32bit.html
https://www.r-project.org


J. Pers. Med. 2023, 13, 69 4 of 23

3. Results
3.1. Identification of Pyroptosis-Related Clusters

A total of 38 differential pyroptosis-related genes were determined between normal
and tumor samples (normal, N = 113 and tumor, N = 1110) from 51 pyroptosis-related genes,
and the expression levels of the 38 genes were shown using the R package “pheatmap”
(Figure 1A). Subsequently, based on the 38 differential pyroptosis-related genes, two
pyroptosis-related clusters (cluster C1, N = 439; cluster C2, N = 586) were built using the R
package “ConsensusClusterPlus” (Figure 1B–D), and principal components analysis (PCA)
and t-Distributed Stochastic Neighbor Embedding analysis (tSNE) plots were constructed
to show the two clusters with obvious alterations using the R package “Rtsne” (Figure 1E,F).
KM analysis indicated that patients in the low-risk group had significantly longer PFI, DSS,
and OS (PFI, p = 0.001, DSS, p = 7 × 10−4, OS, p < 0.0001) (Figure 1G–I).
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Figure 1. Pyroptosis-related clusters were determined according to 38 pyroptosis-related genes in
BC. (A) A heatmap of the expression levels of 38 pyroptosis-related genes between the normal and
tumor tissues. (B,C) Consensus clustering CDF and relative change in area under CDF curve for k =
2–9. (D) Consensus cluster matrix of breast cancer tumor samples when k = 2. (E,F) Two-dimensional
principal component, and viSNE analysis based on the expression levels of 38 pyroptosis-related
genes. The red dots represent C1, and the blue dots represent C2. (G–I) KM curves of PFI, DSS, and
OS for the two pyroptosis-related clusters. Notes: *, p < 0.05; **, p < 0.01; ***, p < 0.001.

3.2. Identification of DEGs and Bioinformatic Analysis of the Two Pyroptosis-Related Clusters

Differential gene expression analysis was run on the two pyroptosis-related clusters
using the Wilcoxon test. A total of 434 DEGs were identified and are shown in the pheatmap
(Figure 2A). GO functional enrichment (Figure 2B) and KEGG pathway (Figure 2C) analysis
demonstrated that the DEGs were enriched in immune-related pathways, such as humoral
immune response, adaptive immune response based on the somatic recombination of im-
mune, B-cell-mediated immunity, complement activation, and immunoglobulin-mediated
immune response. To further estimate the level of individual tumor-infiltrating immune
cells in the two pyroptosis-related clusters, we performed CIBERSORT, and the landscape
of tumor-infiltrating immune cells is shown in the barplot (Figure 2D). Some types of
tumor-infiltrating immune cells were variously distributed in different pyroptosis-related
clusters, such as naïve B cells, plasma cells, T cells CD8, T cells CD4 memory resting, T
cells CD4 memory-activated, T cells follicular helper, T cells gamma delta, NK cells rest-
ing, macrophages M0, macrophages M1, macrophages M2, dendritic cells resting, mast
cells resting, mast cells activated, and neutrophils (Figure 2E). Subsequently, the PPI was
constructed to visualize the interactions among 434 DEGs (Figure 2F).
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3.3. Construction of Risk Model Based on Pyroptosis-Related DEGs

The univariate Cox proportional hazard analysis identified 256 DEGs with prognostic
value, 56 of which were determined by multivariate Cox regression to be the optimum
prognostic models for predicting PFI risk in patients with BC (Figure 3A). Risk scores
were calculated using the formula construct according to multivariate Cox regression (Risk
calculation formula). Based on the risk score, −0.956728925, which was calculated as the
cut-off point, the patients were grouped into high- (N = 308) and low- (N = 717) risk groups.
Patients with high-risk scores tended to present poorer clinical outcomes compared with
patients with low-risk scores (Figure 3B). The expression levels of the 56 genes are shown
in a violin plots (Figure 3C).

KM analysis indicated that patients in the low-risk group had significantly longer PFI,
DSS, and OS in the training and validation datasets (all p < 0.0001) (Figure 3D–F,J–L). ROC
curve analysis shows that the 56-gene signature had good sensitivity and specificity for
predicting PFI, DSS, and OS in the training and validation datasets (training dataset, PFI,
AUC = 0.768, 95% CI 0.727–0.810, p < 0.001; DSS, AUC = 0.744, 95% CI 0.689–0.800, p <
0.001; OS, AUC = 0.634, 95% CI 0.582–0.686, p < 0.001; validation dataset, PFI, AUC = 0.793,
95% CI 0.737–0.849, p < 0.001; DSS, AUC = 0.751, 95% CI 0.667–0.836, p < 0.001; OS, AUC =
0.666, 95% CI 0.588–0.744, p < 0.001) (Figure 3G–I,M–O).
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Figure 3. Construction of a 56-gene prognostic signature for BC based on pyroptosis-related DEGs.
(A) A forest plot of multivariable Cox regression analyses. (B) The distribution and survival status of
BC patients with different risk scores. The blue and red dots represent clinical events or no clinical
events. (C) A vioplot of the 56-gene signature in the two risk groups. (D–F,J–L), KM curves of PFI,
DSS, and OS for high- and low-risk groups in the training and validation datasets. (G–I,M–O), ROC
analysis shows the sensitivity and specificity of the 56-gene signature for predicting PFI, DSS, and OS
for high- and low-risk groups in the training and validation datasets.

3.4. Clinicopathological Features

A total of 1025 female cases with BC recorded in TCGA were extracted for analysis in
this study. The median patient age was 58 years (ranging from 26 to 90 years), while the
median PFI was 767 days, and DSS was 825 days. The 10-year PFI rate for all analyzed cases
was 87.6%, and 10-year DSS was 92.9%. BC tumor size, lymph node, and metastasis status
(TNM) stage were defined as outlined by the Eighth Edition American Joint Committee
on Cancer (AJCC) Staging Manual [4], and molecular subtype (PAM50) was derived from
a previous report by Thorsson et al. [28]. In the age subgroup, the proportion of ≥61 y
subgroup patients in the high-risk group was significantly higher than that in the ≤40
y and 41–60 y subgroup in the training dataset (χ2 = 6.492, p = 0.040), but not in the
validation dataset (χ2 = 5.661, p = 0.059). In the molecular subgroup, the proportion of
luminal A subgroup patients in the high-risk group was significantly lower than that in
the other subgroup in the training dataset (χ2 = 10.957, p = 0.027), but not in the validation
dataset (χ2 = 6.174, p = 0.187). Further, metastasis status was associated with a higher
proportion of patients in the high-risk group for both the total dataset (χ2 = 11.582, p
= 0.001) and validation dataset (χ2 = 7.243, p = 0.011). The demographic and clinical,
pathologic characteristics of the patients with breast cancer are shown in Table 1.
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Table 1. Demographic and Clinical, Pathologic Characteristics of Patients with Breast Cancer.

