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Abstract: Multimodal neuroimaging has gained traction in Alzheimer’s Disease (AD) diagnosis
by integrating information from multiple imaging modalities to enhance classification accuracy.
However, effectively handling heterogeneous data sources and overcoming the challenges posed by
multiscale transform methods remains a significant hurdle. This article proposes a novel approach
to address these challenges. To harness the power of diverse neuroimaging data, we employ a
strategy that leverages optimized convolution techniques. These optimizations include varying
kernel sizes and the incorporation of instance normalization, both of which play crucial roles in
feature extraction from magnetic resonance imaging (MRI) and positron emission tomography
(PET) images. Specifically, varying kernel sizes allow us to adapt the receptive field to different
image characteristics, enhancing the model’s ability to capture relevant information. Furthermore,
we employ transposed convolution, which increases spatial resolution of feature maps, and it is
optimized with varying kernel sizes and instance normalization. This heightened resolution facilitates
the alignment and integration of data from disparate MRI and PET data. The use of larger kernels
and strides in transposed convolution expands the receptive field, enabling the model to capture
essential cross-modal relationships. Instance normalization, applied to each modality during the
fusion process, mitigates potential biases stemming from differences in intensity, contrast, or scale
between modalities. This enhancement contributes to improved model performance by reducing
complexity and ensuring robust fusion. The performance of the proposed fusion method is assessed
on three distinct neuroimaging datasets, which include: Alzheimer’s Disease Neuroimaging Initiative
(ADNI), consisting of 50 participants each at various stages of AD for both MRI and PET (Cognitive
Normal, AD, and Early Mild Cognitive); Open Access Series of Imaging Studies (OASIS), consisting of
50 participants each at various stages of AD for both MRI and PET (Cognitive Normal, Mild Dementia,
Very Mild Dementia); and whole-brain atlas neuroimaging (AANLIB) (consisting of 50 participants
each at various stages of AD for both MRI and PET (Cognitive Normal, AD). To evaluate the quality
of the fused images generated via our method, we employ a comprehensive set of evaluation metrics,
including Structural Similarity Index Measurement (SSIM), which assesses the structural similarity
between two images; Peak Signal-to-Noise Ratio (PSNR), which measures how closely the generated
image resembles the ground truth; Entropy (E), which assesses the amount of information preserved
or lost during fusion; the Feature Similarity Indexing Method (FSIM), which assesses the structural
and feature similarities between two images; and Edge-Based Similarity (EBS), which measures the
similarity of edges between the fused and ground truth images. The obtained fused image is further
evaluated using a Mobile Vision Transformer. In the classification of AD vs. Cognitive Normal,
the model achieved an accuracy of 99.00%, specificity of 99.00%, and sensitivity of 98.44% on the
AANLIB dataset.

Keywords: Alzheimer’s disease; data integration; feature extraction; multimodal neuroimaging;
optimized convolution
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1. Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized by progres-
sive cognitive decline and memory impairment. Early and accurate diagnosis of AD is
crucial for effective intervention and treatment planning. Patients with AD prolong to
dementia and lose physiological functions, eventually leading to death. An estimated
55 million people worldwide have dementia, and more than 60% of them live in low- and
middle-income countries [1]. It is anticipated that this will increase to 78 million by 2030
and rise to 139 million by 2050 [1]. Metabolic changes in the brain and significant atrophy
contribute to the neurodegenerative processes observed in AD. Magnetic Resonance Imag-
ing (MRI) and Positron Emission Tomography (PET) have become very useful for studying
the structural and functional changes linked to Alzheimer’s Disease in the neuroimaging
field [2].

The pathogenic nature of Alzheimer’s disease manifests in the brain as structural
alterations, including anatomical location, cortical thickness, volumetry, and other mor-
phological features [3]. The capacity to quantify these morphological traits using MRI has
resulted in an explosion of methodological research in predicting and categorizing AD. MR
images show exceptional anatomical information, and hippocampus shrinkage evaluated
on a high-resolution T1-weight MRI is an important criterion for the clinical diagnosis of
Alzheimer’s disease [4]. For example, volumetric features of sMRI data were utilized for the
classification of Early Mild Cognitive Impairment (EMCI) vs. Normal Cognitive (NC) [5].
sMRI cortical thickness and its underlying geometric information were employed for the
early detection of AD [6]. The most useful spatial features of GM were extracted from sMRI
and further segmented into ninety regions for Late Mild Cognitive Impairment (LMCI)
vs. EMCI classification [7]. Extracted gray matter (GM) images from sMRI using CNN
architecture were used for the diagnosis and classification of the CN, EMCI, and LMCI
groups [8]. While structural imaging captures downstream pathological changes, it is not
appropriate for reflecting changes that precede protein deposition [9]. PET imaging with
18F-fluorodeoxyglucose (FDGPET) imaging can capture brain metabolism characteristics
to aid in the detection of lesions for AD classification [10]. For example, FDGPET data was
used for the automated classification of AD groups [11]. The risk of AD was predicted
based on the deep learning model by extracting FDG PET image features [12]. The fusion
of various imaging modalities in multimodal neuroimaging holds the promise of offering
comprehensive insights into the metabolic and structural changes occurring in AD [9,13,14].

In recent years, there has been a growing interest in leveraging multimodal neuroimag-
ing data to enhance the accuracy of AD classification. Combining information from multiple
imaging modalities can provide a more comprehensive understanding of AD [7,15–17] in
capturing complementary aspects of brain alterations that may not be evident in a single
modality. However, effectively integrating these heterogeneous data sources presents a
considerable challenge.