Variable

Training Dataset Validation Dataset

Total
Risk Group

χ2 p Value Total
Risk Group

χ2 p Value
Low High Low High

n = 1025 n = 717 n = 308 n = 512 n = 355 n = 157

Age, year
≤40 94 70 24 6.429 0.040 45 33 12 5.661 0.059

41–60 473 345 128 243 179 64
≥61 458 302 156 224 143 81

Subtype (PAM50)
LumA 480 357 123 10.957 0.027 54 35 19 6.174 0.187
LumB 176 110 66 253 186 67
HER2 70 48 22 86 53 33
Basal 170 111 59 39 29 10

Normal 129 91 38 80 52 28
Tumor size

T1 261 194 67 5.926 0.052 119 90 29 3.515 0.172
T2 601 420 181 307 210 97

T3–T4 163 103 60 86 55 31
Lymph node status

N0 498 351 147 5.650 0.059 246 170 76 2.033 0.362
N1 343 250 93 168 122 46

N2–N3 184 116 68 98 63 35
Metastasis status

M0 1009 712 297 11.582 0.001 502 352 150 7.243 0.011 a

M1 16 5 11 10 3 7
a. Fisher’s Exact Test.

3.5. 56-Gene Signature Associated with Prognosis of Patients with BC

Univariate and multivariate Cox proportional hazard regression analyses for 10-year
PFI indicated that a higher 56-gene risk score was correlated with a higher incidence of
clinical events (univariate analysis, HR = 6.257, 95% CI: 4.331–9.039, p < 0.001; multivariate
analysis, HR = 5.643, 95% CI 3.894–8.175, p < 0.001). Furthermore, univariate and multivari-
ate Cox proportional hazard regression analyses for 10-year DSS also indicated that a higher
56-gene risk score was correlated with a higher incidence of clinical events (univariate
analysis, HR = 5.520, 95% CI: 3.407–8.944, p < 0.001; multivariate analysis, HR = 4.578, 95%
CI 2.797–7.494, p < 0.001). The results of univariate and multivariate Cox proportional
hazard regression analyses for 10-year PFI and DSS are shown in Table 2.

Furthermore, KM survival curves for 10-year PFI, DSS, and OS showed that the high-
risk group had a worse prognosis in both the training (all, p < 0.0001) and validation
(all, p < 0.0001) datasets (Figure 3D–F,J–L). To determine the sensitivity and specificity
of the prognostic signature for predicting survival, we conducted ROC analyses of the
training and validation datasets. ROC curves showed that the prognostic signature had
good sensitivity and specificity for predicting survival for 10-year PFI, DSS, and OS in both
the training (PFI, AUC = 0.768, 95% CI 0.727–0.810, p < 0.001; DSS, AUC = 0.744, 95% CI
0.689–0.800, p < 0.001; OS, AUC = 0.634, 95% CI 0.582–0.686, p < 0.001) and validation (PFI,
AUC = 0.793, 95% CI 0.737–0.849, p < 0.001; DSS, AUC = 0.751, 95% CI 0.667–0.836, p <
0.001; OS, AUC = 0.666, 95% CI 0.588–0.744, p < 0.001) datasets (Figure 3G–I,M–O).
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Table 2. Univariate and Multivariate Cox proportional hazard models of PFI and DSS in Breast
Cancer.

Variables

Progression-Free Interval Disease-Specific Survival

Univariate Multivariate Univariate Multivariate

HR 95% CI p Value HR 95% CI p Value HR 95% CI p Value HR 95% CI p Value

Age

41–60 year 0.468 0.285–
0.769 0.003 0.5014 0.299–

0.841 0.009 0.446 0.228–
0.439 0.018 0.445 0.217–

0.912 0.027

≥61 year 0.686 0.421–
1.119 0.131 0.716 0.431–

1.191 0.198 0.834 0.439–
1.585 0.580 0.972 0.494–

1.912 0.935

Subtype (PAM50)

Luminal-A 0.675 0.416–
1.095 0.112 0.417 0.222–

0.783 0.006 0.414 0.218–
0.787 0.007

Luminal-B 0.694 0.370–
1.301 0.255 0.589 0.269–

1.289 0.185 0.378 0.168–
0.851 0.019

HER2 1.040 0.485–
2.230 0.920 0.757 0.279–

2.054 0.584 0.810 0.291–
2.258 0.687

Basal-like 1.217 0.712–
2.081 0.473 0.910 0.464–

1.787 0.785 0.841 0.415–
1.706 0.632

Tumor size

T2 1.865 1.144–
3.042 0.013 1.476 0.891–

2.447 0.131 1.656 0.881–
3.110 0.117 0.994 0.508–

1.947 0.986

T3–T4 3.643 2.131–
6.228 <0.001 2.073 1.145–

3.751 0.016 3.126 1.561–
6.257 0.001 1.483 0.682–

3.228 0.320

Lymph node status

N1 1.670 1.106–
2.522 0.015 1.367 0.893–

2.094 0.150 2.723 1.538–
4.822 0.001 2.592 1.421–

4.730 0.002

N2–N3 3.151 2.015–
4.929 <0.001 1.597 0.953–

2.677 0.075 4.137 2.186–
7.830 <0.001 2.767 1.327–

5.773 0.007

Metastasis status

M1 7.804 4.386–
13.900 <0.001 4.305 2.261–

8.194 <0.001 7.053 3.489–
14.260 <0.001 3.553 1.617–

7.807 0.002

Risk group

High-risk 6.257 4.331–
9.039 <0.001 5.643 3.894–

8.175 <0.001 5.520 3.407–
8.944 <0.001 4.578 2.797–

7.494 <0.001

PFI, Progression-Free Interval; CI, Confidence Interval; HR, Hazard Ratio.

3.6. Evaluation of the Predictive Power of the Prognostic Signature

According to the AJCC cancer staging manual (eighth edition), the TNM stage is
correlated with cancer prognosis [4,16,30]. Furthermore, age and intrinsic molecular sub-
type (PAM50) are closely linked to prognosis in patients with BC [31–34]. Furthermore, to
validate the potential of the prognostic signature as a predictor of the PFI, DSS, and OS
of patients with BC, the entire TCGA BC dataset was stratified by TNM stage, age, and
molecular subtype. Patients were split into three age subgroups (≤40, 41–60, and ≥61 years
old), three lymph node status subgroups (N0, N1, and N2–N3), three tumor size subgroups
(T1, T2, and T3–T4), and five molecular subtype subgroups (PAM50, luminal A, luminal B,
HER2, basal-like, and normal-like).

KM analysis indicated that patients in the low-risk group had significantly longer PFI,
DSS, and OS in all three age subgroups (PFI, all subgroup, p < 0.0001; DSS, ≤40 y subgroup,
p = 0.0082, 41–61 y subgroup, p < 0.0001, ≥61 y subgroup, p < 0.0001; OS, ≤40 y subgroup,
p = 0.0038, 41–61 y subgroup, p < 0.0001, ≥61 y subgroup, p = 0.00057) (Figure 4A–C,G–
I; Figure S1A–C). ROC curve analysis showed that the prognostic signature had good
sensitivity and specificity for predicting PFI, DSS, and OS in all three age subgroups (PFI,
≤40 y subgroup, AUC = 0.796, 95% CI 0.693–0.899, p < 0.001; 41–61 y subgroup, AUC =
0.765, 95% CI 0.703–0.808, p < 0.001; ≥61 y subgroup, AUC = 0.781, 95% CI 0.715–0.847,
p < 0.001; DSS, ≤40 y subgroup, AUC = 0.771, 95% CI 0.661–0.881, p = 0.002; 41–61 y
subgroup, AUC = 0.718, 95% CI 0.619–0.817, p < 0.001; ≥61 y subgroup, AUC = 0.762, 95%
CI 0.680–0.844, p < 0.001; OS, ≤40 y subgroup, AUC = 0.716, 95% CI 0.595–0.838, p = 0.007;
41–61 y subgroup, AUC = 0.636, 95% CI 0.543–0.728, p < 0.004; ≥61 y subgroup, AUC =
0.603, 95% CI 0.529–0.678, p < 0.006) (Figure 4D–F,J–L; Figure S1D–F).



J. Pers. Med. 2023, 13, 69 11 of 23

J. Pers. Med. 2023, 13, x FOR PEER REVIEW 12 of 25 
 

 

41–61 y subgroup, AUC = 0.636, 95% CI 0.543–0.728, p < 0.004; ≥61 y subgroup, AUC = 
0.603, 95% CI 0.529–0.678, p < 0.006) (Figure 4D–F,J–L; Figure S1D–F). 

 
Figure 4. KM and ROC curve analyses of patients stratified by age. (A–C,G–I), KM curves of PFI 
and DSS for high and low-risk groups in the ≤40-year, 41–60-year, and ≥ 61-year subgroups. (D–F,J–
L), ROC analysis showed the sensitivity and specificity of prognostic signature for predicting PFI 
and DSS for high and low-risk groups in the ≤40-year, 41–60-year, and ≥61-year subgroups. 

In the analyses of tumor size subgroups, KM curves also showed that patients in the 
low-risk group had a significantly better prognosis for PFI, DSS, and OS than those in the 
high-risk group (PFI, T1 subgroup, p < 0.0001, T2 subgroup, p < 0.0001, T3–T4 subgroup, 
p < 0.0001; DSS, T1 subgroup, p = 0.0026, T2 subgroup, p < 0.0001, T3–T4 subgroup, p < 
0.0001; OS, T1 subgroup, p = 0.0095, T2 subgroup, p < 0.00012, T3–T4 subgroup, p < 0.0012) 
(Figure 5A–C,G–I; Figure S1G–I). ROC analysis demonstrated that the prognostic 
signature had good sensitivity and specificity for predicting PFI, DSS, and OS in all three 
tumor size status subgroups (PFI, T1 subgroup, AUC = 0.756, 95% CI 0.661–0.850, p < 0.001, 
T2 subgroup, AUC = 0.758, 95% CI 0.700–0.816, p < 0.001, T3–T4 subgroup, AUC = 0.785, 
95% CI 0.702–0.867, p < 0.001; DSS, T1 subgroup, AUC = 0.731, 95% CI 0.589–0.873, p = 
0.005, T2 subgroup, AUC = 0.715, 95% CI 0.641–0.789, p < 0.001, T3–T4 subgroup, AUC = 
0.789, 95% CI 0.684–0.894, p < 0.001; OS, T1 subgroup, AUC = 0.650, 95% CI 0.535–0.766, p 
= 0.017, T2 subgroup, AUC = 0.602, 95% CI 0.531–0.672, p < 0.006, T3–T4 subgroup, AUC 
= 0.667, 95% CI 0.561–0.772, p < 0.003) (Figure 5D–F,J–L; Figure S1J–L). 

Figure 4. KM and ROC curve analyses of patients stratified by age. (A–C,G–I), KM curves of PFI and
DSS for high and low-risk groups in the ≤40-year, 41–60-year, and ≥61-year subgroups. (D–F,J–L),
ROC analysis showed the sensitivity and specificity of prognostic signature for predicting PFI and
DSS for high and low-risk groups in the ≤40-year, 41–60-year, and ≥61-year subgroups.