A rising number of studies have used MRI and PET data to discover multilevel and
multimodal properties by translating regional brain images into higher-level, more compact
characteristics. For example, to classify AD, a new composite image was generated by
blending the Gray Matter (GM) tissue region of the brain in both MRI and FDG-PET images
using mask and registration coding techniques [18]. Likewise, researchers have classified
individuals with AD according to their GM density and glucose utilization from MRI
and PET, allowing for a more comprehensive and accurate diagnosis of AD [19]. Further-
more, a novel multimodal image-fusion technique designed to merge PET and MRI data
was introduced, in which the extracted features are subsequently input into an ensemble
classifier [17]. While the automatic pipeline method described in their study utilized tech-
niques such as Free Surfer and affine registration for pixel-level fusion, achieving precise
alignment and ensuring that the combined information accurately reflects the underlying
neurobiological changes was a challenge. Furthermore, the extraction of relevant features
from these fused modalities introduced complexities in terms of feature selection and
interpretability. Although the study employed a range of techniques, including ANOVA,
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scalar methods, and machine learning classifiers, to identify prominent features, the process
of discerning which specific features contribute most significantly to the accurate classifica-
tion of AD stages remained challenging. The three-channel phase feature learning model
demonstrated promise in integrating and learning latent representations from multimodal
neuroimaging data, even in the presence of data heterogeneity [10]. However, the success-
ful partial resolution of the heterogeneity issue highlighted the complexity of reconciling
distinct characteristics of PET and MRI data within the unified framework.

The multimodality latent space-inducing ensemble Support Vector Machine classifier
demonstrated the potential for improved AD classification accuracy. The study’s explo-
ration of an ensemble SVM classifier that induced a latent space via multimodality MRI and
PET inputs gave a promising avenue for enhancing AD classification accuracy. However,
the intricacy lay in the requirement of effectively reconciling and encapsulating the inherent
interrelationships present in MRI and PET modalities within this latent space [20]. An
image fusion method to combine MRI and PET images into a composite Gray Matter–PET
modality for AD diagnosis has been proposed [21]. While the image fusion method demon-
strated superior overall performance compared to unimodal methods, it was noted that its
performance in terms of sensitivity and specificity sometimes fell short of optimal levels.
The fusion process might introduce subtle distortions or uncertainties that affect diagnostic
accuracy.

Additionally, researchers have explored the use of multiscale transform approaches to
integrate information from multiple modalities consisting of MRI and PET imaging data in
the field of multimodal neuroimaging for the diagnosis of AD. Wavelet-based fusion was
used to bring together information from the MRI and PET scans to improve spatial resolu-
tion and yielded an image with metabolic and anatomical detail coupled with the finest
resolution. Despite the coregistration and alignment process, variability in image resolution
and information content between MRI and PET was still a challenge [22]. Ensuring accurate
registration and fusion requires overcoming differences in image resolution, contrast, and
acquisition protocols [23]. The computational complexity of processing and analyzing
data across multiple dimensions is a further disadvantage of multiscale transform meth-
ods. These methods frequently involve intricate mathematical algorithms and intensive
computational operations, making them time-consuming and resource-intensive [24]. In
contrast to multilevel feature learning and multiscale transform approaches for multimodal
neuroimaging fusion, our proposed method leverages pre-trained convolution neural net-
works. Consequently, it requires neither a specific dataset for training nor a specialized
network. The proposed network is fed with source images, and optimized feature maps are
extracted at layer 1 [25]; Maximum Fusion (MF) is used to fuse the extracted feature. Vision
transformers have garnered significant attention in the field of computer vision due to their
remarkable performance in image classification tasks, demonstrating their ability to capture
long-range dependencies within images [26]. Simple ViT models trained faster and better
than the original [27]; the performance of ViTs saturated faster when scaled to be deeper
and improved image classification accuracy [28], and Mobile ViT allowed for light-weight
global processing of information with transformers [29]. Leveraging the success of vision
transformers, we employ fused images as inputs to train a vision transformer model for
AD classification.

The research paper’s primary contributions are as follows: (1) An MF strategy is
designed to fuse the same depth of feature maps of MRI and PET. (2) An optimized
convolution technique including variations in kernel size to increase receptive field and
the addition of instance normalization, which ensured no bias towards the modality, is
designed to improve alignment and integration of MRI and PET data. (3) A novel fusion
model of MRI and PET images using MS strategy and optimized convolution network is
proposed, which overcomes the shortcomings of multiscale transform fusion methods and
enhances the receptive field of the network.
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2. Materials and Methods

The Laplacian transform, a mathematical technique for accentuating intricate image
details and extracting edge and texture characteristics [30,31], emerges as a pivotal tool
in the fusion of MRI and PET images. In this study, MRI and FDG-PET images are col-
lected from three databases (ADNI, OASIS, and AANLIB), with the Laplacian transform
demonstrating its significance in efficiently revealing finer aspects of the images, thereby
contributing to the improved fusion of MRI and PET modalities. This technique’s potential
is well-founded in its ability to capture and highlight subtle features within medical images,
aligning with the demands of contemporary image fusion methodologies [32]. This paper
uses Laplace sharpening to obtain the fine details of the image. Transposition convolution
was optimized by varying the kernel size, and instance normalization is used to extract
relevant feature maps from MRI and PET images. The feature maps obtained via MRI and
PET are fused using MF to emphasize the strongest activations between the MRI and PET
modalities. The proposed fusion model is shown in Figure 1.
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Figure 1. Framework of Proposed Fusion Method.

2.1. Datasets

This study utilized MRI and PET images obtained from the official website of Harvard
University (http://www.med.harvard.edu/AANLIB/home.html (accessed on 15 Septem-
ber 2023)), the ADNI website (https://adni.loni.usc.edu (accessed on 15 September 2023)),
and the OASIS website. The brain images under consideration are categorized into two
distinct stages, namely Cognitive Normal (CN) and Alzheimer’s Disease (AD). 50 images
of each of the stages are downloaded from each website, making a total of 300 images.
PET images are in red, green, and blue (RGB) while MRI images are in black and white.
Figures 2–4 show sample the datasets used from AANLIB, ADNI, and OASIS database,
respectively.

http://www.med.harvard.edu/AANLIB/home.html
https://adni.loni.usc.edu
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2.2. Laplace Sharpening

Fine details are obtained from the source image Sn (n = 1, which means MRI image;
n = 2, which means PET image). The Sn with pixel intensities is represented as Sn(x, y, c),
where (x, y) are the coordinates and c is the color channel [30]. A Gaussian blur kernel is
applied to the source image Sn(x, y, c). This is represented by Equation (1):

Kgaussian =
1

16

1 2 1
2 4 2
1 2 1

, (1)

The blurred image is then obtained by convolving the source image with the Gaussian
blur kernel. This process is expressed in Equation (2): The obtained image (blurred image)
after Equation (1) is applied to Si, as is represented in Equation (2).

Blurredimage(x, y, c) = ∑1
i=−1 ∑1

j=−1 Sn(x + i, y + j, c). Kgaussian, (2)

where: i and j iterate over the 3 × 3 neighborhood of the pixel at position (x, y, c).
To obtain the finer details, a Laplacian kernel, given by Equation (3), is utilized.

Klaplacian =
1

16

−1 −1 −1
−1 8 −1
−1 −1 1

a, (3)

By convolving the Laplacian kernel from Equation (3) with the previously obtained
blurred image, we generate the Laplacian image. This process is outlined in Equation (4):

Laplacianimage(x, y, c) = ∑1
i=−1 ∑1

j=−1 Bimage(x + i, y + j, c). Klaplacian(i, j), (4)

The sharpened image is derived by combining the source image Sn (x,y,c) with the
Laplacian-filtered image. This combination is controlled by an enhancement factor ‘k’. The
resulting equation is given by:

Sharpenedimage(x, y, c)= Sn (x, y, c) + k. Laplacianimage(x, y, c), (5)

Lastly, to ensure that pixel values are within the valid range of [0, 1], the sharpened
image is clipped using the following equation:

Sharpenedimage(x, y, c)= clip(Sharpened image(x, y, c), 0, 1), (6)

Sampled sharpened images from the AANLIB database are shown in Figure 5.
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2.3. Basic Image Feature Map Extraction Based on Optimized Transposition Convolution

The proposed method leverages the VGG19 network as a backbone for feature extrac-
tion due to its exceptional performance in various computer vision tasks. Previous research
in the field of image fusion has reported successful results using VGG19 for image fusion
tasks. For instance, infrared and visible images were integrated using VGG19 to extract
relevant features, and the MF rule was utilized for the final fused image [33,34]. Likewise,
transposed convolution was used for upsampling in image resolution to enhance effective
feature extraction [35]. In our proposed study, the initial step involves applying transposed
convolution after the first convolution layer [36] by varying kernel sizes. Traditional trans-
posed convolution uses fixed-size kernels for upsampling, which might not capture all
levels of detail effectively. By varying the kernel size, the convolution operation can adapt
to different spatial scales present in the input image [37,38]. This adaptability is particularly
useful for retaining fine-grained information while ensuring that larger structures are also
captured [39]. Equation (7) gives the transposition operation on the input images.

Trans(i, j) = ∑k
m=−k ∑k

n=−k Kernel(m, n). Xiinput(i−m, j− n), (7)

In Equation (7), X can be either MRI or PET, and Equation (7) effectively captures
the process of obtaining the feature maps from both images using the same convolutional
operation with Kernel(m, n), which is kernel-centered at the position (m, n), Trans rep-
resents the output of transposition process, while i and j represent the row and column
indices of the output feature map, respectively. The variable k is the half-size of the kernel
(kernel radius), indicating the distance from the center pixel which must be considered in
the summation, and Input(i−m, j− n) refers to the pixel value of the input image at the
relative position (i−m, j− n).

After the transpose convolution operation, instance normalization without learn-
able parameters is applied across the height and width dimensions to the feature maps
corresponding to MRI and PET modalities generated at the higher resolution. Instance
normalization without learnable parameters is a variant of instance normalization, in which
the scaling and shifting factors are not learned but are instead fixed and applied in a
predetermined manner [40,41]. In this study, instance normalization helps normalize the
activations of individual instances independently, without introducing any learnable pa-
rameters. Normalizing each modality ensures that the fusion process is not biased towards
the modality due to differences in intensity, contrast, or scale. Also, since this instance of
normalization does not require the learning of scaling and shifting parameters, it can lead
to a reduction in model complexity and improve the performance of image fusion [42].

The instance normalization is represented as follows:
Step 1: The mean and variance of the feature map Trans (i, j) across the height (H) and

width (W) dimensions for each instance (t) are calculated separately. Let us denote them as
µ_ti and σ_ti, respectively:

µti =
1

HW ∑W
l=1 ∑H

m=1 Trans(i + m, j + n)a = 1, (8)

σ2
ti =

1
HW ∑W

l=1 ∑H
m=1(Trans(i + m, j + n)− µti)

2a = 1, (9)

Step 2: The feature map Trans(i, j) is normalized using the computed mean and
variance in Equations (8) and (9) as follows:

yijk =
(Trans(i + m, j + n− µti)√

ρ2
ti+ ∈

a = 1, (10)

where yijk is the normalized output at position (i, j) and channel (k), Trans(i + m, j + n)
represents the pixel value of the feature map at the relative position (i + m, j + n), µti and
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ρ2
ti are the mean and variance computed in step 1, and ε is a small constant added to the

denominator to avoid division by zero. Note: the normalization is applied separately to
both the MRI and PET feature maps to ensure that each feature map is normalized across
its channel dimensions.