In the analyses of tumor size subgroups, KM curves also showed that patients in the
low-risk group had a significantly better prognosis for PFI, DSS, and OS than those in the
high-risk group (PFI, T1 subgroup, p < 0.0001, T2 subgroup, p < 0.0001, T3–T4 subgroup,
p < 0.0001; DSS, T1 subgroup, p = 0.0026, T2 subgroup, p < 0.0001, T3–T4 subgroup, p <
0.0001; OS, T1 subgroup, p = 0.0095, T2 subgroup, p < 0.00012, T3–T4 subgroup, p < 0.0012)
(Figure 5A–C,G–I; Figure S1G–I). ROC analysis demonstrated that the prognostic signature
had good sensitivity and specificity for predicting PFI, DSS, and OS in all three tumor
size status subgroups (PFI, T1 subgroup, AUC = 0.756, 95% CI 0.661–0.850, p < 0.001, T2
subgroup, AUC = 0.758, 95% CI 0.700–0.816, p < 0.001, T3–T4 subgroup, AUC = 0.785, 95%
CI 0.702–0.867, p < 0.001; DSS, T1 subgroup, AUC = 0.731, 95% CI 0.589–0.873, p = 0.005, T2
subgroup, AUC = 0.715, 95% CI 0.641–0.789, p < 0.001, T3–T4 subgroup, AUC = 0.789, 95%
CI 0.684–0.894, p < 0.001; OS, T1 subgroup, AUC = 0.650, 95% CI 0.535–0.766, p = 0.017, T2
subgroup, AUC = 0.602, 95% CI 0.531–0.672, p < 0.006, T3–T4 subgroup, AUC = 0.667, 95%
CI 0.561–0.772, p < 0.003) (Figure 5D–F,J–L; Figure S1J–L).
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Figure 5. KM and ROC curve analyses of patients stratified by tumor size status. (A–C,G–I), KM
curves of PFI and DSS for high- and low-risk groups in the T1, T2, and T3–T4 subgroups. (D–F,J–L),
ROC analysis showed the sensitivity and specificity of prognostic signature for predicting PFI and
DSS for high- and low-risk groups in the T1, T2, and T3–T4 subgroups.

In KM analyses, the curves showed that patients in the low-risk group had a signifi-
cantly better prognosis for PFI, DSS, and OS than those in the high-risk group for all the
lymph node subgroups (PFI, all the lymph node subgroup, p < 0.0001; DSS, N0 subgroup,
p < 0.0001, N1 subgroup, p = 0.0027, N2–N3 subgroup, p < 0.0001; OS, N0 subgroup, p <
0.0001, N1 subgroup, p = 0.024, N2–N3 subgroup, p = 0.0022) (Figure 6A–C,K–M; Figure
S2A–C). ROC analysis demonstrated that the prognostic signature had good sensitivity
and specificity for predicting PFI, DSS, and OS in all three lymph node status subgroups
(PFI, N0 subgroup, AUC = 0.819, 95% CI 0.762–0.875, p < 0.001, N1 subgroup, AUC = 0.733,
95% CI 0.665–0.801, p < 0.001, N2–N3 subgroup, AUC = 0.764, 95% CI 0.676–0.853, p <
0.001; DSS, N0 subgroup, AUC = 0.805, 95% CI 0.717–0.894, p < 0.001, N1 subgroup, AUC =
0.694, 95% CI 0.613–0.775, p < 0.001, N2–N3 subgroup, AUC = 0.797, 95% CI 0.691–0.904, p
< 0.001; OS, N0 subgroup, AUC = 0.638, 95% CI 0.544–0.733, p = 0.019, N1 subgroup, AUC
= 0.599, 95% CI 0.520–0.678, p = 0.021, N2–N3 subgroup, AUC = 0.689, 95% CI 0.589–0.789,
p = 0.001) (Figure 6F–H,J–L; Figure S2F–H).
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Figure 6. KM and ROC curve analyses of patients stratified by lymph node and metastasis status.
(A–E,K–O) KM curves of PFI and DSS for high- and low-risk groups in the N0, N1, N2–N3, M0,
and M1 subgroups. (F–J,P–T) ROC analysis showed the sensitivity and specificity of the prognostic
signature for predicting PFI and DSS for high- and low-risk groups in the N0, N1, N2–N3, M0, and
M1 subgroups.

In the analyses of metastasis status subgroups, KM curves also showed that patients
in the low-risk group had a significantly better prognosis for PFI than those in the high-risk
group (M0 subgroup, p < 0.0001, M1 subgroup, p = 0.012) (Figure 6D,E), but not for DSS
and OS (DSS, M0 subgroup, p < 0.0001, M1 subgroup, p = 0.2; OS, M0 subgroup, p < 0.0001,
M1 subgroup, p = 0.36) (Figure 6N,O; Figure S2D,E). ROC analysis demonstrated that
the signature had good sensitivity and specificity for predicting PFI, DSS, and OS in M0
subgroups (PFI, AUC = 0.764, 95% CI 0.721–0.808, p < 0.001; DSS, AUC = 0.737, 95% CI
0.677–0.796, p < 0.001; OS, AUC = 0.620, 95% CI 0.565–0.674, p < 0.001), but not in the M1
subgroup (PFI, AUC = 0.385, 95% CI 0.014–0.755, p = 0.545; DSS, AUC = 0.573, 95% CI
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0.221–0.853, p = 0.814; OS, AUC = 0.473, 95% CI 0.152–0.794, p = 0.865) (Figure 6I,J,S,T;
Figure S2I,J).