2.4. Basic Image Fusion Strategy Using the MS

After normalizing the feature maps separately for MRI and PET using instance nor-
malization, MS is applied to combine the normalized feature maps. This strategy aims to
leverage complementary information from both MRI and PET modalities. The basic idea is
to take the maximum value between the corresponding elements of the normalized MRI
and PET feature maps, pixel-wise, to create a fused feature map [43].

For each pixel position (i, j) and channel (k), the maximum value between the nor-
malized MRI and PET feature maps is:

Fused f eature mapijk= max
(

ymriijk, ypetijk

)
, (11)

This Maximum Strategy ensures that the fused feature map retains the strongest
features from both the MRI and PET modalities, leveraging the strengths of each image
while minimizing the impact of less relevant information. The fused feature map is further
fed into a Vision Transformer for the classification of AD stages.

3. Experiment and Result Analysis

To verify the effectiveness and advancement of the proposed fusion method in different
scenarios, we conducted a rigorous set of evaluations and experiments that leveraged its
intrinsic adaptability and generalization capabilities. Notably, our approach capitalizes
on the unique ability to fuse information from single data instances, rendering it suitable
for scenarios where large training datasets might be unavailable or impractical to create.
By focusing on single data instances without requiring prior training, we ensured that
the method’s performance was consistently assessed across three different databases. We
adopted the same network size in [36] for the fusion process. To effectively assess its
performance, we adopted a holistic approach based on quantitative metrics assessments.
Quantitative analysis involves calculating relevant performance metrics, such as PSNR,
SSIM, FSIM, E, and EBS, among others [44,45]. These metrics allowed us to quantitatively
measure the fidelity, preservation of salient features, and alignment with ground truth
information. The PSNR values indicate the quality of the fused images in terms of noise
and distortion, where higher values suggest better quality. The SSIM values indicate
the structural similarity between the original and fused images, with values closer to 1
indicating better similarity. The metrics E, FSIM, and EBS provide insights into various
aspects of image quality, such as edge preservation and structural information. These
metrics assess the performance of the fusion strategy in different dimensions. At the same
time, the proposed algorithm will be compared with the results of the other two typical
fusion methods on the dataset from the selected databases. Sample fused images are
displayed in Figure 6.
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All experiments were conducted using the Python programming language and exe-
cuted on a GPU-accelerated system. Tables 1–3 depict the quantitative evaluation values of
the fusion images corresponding to twelve typical source images from AD stages in the
selected databases. The overall evaluation metrics evaluate the SSIM, FSIM, E, EBS, and
PSNR of the proposed fusion model, and multiscale transform methods are depicted in
Figures 7–9. To assess the generalization capability and performance of the fused data on
individual modalities, MViT is trained and validated using the fused data and then tested
with unseen fused data from ADNI and AANLIB. The MViT model is trained on the fused
data from ADNI and AANLIB separately, i.e., 150 fused data from ADNI and 100 fused
data from AANLIB, as shown in Table 4. This study leveraged the hyperparameters in [29]
and finetuned them for the proposed model AD stage classification. Hyperparameters used
have a learning rate of 0.0002 and a weight decay of 0.01. The stochastic gradient descent
optimizer performed better than the adaptive optimizer with weight decay in our study.

Table 1. Quantitative Evaluation Values of Fused Images from AANLIB Database.

Image
PSNR SSIM E FSIM EBS

DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed

AD
1 31.95 30.29 33.30 0.66 0.50 0.74 3.98 5.89 4.11 0.83 0.90 0.99 0.73 0.50 0.86
2 31.80 30.26 31.40 0.66 0.50 0.80 4.02 5.84 4.15 0.83 0.90 0.99 0.70 0.47 0.76
3 31.80 30.28 32.90 0.54 0.50 0.90 3.98 5.84 4,12 0.83 0.90 0.90 0.68 0.51 0.79
4 31.90 30.44 32.90 0.54 0.50 0.90 3.92 5.84 4.14 0.83 0.90 0.99 0.67 0.48 0.69
5 31.80 30.28 32.90 0.55 0.50 0.80 4.02 5.89 4.11 0.83 0.80 0.88 0.70 0.51 0.73
6 31.80 30.44 32.50 0.55 0.55 0.83 3.98 5.89 4.14 0.83 0.92 0.99 0.67 0.48 0.72
7 31.80 30.28 32.00 0.58 0.50 0.83 3.98 5.84 4.11 0.83 0.80 0.89 0.68 0.48 0.75
8 31.90 30.44 32.00 0.58 0.50 0.83 3.92 5.84 4.14 0.83 0.90 0.99 0.67 0.51 0.69
9 31.80 30.26 32.90 0.55 0.50 0.87 3.92 5.89 4.14 0.83 0.80 0.99 0.69 0.50 0.79
10 31.95 30.44 32.00 0.70 0.55 0.87 4.02 5.89 4.11 0.82 0.90 0.99 0.73 0.50 0.80
11 31.95 30.39 32.90 0.72 0.54 0.86 4.02 5.84 4.14 0.83 0.90 0.98 0.71 0.50 0.75
12 31.95 30.39 32.90 0.70 0.50 0.83 3.98 5.84 4.14 0.82 0.90 0.99 0.72 0.51 0.75

CN
1 30.95 31.65 30.99 0.52 0.60 0.62 4.74 4.29 5.45 0.93 0.98 1.00 0.63 0.66 0.70
2 30.88 31.65 3104 0.52 0.60 0.62 4.74 4.29 5.05 0.93 0.97 0.99 0.64 0.66 0.72
3 30.84 30.95 31.80 0.54 0.66 0.68 4.74 4.40 5.00 0.93 0.97 0.99 0.63 0.66 0.73
4 30.95 31.00 31.80 0.52 0.66 0.68 4.74 4.29 5.08 0.98 0.98 0.99 0.63 0.66 0.73
5 30.95 30.95 31.80 0.55 0.67 0.68 4.74 4.40 5.18 0.98 0.98 0.99 0.63 0.66 0.70
6 31.08 30.95 31.67 0.52 0.68 0.67 4.74 4.29 5.18 0.93 0.98 0.99 0.64 0.66 0.73
7 31.08 31.00 31.67 0.52 0.66 0.67 4.74 4.44 5.24 0.94 0.98 0.99 0.64 0.66 0.73
8 30.85 31.00 31.08 0.52 0.65 0.67 4.74 4.29 5.15 0.94 0.97 0.99 0.63 0.67 0.70
9 30.90 31.05 31.08 0.52 0.66 0.62 4.74 4.29 5.33 0.93 0.98 1.00 0.63 0.67 0.73
10 30.95 31.05 31.65 0.52 0.65 0.65 4.75 4.29 5.14 0.94 0.98 1.00 0.63 0.66 0.73
11 30.95 31.05 31.75 0.52 0.65 0.65 4.74 4.24 5.00 0.94 0.98 0.99 0.63 0.66 0.70
12 30.95 31.05 31.04 0.52 0.60 0.60 4.74 4.30 5.25 0.94 0.97 0.99 0.63 0.66 0.70

PSNR = Peak Signal-To-Noise Ratio (PSNR), SSIM = Structural Similarity Index Measure (SSIM), E = Entropy,
FSIM = Feature Similarity Indexing Method, EBS = Edge-Based Similarity, DWT = Discrete Wave Transform, LPG
= Laplacian Gaussian Pyramid, AD = Alzheimer’s Disease, and CN = Cognitive Normal.

Table 2. Quantitative Evaluation Values of Fused Images from the ADNI Database.

Image
PSNR SSIM E FSIM EBS

DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed

AD
1 28.60 29.98 29.00 0.68 0.53 0.70 6.50 5.90 6.90 0.80 0.93 0.85 0.71 0.71 0.70
2 28.32 28.83 29.01 0.68 0.60 0.70 6.50 5.90 6.90 0.80 0.97 0.99 0.71 0.73 0.69
3 28.32 28.83 30.00 0.68 0.60 0.70 6.50 6.04 6.70 0.77 0.95 0.90 0.73 0.71 0.69
4 28.82 29.08 30.25 0.68 0.60 0.70 6.50 6.04 6.60 0.77 0.93 0.99 0.72 0.73 0.65
5 28.82 29.09 30.56 0.68 0.64 0.70 6.50 6.05 6.90 0.78 0.93 0.90 0.71 0.75 0.65
6 28.82 29.14 30.56 0.69 0.60 0.70 6.50 6.05 6.90 0.78 0.98 0.90 0.71 0.71 0.69
7 28.82 29.07 30.00 0.69 0.60 0.70 6.50 6.20 6.80 0.78 0.90 0.95 0.71 0.60 0.69
8 28.82 29.06 30.05 0.69 0.62 0.70 6.50 6.20 6.75 0.79 0.90 0.96 0.71 0.71 0.65
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Table 2. Cont.

Image
PSNR SSIM E FSIM EBS

DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed

9 29.10 29.08 30.98 0.69 0.60 0.70 6.50 6.20 6.75 0.79 0.90 0.95 0.71 0.74 0.69
10 29.10 29.14 30.98 0.71 0.60 0.71 6.50 6.20 6.75 0.78 0.90 0.95 0.71 0.60 0.65
11 29.10 29.08 30.98 0.71 0.60 0.71 6.50 6.20 6.75 0.79 0.90 0.95 0.71 0.73 0.69
12 29.10 29.07 30.98 0.71 0.60 0.71 6.50 6.20 6.75 0.79 0.95 0.90 0.71 0.74 0.69

CN
1 31.05 30.50 31.25 0.75 0.65 0.89 5.30 6.20 6.40 0.83 0.97 0.99 0.72 0.76 0.70
2 29.24 29.53 31.09 0.72 0.60 0.87 6.30 6.90 6.36 0.80 0.96 0.97 0.70 0.73 0.69
3 31.05 30.79 31.90 0.74 0.65 0.83 4.86 7.00 5.00 0.69 0.96 0.99 0.70 0.76 0.77
4 31.22 31.15 31.55 0.78 0.62 0.79 5.08 6.30 5.00 0.70 0.96 0.99 0.76 0.76 0.76
5 29.94 29.43 32.05 0.67 0.64 0.76 6.33 6.30 6.50 0.81 0.96 0.99 0.78 0.76 0.79
6 30.44 30.35 31.05 0.70 0.60 0.84 5.35 6.32 5.53 0.78 0.98 0.97 0.70 0.76 0.69
7 30.73 30.61 30.92 0.70 0.60 0.73 5.80 6.32 6.94 0.81 0.98 0.99 0.70 0.76 0.78
8 31.06 30.87 30.94 0.72 0.61 0.76 5.26 6.41 5.60 0.74 0.98 0.96 0.75 0.76 0.74
9 30.55 30.61 30.57 0.70 0.60 0.78 5.46 6.20 6.66 0.75 0.98 0.98 0.75 0.76 0.68
10 30.49 30.61 31.73 0.70 0.60 0.71 5.33 6.30 5.53 0.80 0.96 0.99 0.70 0.76 0.69
11 30.50 30.61 31.05 0.70 0.65 0.77 5.25 6.30 6.06 0.75 0.96 0.98 0.70 0.76 0.79
12 31.60 30.64 31.90 0.70 0.66 0.81 5.28 6.30 6.90 0.89 0.96 0.98 0.72 0.78 0.73