In the analyses of the five molecular subtype subgroups, KM curves also showed
that patients in the low-risk group had significantly better prognosis for PFI and DSS
than those in the high-risk group (PFI, normal-like subgroup, p < 0.0001, Luminal A
subgroup, p < 0.001, Luminal B subgroup, p = 0.0006, HER2 subgroup, p = 0.0003, Basal-like
subgroup, p < 0.0001; DSS, normal-like subgroup, p = 0.025, Luminal A subgroup, p <
0.0001, Luminal B subgroup, p = 0.0007, HER2 subgroup, p = 0.0057, Basal-like subgroup, p
< 0.0001) (Figure 7A–E,K–O), but not all for OS (normal-like subgroup, p = 0.019, Luminal
A subgroup, p = 0.0022, Luminal B subgroup, p = 0.064, HER2 subgroup, p = 0.1, Basal-like
subgroup, p < 0.0001) (Figure S2K–O). ROC analysis demonstrated that the signature had
good sensitivity and specificity for predicting PFI and DSS in all five molecular subtype
subgroups (PFI, normal-like subgroup, AUC = 0.783, 95% CI 0.689–0.876, p < 0.001, Luminal
A subgroup, AUC = 0.744, 95% CI 0.673–0.815, p < 0.001, Luminal B subgroup, AUC =
0.692, 95% CI 0.561–0.824, p = 0.011, HER2 subgroup, AUC = 0.854, 95% CI 0.753–0.955, p =
0.001, Basal-like subgroup, AUC = 0.813, 95% CI 0.738–0.888, p < 0.001; DSS, normal-like
subgroup, AUC = 0.735, 95% CI 0.618–0.853, p = 0.002, Luminal A subgroup, AUC = 0.698,
95% CI 0.594–0.802, p = 0.001, Luminal B subgroup, AUC = 0.751, 95% CI 0.611–0.891, p =
0.008, HER2 subgroup, AUC = 0.851, 95% CI 0.712–0.989, p = 0.009, Basal-like subgroup,
AUC = 0.789, 95% CI 0.684–0.894, p < 0.001) (Figure 7F–J,P–T), but not all for OS (normal-
like subgroup, AUC = 0.660, 95% CI 0.559–0.760, p = 0.004, Luminal A subgroup, AUC =
0.603, 95% CI 0.516–0.691, p = 0.028, Luminal B subgroup, AUC = 0.583, 95% CI 0.444–0.723,
p = 0.247, HER2 subgroup, AUC = 0.635, 95% CI 0.411–0.859, p = 0.216, Basal-like subgroup,
AUC = 0.769, 95% CI 0.661–0.878, p < 0.001) (Figure S2P–T). These KM and ROC curves are
presented in Figure 4, Figure 5, Figure 6, Figure 7, Figures S1 and S2, and the results are
summarized in Table 3. Overall, these analyses indicate that the prognostic signature has a
good predictive value.
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Table 3. Result of Kaplan–Meier and ROC analysis based on different regrouping methods. 

   Progression-Free Interval Disease-Specific Survival 
Regroupin
g Factors Subgroup Sample 

Size 
Kaplan–Meier ROC Kaplan–Meier ROC 

p Value AUC 95% CI p Value p Value AUC 95% CI p Value 
Age, y          

 ≦40 94 <0.001 0.796 0.693–0.899 <0.001 0.001 0.771 0.661–0.881 0.002 
 41–60 473 <0.001 0.765 0.703–0.808 <0.001 <0.001 0.718 0.619–0.817 <0.001 
 ≧61 458 <0.001 0.781 0.715–0.847 <0.001 <0.001 0.762 0.680–0.844 <0.001 

Tumor size status          
 T1 261 <0.001 0.756 0.661–0.850 <0.001 0.003 0.731 0.589–0.873 0.005 
 T2 601 <0.001 0.758 0.700–0.816 <0.001 <0.001 0.715 0.641–0.789 <0.001 
 T3-T4 163 <0.001 0.785 0.702–0.867 <0.001 <0.001 0.789 0.648–0.894 <0.001 

Lymph node status          
 N0 498 <0.001 0.819 0.762–0.875 <0.001 <0.001 0.805 0.717–0.894 <0.001 
 N1 343 <0.001 0.733 0.665–0.801 <0.001 <0.001 0.694 0.613–0.775 <0.001 
 N2-N3 184 <0.001 0.764 0.676–0.853 <0.001 <0.001 0.797 0.691–0.904 <0.001 

Metastasis status          
 M0 1009 <0.001 0.764 0.721–0.808 <0.001 <0.001 0.737 0.677–0.796 <0.001 
 M1 16 0.012  0.385 0.014–0.755 0.545 0.200 0.537 0.221–0.853 0.814 

Subtype (PAM50)          

 Normal 
like 129 <0.001 0.783 0.689–0.876 <0.001 0.025 0.735 0.618–0.853 0.002 

 Luminal-
A 480 <0.001 0.744 0.673–0.815 <0.001 <0.001 0.698 0.594–0.802 0.001 

 Luminal-B 176 <0.001 0.692 0.561–0.824 0.011 <0.001 0.751 0.611–0.891 0.008 
 HER2 70 <0.001 0.854 0.753–0.955 0.001 0.006 0.851 0.712–0.989 0.009 
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Figure 7. KM and ROC curve analyses of patients stratified by molecular subtype (PAM50). (A–E,K–
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prognostic signature for predicting PFI and DSS for high- and low-risk groups in the normal-like,
Luminal A, Luminal B, HER2, Basal-like subgroups.

Table 3. Result of Kaplan–Meier and ROC analysis based on different regrouping methods.

Progression-Free Interval Disease-Specific Survival

Regrouping
Factors

Subgroup Sample
Size

Kaplan–
Meier ROC Kaplan–

Meier ROC

p Value AUC 95% CI p Value p Value AUC 95% CI p Value

Age, y
≤40 94 <0.001 0.796 0.693–0.899 <0.001 0.001 0.771 0.661–0.881 0.002

41–60 473 <0.001 0.765 0.703–0.808 <0.001 <0.001 0.718 0.619–0.817 <0.001
≥61 458 <0.001 0.781 0.715–0.847 <0.001 <0.001 0.762 0.680–0.844 <0.001

Tumor size status
T1 261 <0.001 0.756 0.661–0.850 <0.001 0.003 0.731 0.589–0.873 0.005
T2 601 <0.001 0.758 0.700–0.816 <0.001 <0.001 0.715 0.641–0.789 <0.001

T3–T4 163 <0.001 0.785 0.702–0.867 <0.001 <0.001 0.789 0.648–0.894 <0.001
Lymph node status

N0 498 <0.001 0.819 0.762–0.875 <0.001 <0.001 0.805 0.717–0.894 <0.001
N1 343 <0.001 0.733 0.665–0.801 <0.001 <0.001 0.694 0.613–0.775 <0.001

N2–N3 184 <0.001 0.764 0.676–0.853 <0.001 <0.001 0.797 0.691–0.904 <0.001
Metastasis status

M0 1009 <0.001 0.764 0.721–0.808 <0.001 <0.001 0.737 0.677–0.796 <0.001
M1 16 0.012 0.385 0.014–0.755 0.545 0.200 0.537 0.221–0.853 0.814

Subtype (PAM50)
Normal like 129 <0.001 0.783 0.689–0.876 <0.001 0.025 0.735 0.618–0.853 0.002
Luminal-A 480 <0.001 0.744 0.673–0.815 <0.001 <0.001 0.698 0.594–0.802 0.001
Luminal-B 176 <0.001 0.692 0.561–0.824 0.011 <0.001 0.751 0.611–0.891 0.008

HER2 70 <0.001 0.854 0.753–0.955 0.001 0.006 0.851 0.712–0.989 0.009
Basal like 170 <0.001 0.813 0.738–0.888 <0.001 <0.001 0.789 0.684–0.894 <0.001

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval.