EMCI
1 30.95 30.45 32.05 0.74 0.63 0.88 5.45 6.15 6.60 0.82 0.96 0.98 0.74 0.77 0.71
2 30.75 30.60 31.95 0.73 0.62 0.86 5.40 6.10 6.55 0.81 0.97 0.98 0.73 0.76 0.70
3 31.15 30.75 32.15 0.75 0.64 0.89 5.55 6.20 6.70 0.83 0.97 0.99 0.75 0.78 0.72
4 30.85 30.65 31.75 0.729 0.61 0.85 5.50 6.05 6.50 0.80 0.96 0.98 0.72 0.75 0.69
5 31.05 30.50 32.00 0.74 0.63 0.87 5.60 6.25 6.65 0.82 0.97 0.99 0.74 0.77 0.71
6 30.95 30.70 31.90 0.73 0.62 0.88 5.58 6.18 6.63 0.81 0.97 0.98 0.73 0.76 0.70
7 31.10 30.75 32.10 0.75 0.64 0.89 5.63 6.23 6.68 0.83 0.97 0.99 0.75 0.78 0.72
8 30.90 30.60 31.80 0.72 0.61 0.86 5.55 6.08 6.53 0.80 0.96 0.98 0.72 0.75 0.69
9 31.00 30.55 31.95 0.74 0.63 0.88 5.58 6.15 6.60 0.82 0.97 0.99 0.74 0.77 0.71
10 31.05 30.60 32.05 0.74 0.63 0.89 5.60 6.20 6.65 0.83 0.97 0.99 0.74 0.77 0.72
11 30.85 30.65 31.75 0.72 0.61 0.86 5.53 6.10 6.55 0.80 0.96 0.98 0.72 0.75 0.70
12 31.20 30.70 32.20 0.75 0.64 0.89 5.65 6.25 6.70 0.83 0.97 0.99 0.75 0.78 0.72

PSNR = Peak Signal-To-Noise Ratio (PSNR), SSIM = Structural Similarity Index Measure (SSIM), E = Entropy,
FSIM = Feature Similarity Indexing Method, EBS = Edge-Based Similarity, DWT = Discrete Wave Transform, LPG
= Laplacian Gaussian Pyramid, AD = Alzheimer’s Disease, CN = Cognitive Normal, and EMCI = Early Mild
Cognitive Normal.

Table 3. Quantitative Evaluation Values of Fused Images from the OASIS Database.

Image
PSNR SSIM E FSIM EBS

DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed

VMD
1 26.60 27.98 26.90 0.58 0.43 0.57 6.00 4.90 6.10 0.70 0.90 0.84 0.59 0.71 0.75
2 26.32 26.83 26.50 0.58 0.50 0.62 5.50 5.00 5.90 0.80 0.87 0.84 0.60 0.73 0.70
3 26.32 26.83 26.0 0.58 0.50 0.57 5.50 5.04 6.72 0.87 0.80 0.87 0.60 0.71 0.70
4 26.80 27.08 29.80 0.58 0.50 0.60 5.50 5.04 6.03 0.77 0.80 0.88 0.52 0.70 0.75
5 26.82 27.09 29.80 0.58 0.54 0.80 5.50 5.05 6.03 0.88 0.90 0.87 0.60 0.75 0.65
6 26.80 27.14 29.70 0.57 0.50 0.60 5.50 5.05 7.90 0.70 0.80 0.75 0.60 0.71 0.79
7 26.82 27.07 28.90 0.59 0.50 0.60 5.50 5.20 6.71 0.88 0.70 0.93 0.60 0.52 0.70
8 26.82 27.06 28.85 0.67 0.52 0.71 5.50 5.20 7.72 0.79 0.80 0.87 0.60 0.71 0.69
9 27.10 27.06 29.15 0.69 0.50 0.80 6.00 5.20 6.71 0.89 0.70 0.87 0.60 0.71 0.76
10 27.20 27.10 29.15 0.61 0.50 0.71 5.50 5.20 7.75 0.78 0.80 0.86 0.70 0.54 0.69
11 27.10 27.00 29.50 0.61 0.50 0.78 6.00 5.20 6.76 0.89 0.60 0.82 0.60 0.73 0.69
12 27.10 27.01 28.80 0.61 0.50 0.70 6.00 5.20 7.71 0.70 0.65 0.82 0.70 0.71 0.68

ND
1 30.05 29.50 31.06 0.65 0.60 0.70 5.00 5.20 5.00 0.80 0.80 0.86 0.70 0.66 0.69
2 28.24 28.53 30.20 0.62 0.58 0.74 6.00 5.90 5.60 0.70 0.80 0.88 0.71 0.63 0.69
3 30.05 29.70 29.90 0.64 0.60 0.79 4.56 6.00 5.40 0.60 0.80 0.85 0.71 0.66 0.70
4 30.22 29.15 29.85 0.70 0.60 0.75 5.00 5.30 5.40 0.60 0.86 0.87 0.75 0.66 0.70
5 28.90 28.40 30.00 0.57 0.60 0.64 6.30 5.30 6.40 0.71 0.70 0.88 0.76 0.66 0.70
6 28.00 29.30 30.00 0.60 0.58 0.78 5.30 5.32 5.60 0.70 0.80 0.86 0.71 0.66 0.70
7 28.70 29.60 29.90 0.69 0.57 0.65 5.20 5.32 5.70 0.71 0.90 0.79 0.71 0.66 0.70
8 30.00 29.80 30.00 0.62 0.60 0.69 5.20 5.41 5.60 0.70 0.78 0.89 0.73 0.66 0.69
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Table 3. Cont.

Image
PSNR SSIM E FSIM EBS

DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed DWT LPG Proposed

9 29.00 29.60 29.50 0.69 0.50 0.66 5.40 5.20 5.70 0.70 0.80 0.86 0.74 0.66 0.69
10 29.40 29.60 29.63 0.65 0.58 0.60 4.33 5.30 5.73 0.70 0.86 0.87 0.71 0.66 0.69
11 29.40 29.60 29.00 0.65 0.60 0.77 5.20 5.30 5.66 0.70 0.80 0.86 0.74 0.66 0.69
12 30.40 29.54 29.80 0.65 0.60 0.78 5.20 5.30 5.70 0.80 0.86 0.79 0.70 0.68 0.75

MD
1 30.00 29.80 30.25 0.60 0.50 0.63 5.20 5.80 5.51 0.70 0.76 0.87 0.60 0.40 0.59
2 30.00 28.80 30.90 0.60 0.50 0.59 5.20 5.80 6.02 0.85 0.86 0.92 0.60 0.40 0.67
3 30.01 29.80 29.50 0.70 0.50 0.56 5.78 5.80 5.05 0.85 0.90 0.75 0.52 0.43 0.70
4 29.50 29.89 30.50 0.61 0.52 0.50 5.00 5.80 5.21 0.70 0.90 0.81 0.50 0.50 0.70
5 29.50 29.00 30.60 0.61 0.52 0.69 5.40 5.05 5.06 0.70 0.85 0.81 0.50 0.50 0.69
6 29.50 31.70 31.20 0.60 0.50 0.68 5.20 5.85 6.02 0.80 0.75 0.81 0.50 0.50 0.68
7 30.50 28.10 29.90 0.65 0.50 0.68 5.20 6.05 5.24 0.70 0.70 0.88 0.50 0.50 0.66
8 30.50 30.70 29.92 0.79 0.50 0.69 6.20 5.06 5.03 0.70 0.85 0.81 0.50 0.50 0.65
9 30.05 31.70 30.45 0.50 0.40 0.61 4.30 5.07 4.06 0.70 0.90 0.92 0.50 0.50 0.66
10 30.50 29.00 28.35 0.62 0.50 0.70 6.30 5.89 5.99 0.85 0.85 0.86 0.50 0.50 0.66
11 30.50 30.00 29.35 0.63 0.50 0.69 5.30 5.56 5.99 0.71 0.90 0.81 0.50 0.50 0.65
12 30.50 30.00 30.25 0.70 0.55 0.69 3.30 5.86 5.07 0.90 0.88 0.75 0.50 0.50 0.65

PSNR = Peak Signal-To-Noise Ratio (PSNR), SSIM = Structural Similarity Index Measure (SSIM), E = Entropy,
FSIM = Feature Similarity Indexing Method, EBS = Edge-Based Similarity, DWT = Discrete Wave Transform, LPG
= Laplacian Gaussian Pyramid, VMD = Very Mild Dementia, ND = Non Dementia, MD = Mild Dementia.
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Table 4. Details of Source Images, Fused Images, and Augmented Images.

Image No of Images
ADNI AANLIB OASIS

AD CN EMCI AD CN CN VMD MD

Fused 50 50 50 50 50 50 50 50
Augmented 1000 1000 1000 1000 1000 1000 1000 1000

A set of image transformations was applied to the fused images to augment the
dataset to minimize overfitting. The transformations were implemented in the Pytorch
transforms module to provide a range of image manipulation. The training and validation
accuracy/loss is depicted in Figures 10–12. The Confusion matrix is used to provide insight
into the model’s classification accuracy and potential misclassifications across different
classes. Figure 13 depicts the confusion matrix of the proposed model. Simultaneously, the
ROC curve is depicted in Figure 14, which illustrates the trade-off between a true positive
rate and a false positive rate, aiding in the determination of a suitable decision threshold.
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4. Discussion

From Table 1, it can be observed that the proposed fusion strategy generally performs
better compared with DWT and LPG in terms of most metrics across both datasets. This
indicates that the proposed fusion method leveraging the VGG19 model tends to preserve
more image details, maintain better structural similarity, and produce higher-quality fused
images. Furthermore, the results demonstrate that the proposed fusion strategy exhibits
effectiveness and advancement across AD and CN without the need for explicit model
training. Likewise, the results in Table 2 also show consistency in the performance trend
across different stages of AD from ADNI. This suggests the robustness and general applica-
bility of the proposed fusion method across diverse datasets, showcasing its effectiveness
for various image fusion scenarios.

Figures 7–9 show the proposed model achieves a PSNR of 32.55, a SIMM of 0.83, an
E of 4.13, an FSIM of 0.96, and an EBS of 0.75 on the AANLIB dataset. Comparing these
metrics with the other fusion models, the proposed model outperforms DWT and GLP
across most metrics, indicating superior image quality and feature preservation. On the
ADNI dataset, the proposed model achieves a PSNR of 30.39, a SIMM of 0.70, an E of 6.78,
an FSIM of 0.93, and an EBS of 0.67. Again, the proposed model generally performs better
than the other methods, showcasing its potential for accurately fusing MRI and PET data.
The proposed model scores a PSNR of 28.58, a SIMM of 0.67, an E of 6.83, an FSIM of 0.85,
and an EBS of 0.71 on the OASIS dataset. While still performing favorably, the differences
in metrics between the models are less pronounced on this dataset. Across all three datasets,
the proposed model consistently outperforms both DWT and GLP. This implies that the
proposed fusion method captures more meaningful information from both MRI and PET
modalities, resulting in images that are better suited for subsequent analysis or diagnosis.
While DWT and GLP might have their advantages, the results indicate that the proposed
model is more effective for the specific task of fusing MRI and PET data for AD vs. CN
classification.