3.7. Nomogram Development

To apply the prognostic signature in clinical settings, based on the results of uni-
variate and multivariate Cox proportional hazard regression analyses, nomograms were
constructed to predict the PFI and DSS of BC patients at 5 and 10 years. Each risk factor
corresponds to a designated point, determined by drawing a line perpendicular to the
point’s axis. The sum of the corresponding risk factor points located on the total points
represents the probability of 5- and 10-year PFI or DSS, directly leading, straight down, to
the 5- and 10-year PFI or DSS axis (Figure 8A,B). The calibration curves demonstrated that
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the signature possesses high consistencies in nomogram-predicted and actual results when
predicting the 5- and 10-year PFI (Figure 8C,D) or DSS (Figure 8E,F) rate of BC patients. Our
data suggested that the nomograms for PFI and DSS exhibited a good predictive efficacy in
5- and 10-year PFI and DSS probabilities.
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Figure 8. Nomogram for predicting 5- and 10-year PFI and DSS of patients with BC and calibration
curves of the nomogram. (A) A nomogram incorporating age, tumor size status, lymph node
status, metastasis status, and risk group was a predictor for 5- and 10-year PFI. (B) A nomogram
incorporating age, molecular subtype, lymph node status, metastasis status, and risk group was a
predictor for 5- and 10-year DSS. (C,D) Calibrated plots were applied to investigate the deviation
in nomogram-predicted of 5- and 10-year PFI. (E,F) Calibrated plots were applied to investigate the
deviation in nomogram-predicted of 5- and 10-year DSS.

3.8. Relevance of the Prognostic Signature in Clinical Decision-Making

Patients were stratified into two groups for the evaluation of the AJCC stage by
combining AJCC stages I and II (N = 772) into the low-clinical-risk group (marked as C-),
and AJCC stage III and IV (N = 253) into the high-clinical-risk group (marked as C+) for
statistical analysis. Combining the clinical-risk group and gene-risk group (the low-risk
group was marked as G-, and the high-risk group was marked as G+), the total patients
were classified into the following four subgroups, G-C- (N = 557), G-C+ (N = 160), G+C- (N
= 215), G+C+ (N = 93). As expected, KM curves showed that patients in the G-C- subgroup
had a significantly better prognosis for PFI, DSS, and OS than those in the other subgroups,
and the worst was the G+C+ subgroup (PFI, p < 0.0001; DSS, p < 0.0001; OS, p < 0.0001)
(Figure 9A–C).
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Figure 9. KM curve analyses of patients stratified by four risk subgroups (prognostic signature and
clinical risk subgroups). (A–C), KM curves of PFI, DSS, and OS for breast cancer in the four risk
subgroups (G-C-, G-C+, G+C-, and G+C+ subgroups). KM curves of PFI, DSS, and OS for breast
cancer in G-C- (D–F), G-C+ (G–I), G+C- (J–L), and G+C+ (M–O) subgroups.

To further evaluate the prognostic signature’s potential as a predictor of response to
chemotherapy, KM analysis was performed in the four subgroups. In the G-C- subgroup,



J. Pers. Med. 2023, 13, 69 18 of 23

the patients who underwent adjuvant chemotherapy had a significantly better prognosis
than those who did not (PFI, p = 0.073; DSS, p = 0.0024; OS, p < 0.0001) (Figure 9D–F). In
the G-C+ and G+C- subgroup, the patients who underwent adjuvant chemotherapy had a
significantly better prognosis for OS than those who did not, but not for PFI and DSS (G-C+,
PFI, p = 0.34, DSS, p = 0.0089, OS, p = 0.00019; G+C-, PFI, p = 0.17, DSS, p = 0.23, OS, p = 0.02)
(Figure 9G–I,J–L). However, in the G+C+ subgroup, the patients who underwent adjuvant
chemotherapy did not show a statistically better prognosis than those who did not (PFI, p =
0.2, DSS, p = 0.2, OS, p = 0.19) (Figure 9M–O). These results suggest that patients in the G-C-
subgroup could benefit from adjuvant chemotherapy for PFI, DSS, and OS, while those
in the G+C+ subgroup may not, and the patients in the G+C- and G-C+ subgroups could
benefit from adjuvant chemotherapy only for OS, not for PFI and DSS.

4. Discussion

Breast cancer has become a serious threat to the health of women worldwide; thus, it is
imperative to find an effective individualized precision therapy. Although some multigene
prognosis tools have been developed to assist in clinical decision-making for patients with
BC, the scope of application of these predictors has been somewhat limited; for example,
Oncotype Dx and MammaPrint were developed for a specific type and clinical stage of
BC [17,18]. Due to the disease heterogeneity, traditional chemotherapy, endocrine therapy,
and targeted therapy struggle to achieve effective therapeutic effects for some patients
with BC [35]. The role of immunity in BC is becoming clearer; immunotherapy in breast
cancer is currently gaining ground, in combination with existing therapeutic strategies [19].
The development of pyroptosis, a highly inflammatory form of programmed cell death, is
closely associated with the immune-related functions and infiltration of immune cells in
tumors [23–26]. Therefore, more effort is needed to develop pyroptosis-related prognostic
and diagnostic models for BC.

In the present study, two pyroptosis-related clusters were constructed by 38 differential
pyroptosis-related genes. Further analysis found that some types of tumor-infiltrating
immune cells were variously distributed in different pyroptosis-related clusters, such as
naïve B cells, plasma cells, T cells CD8, T cells CD4 memory resting, T cells CD4 memory-
activated, T cells follicular helper, T cells gamma delta, NK cells resting, macrophages
M0, macrophages M1, macrophages M2, dendritic cells resting, mast cells resting, mast
cells activated, and neutrophils. A total of 434 DEGs were identified between the two
pyroptosis-related clusters and GO functional enrichment and KEGG pathway analyses
demonstrated that the DEGs were enriched in immune-related pathways, such as humoral
immune response, adaptive immune response based on somatic immune recombination, B-
cell-mediated immunity, complement activation, and immunoglobulin-mediated immune
response. These results suggested that pyroptosis is closely related to immunity, which is
in accordance with previous studies [36,37].

Based on the DEGs, we strived to identify a 56-gene signature that is significantly asso-
ciated with the PFI, DSS, and OS of BC. The 56 genes were AC092580.4, AC244250.2, ACKR1,
CD1E, CD38, CD48, CD5, CD69, CD79B, CLEC10A, CXCL13, EOMES, GBP5, GPR18,
IGHV1-67, IGHV1OR15-2, IGHV2-5, IGHV3-49, IGHV3-64, IGHV3OR16-13, IGHV4-59,
IGHV5-51, IGKV1-12, IGKV1-27, IGKV1D-16, IGKV2D-29, IGKV6D-21, IGLC6, IGLC7,
IGLV1-44, IGLV2-18, IGLV2-23, IGLV3-1, IGLV7-46, IL18RAP, JAML, LTA, PLAC8, PT-
GDS, RP11-1094M14.8, RP5-887A10.1, SIRPG, SNX20, SPIB, STAT4, TBC1D10C, TESPA1,
THEMIS, TIFAB, TNFRSF17, TRAV12-3, TRAV4, TRBV4-2, TRBV6-6, TRDV1, VPREB3.
Some of them are part of the immunoglobulin complex and participate in further humoral
immune responses [38,39]; for instance, IGHV1-67, IGHV1OR15-2, IGHV2-5, IGHV3-
49, IGHV3-64, IGHV3OR16-13, IGHV4-59, IGHV5-51, IGKV1-12, IGKV1-27, IGKV1D-16,
IGKV2D-29, IGKV6D-21, IGLC6, IGLC7, IGLV1-44, IGLV2-18, IGLV2-23, IGLV3-1, IGLV7-
46. Some others are part of the receptors and involved in immune response [40–42]; for
instance, CD1E, CD38, CD48, CD5, CD69, CD79B, CLEC10A, TRAV12-3, TRAV4, TRBV4-2,
TRBV6-6, TRDV1.
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Further analyses, Kaplan–Meier, ROC analyses, and univariate, multivariate Cox
regression demonstrated the utility of this prognostic signature as a powerful predictor
of prognosis in patients with BC. A nomogram constructed by combining the prognostic
signature and conventional prognostic factors exhibited good predictive efficacy for the
prediction of the 5- and 10-year PFI and DSS of patients with BC. Further intensive analyses
are required to verify the clinical application and promotion value of the signature. By
combining the clinical-risk group and gene-risk group, the patients were classified into
the following four subgroups, G-C- (N = 557), G-C+ (N = 160), G+C- (N = 215), G+C+
(N = 93). KM analyses suggested that patients in the G-C- subgroup could benefit from
adjuvant chemotherapy for PFI, DSS, and OS, while those in the G+C+ subgroup may not,
and patients in the G+C- and G-C+ subgroups could benefit from adjuvant chemotherapy
for OS, but not for PFI and DSS. Although the patients in the G+C+ subgroup had no
significant survival benefit from adjuvant chemotherapy, the adjuvant chemotherapy might
improve their quality of life. These results provide theoretical evidence for future clinical
decision-making, and further studies are needed to prove the results.

TNBC is characterized by high heterogeneity, high invasion, high metastatic potential,
easy recurrence, and poor prognosis [13]. Indeed, great efforts have been dedicated to find-
ing druggable targets for the personalized treatment of TNBC, leading to the discovery of
potential and important targets and pathways linked to cancer development [9,43,44],
immunity [45] and even pyroptosis [46]. Jiang YZ et al. classified TNBCs into four
transcriptome-based subtypes based on the clinical, genomic, and transcriptomic data
of a cohort of 465 primary TNBC [47], and the phase Ib/II FUTURE trial suggested a new
concept for TNBC treatment, demonstrating the clinical benefit of subtyping-based targeted
therapy for refractory metastatic TNBC [48]. Special attention was paid to that in this study.
We also found that patients in the low-risk group had significantly better prognoses for
PFI, DSS and OS than those in the high-risk group (PFI, p < 0.0001; DSS, p < 0.0001; OS, p <
0.0001). These results provide important indicators for further studies on the therapeutic
value of pyroptosis in TNBC.

In the recent studies about BC, four multi-gene signatures (model) have been devel-
oped to predict prognosis [49–52]: a nine pyroptosis-associated lncRNA signature, a seven
pyroptosis-related lncRNAs model, three different pyroptosis clusters and a three-gene
signature. However, our model has several advantages as a predictor of prognosis in
patients with BC. First, our study included 1025 female cases with BC, excluding males and
cases with missing clinical information or RNA-seq data, which avoided the possibility of
sex-specific effects and ensured more credible results. Second, PFI was chosen as a clinical
outcome when constructing a prognostic prediction model, rather than OS, as OS is less
sensitive to BC-specific progression. Third, the patient G-C- subgroup in our model could
benefit from adjuvant chemotherapy for PFI, DSS, and OS, and patients in the G+C- and
G-C+ subgroups could benefit from adjuvant chemotherapy in terms of OS, but not for
PFI and DSS. The results could inform clinical decision-making regarding appropriate
treatment strategies for patients with BC.