The clinical implication of these results lies in the ability of the image fusion model to
aid in the classification of individuals with AD vs. those who are CN. Generally, higher
performance metrics (like higher PSNR, SIMM, and FSIM values and lower E and EBS
values) indicate better image fusion quality. This better fusion quality can potentially
enhance the ability to detect patterns and features that are crucial for accurate classification.
Figure 12 shows that the performance of the fused image in the classification of AD vs.
CN using MRI test data from AANLIB provides a precision of 100% (AD) and 98% (CN),
with a recall of 97% (AD), and 100% (CN), and an F1-score of 99% (AD), with 99% (CN)
indicating that the model performs very well on the AANLIB MRI test dataset. It has high
precision, recall, and F1-score values for both classes, which suggests that the model is
effective in correctly classifying instances from both classes. The model performance using
the AANLIB PET test dataset is like the AANLIB MRI dataset. The model’s performance
on the ADNI MRITEST dataset is good but not as high as the AANLIB datasets. The
performance of the fused image in the classification of AD vs. CN using MRI test data from
ADNI provides precision values of 91% (AD) and 100% (CN), recalls of 100% (AD) and 93%
(CN), and F1-scores of 95% (AD) and 96% (CN). The model’s performance on the ADNI
PET test dataset is like that of the ADNI MRI test dataset. It achieves high precision and
recall for both classes, but the recall for class AD is comparatively low (88%), affecting the
overall F1-score for that class.

However, there are some variations in performance across datasets. The model per-
forms slightly better on the AANLIB datasets compared with the ADNI datasets. Addi-
tionally, the performance metrics for class AD are relatively low compared with those for
class CN in some cases, suggesting that the model might struggle more with the AD class.
Figure 14 shows that the AUC values, which measure the model’s ability to discriminate
between positive and negative classes, are generally high. The AANLIB MRI and AANLIB
PET datasets have the highest AUC values, suggesting excellent discriminative power. The
ADNI MRITEST dataset has perfect AUC (100%) but slightly lower accuracy compared with
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the AANLIB datasets. Likewise, the OASIS MRI Test data have perfect AUC (100%). The
ADNI PET dataset has a relatively low AUC (90%) compared with the other datasets, which
might indicate that the model has slightly more difficulty distinguishing between classes.
The high recall values indicate that the model is effective at identifying most samples of the
positive class, which is crucial in medical diagnosis in order to avoid false negatives. The
high AUC values imply that the model can effectively distinguish between different classes,
which is vital for reliable diagnostic decisions. However, while the model’s performance is
promising, in clinical decisions, the model should be used as a supportive tool for medical
professionals to aid in diagnosis and decision making. A summary of the proposed model
performance is depicted in Table 5.

Table 5. Summary of Proposed Model Performance.

AANLIB MRI
Test Data

AANLIB PET
Test Data

ADNI MRI
Test Data

ADNI PET
Test Data

OASIS
MRI Test

Data

OASIS
PET Test

Data

Accuracy (%) 99.00 99.00 95.91 95.74 98.30 96.30
Precision (%) 99.00 98.50 95.50 97.00 98.00 97.00

Recall (%) 98.50 98.50 96.50 94.00 98.50 95.50
F1-Score (%) 99.99 98.50 95.50 95.50 98.00 96.00

Sensitivity (%) 96.88 100 100 88.24 100 94.29
Specificity (%) 100 97.37 93.10 100 96.43 100

The results achieved in this article are compared and validated with the recent research
conducted on AD detection using multimodal neuroimaging in Table 5.

Table 6 presents a comparison between the proposed method and several existing
methods for binary classification tasks in AD vs. CN classification using the ADNI database.
The proposed method demonstrates competitive performance compared with existing
methods. While some methods achieve higher accuracy, the proposed method maintains
a good balance between specificity and sensitivity, which is crucial in medical diagnosis
scenarios. Additionally, the proposed method’s performance on the AANLIB dataset
suggests its potential for generalizability across different datasets.

Table 6. Comparison of Proposed Method with Existing Methods.

Reference Database Method Binary
Classification Accuracy (%) Specificity (%) Sensitivity (%)

[17] ADNI Feature level fusion +
Ensemble Classifier AD vs. CN 99.00 - -

[18] ADNI Hypergraph-based
Regularization AD vs. CN 92.51 90.44 94.08

[19] ADNI 3D CNN with Sparse
Autoencoder AD vs. CN 93.21 95.42 91.43

[22] ADNI Inception–Resnet with
DWT AD vs. CN 97.00 97.00 97.00

[23] ADNI DWT + Pretrained ViT AD vs. EMCI 93.75 - -

Proposed
ADNI Optimized Transposition

+ Mobile ViT
AD vs. CN

96.00 97.00 94.12
AANLIB 99.00 99.00 98.44

5. Conclusions

In this research study, we proposed a novel fusion method for multimodal neuroimag-
ing data consisting of MRI and PET images to enhance the accuracy of Alzheimer’s Disease
classification. The method leveraged a Maximum Fusion strategy and an optimized convo-
lution network, effectively combining the complementary information from both modalities.
The fusion approach demonstrated its effectiveness across multiple datasets and AD stages
without the need for explicit model training. Our comprehensive experiments and result
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analysis showcased the superior performance of the proposed fusion method compared
with traditional fusion methods such as Discrete Wavelet Transform and Laplacian Pyramid
Gaussian in terms of various quantitative metrics. The fused images were used to train
the Mobile Vision Transformer for the classification of Alzheimer’s Disease vs. Cognitive
Normal classification, and the proposed model’s classification accuracy, precision, recall,
F1-score, and AUC values demonstrated its effectiveness.

Comparisons with existing methods highlighted the competitive nature of our pro-
posed approach, maintaining a good balance between the specificity and sensitivity crucial
for medical diagnosis scenarios. The fusion model’s clinical implication lies in its potential
to aid medical professionals in the accurate classification of AD vs. CN patients. One major
limitation is the absence of real clinical data for validation, which could impact the model’s
performance when applied to real-world scenarios. Additionally, the proposed model’s
performance might be influenced by variations in data acquisition protocols and scanner
characteristics in clinical settings. Future research could focus on validating the method
using diverse clinical datasets and addressing the limitations observed in this study.
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