Notwithstanding, the study has a few shortcomings and limitations which should be
acknowledged. First, it may take a long time to apply these findings to the clinic in the
real world. Although limited by the follow-up time and the number of cases, our Breast
Center has already started to establish a validation dataset for BC to verify the findings in
this research. If the validation dataset is consistent with the results of this study, the finding
will be applied to a prospective clinical study. Second, the biological functions of the 56
genes remain to be fully elucidated. Third, in the M1 subgroup (N = 16), the KM curve
or ROC subgroup analyses did not reveal any significant difference for DSS and OS, and
Luminal B (N = 176) and HER2 (N = 70) also showed no significant difference for OS. For
the M1 subgroup, the number of clinical samples was too small, making it hard to draw a
scientific conclusion. Additionally, the heterogeneity of the Luminal B and HER2 molecular
subtypes, especially intratumor heterogeneity, presents substantial challenges in cancer
treatment; therefore, further studies are needed to identify more accurate molecular models
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for these patient subgroups. Fourth, our study lacks an independent validation dataset.
In the early stage of study design, we considered randomly dividing the full training set
into training and validation datasets according to the different proportions, but the larger
the sample size in the dataset, the higher the credibility of the established model, so the
full dataset was selected for training and modeling. Although the verification dataset was
randomly selected from the total dataset with an overlap in the sample points, this also
could verify the reliability of the model.

5. Conclusions

In conclusion, we identified a novel 56-gene prognostic signature that is significantly
associated with PFI, DSS and OS in patients with BC, and developed a nomogram based on
this signature with a high prognostic prediction value. Moreover, our data suggested that
the prognostic signature, combined with the TNM stage, might be a potential therapeutic
strategy for individualized clinical decision-making.

6. Risk Calculation Formula

Risk scores = (−0.987057257203668) × AC092580.4 + (−0.251134164354081) × AC244250.2
+ (−0.696889063257661) × ACKR1 + (−0.728197493550041) × CD1E
+ (−1.28880588659078) × CD38 + (−0.749754473910941) × CD48 +

1.06651917547229 × CD5 + 0.417774917378414 × CD69
+ 0.455049416172314 × CD79B + 1.26125159638399 × CLEC10A + (−0.228225002214848) × CXCL13

+ 0.570516209242267 × EOMES + (−0.548224326281222) × GBP5
+ (−0.808563754149334) × GPR18 + 0.309953007309132 × IGHV1-67

+ (−0.382414611465128) × IGHV1OR15-2 + 0.246548177641936 × IGHV2-5
+ (−0.217409966870419) × IGHV3-49 + (−0.337868541294558) × IGHV3-64
+ 0.481005132311589 × IGHV3OR16-13 + 0.362325938526143 × IGHV4-59
+ 0.267679621408054 × IGHV5-51 + (−0.206745388340921) × IGKV1-12

+ (−0.308185907992354) × IGKV1-27 + (−0.295832726777701) × IGKV1D-16
+ 0.176168233864854 × IGKV2D-29 + (−0.180553560947138) × IGKV6D-21

+ (−0.353895265830746) × IGLC6 + (−0.13468212251366) × IGLC7
+ (−0.223445262734337) × IGLV1-44 + 0.43234569593985 × IGLV2-18
+ (−0.261424690345591) × IGLV2-23 + 0.316233011111683 × IGLV3-1
+ (−0.198351090291727) × IGLV7-46 + 1.54706517805225 × IL18RAP

+ (−1.12171432642784) × JAML + (−0.815093088434387) × LTA
+ 0.529889539295384 × PLAC8 + 0.222843634703247 × PTGDS

+ 1.03697032621277 × RP11-1094M14.8 + 0.919914395439576 × RP5-887A10.1
+ 1.47556877488067 × SIRPG + 2.23000355091989 × SNX20

+ 0.306047643348901 × SPIB + (−0.906891717453051) × STAT4
+ (−0.734422756261579) × TBC1D10C + (−1.66310277162408) × TESPA1

+ 2.21446216265984 × THEMIS + (−1.22937862865569) × TIFAB
+ 0.884293123405389 × TNFRSF17 + (−0.857408288132703) × TRAV12-3

+ 0.719532867205727 × TRAV4 + (−0.62530870110772) × TRBV4-2
+ (−0.810480270943384) × TRBV6-6 + (−0.970070159582118) × TRDV1

+ (−0.501566873333783) × VPREB3.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm13010069/s1, Figure S1: KM and ROC curve analyses of
patients stratified by age and tumor size status. (A–C), KM curves of OS for high- and low-risk groups
in the ≤40-year, 41–60-year, and ≥61-year subgroups. (D–F), ROC analysis showed the sensitivity and
specificity of prognostic signature for predicting OS for high- and low-risk groups in the ≤40-year,
41–60-year, and ≥61-year subgroups. (G–I), KM curves of OS for high- and low-risk groups in the T1,
T2, and T3–T4 subgroups. (J–L), ROC analysis showed the sensitivity and specificity of prognostic
signature for predicting OS for high- and low-risk groups in the T1, T2, and T3–T4 subgroups; Figure
S2: KM and ROC curve analyses of patients stratified by lymph node status, metastasis status, and
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molecular subtype (PAM50). (A–E), KM curves of OS for high- and low-risk groups in the N0, N1,
N2–N3, M0, and M1 subgroups. (F–J) ROC analysis showed the sensitivity and specificity of the
prognostic signature for predicting OS for high- and low-risk groups in the N0, N1, N2–N3, M0, and
M1 subgroups. (K–O), KM curves of OS for high- and low-risk groups in the normal-like, Luminal A,
Luminal B, HER2, Basal-like subgroups. (P–T) ROC analysis showed the sensitivity and specificity
of the prognostic gene signature for predicting OS for high- and low-risk groups in the normal-like,
Luminal A, Luminal B, HER2, Basal-like subgroup.
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Abbreviation

Abbreviation Full Name
AJCC American Joint Committee on Cancer
AUC Area under the curve
BC Breast cancer
CI Confidence intervals
DGEs Differential gene expressions
DSS Disease-specific survival
GDC Genomic Data Commons
HER2 Human epidermal growth factor receptor 2
HR Hazard ratio
KM Kaplan–Meier
PFI Progression-free interval
ROC Receiver operating characteristic
OS Overall survival
TCGA The Cancer Genome Atlas
TNM T, tumor size, N, lymph node status, M, metastasis status
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