Advances in Therapeutic Contact Lenses for the Management of Different Ocular Conditions
Abstract
:1. Introduction
2. Material Design and Contact Lense Fabrication
2.1. Main Materials Used in Contact Lense Fabrication
Lens Type | Material (Monomer) | Features | References |
---|---|---|---|
Rigid | Methyl methacrylate | -low permeability -stiff | [32] |
Cellulose acetate butyrate | -superior gas permeability to PMMA -stiff | [35] | |
Siloxy methacrylate | -exceptional gas permeability -low surface wetness -lipid surface deposits | [33] | |
Fluoro-siloxymethacrylate | -gas permeability higher than PMMA -improved wettability -no considerable balance of clinical advantages over PMMA | [39] | |
Soft | Hydroxyethyl-methacrylate | -not enough O2 permeability | [31,34] |
N-vinyl pyrrolidone | -high water content -increase in the relative evaporation rate of water -beneficial effect on drug loading and release | [40] | |
HEMA-co-NVP | -high water content when compared to pure polymer -higher O2 permeability -improved drug loading and more optimal drug release | [31] | |
HEMA-co-HEMA-co-MPTS | -excellent cationic drug loading -improved drug release (Gatifloxacin and Moxifloxacin) compared to commercial etafilcon A and polymacon and eye drops | [41] | |
TRIS-DMA-NVP-HEMA | -best balance of oxygen permeability, equilibrium water content, hydrophilicity and reduced protein film formation compared to simpler formulations | [33] | |
TRIS-NVP-MAA-PEGMA | -the overall oxygen permeability, friction coefficient, water absorption capacity, contact angle, modulus and protein adsorption are superior to some of the commercial contact lenses (e.g., Acuvue Advances or Cooper vision). | [42] |
2.2. Manufacturing Methods
3. Embodying Bioactive Molecules into Contact Lenses
3.1. Soaking Method
3.2. Incorporation of Functional Molecules within Contact Lenses
Lens Type | Commercial Name/Monomer Type | Features | Drug | Drug Loading Techniques | Ref. |
---|---|---|---|---|---|
1 | ACUVUE TruEye® CLs with vitamin E barrers | -vitamin E modification increases the release duration of both drugs to about 2 days -lesser dosage of medication in comparison to the use of eye drops has been observed to result in a reduction in intraocular pressure | timolol and dorzolamide simultaneously loaded | Soaking Method | [80] |
2 | ACUVUE TruEye® CLs with vitamin E barrers | -effective at sustaining release of timolol -reduced swelling, which reduces lens damage | timolol | Soaking Method | [81] |
3 | HEMA/MAPTAC/MOEP/MAA | -prevents the size change -efficient drug delivery | azulene | Incorporation of Functional Molecules | [82] |
4 | HEMA/ cetalkonium chloride | -drug release duration (50 h) -good wettability -low protein absorption -excellent transparency of lenses | dexamethasone 21-disodium phosphate | Incorporation of Functional Molecules | [83] |
5 | HEMA/DMA/TRIS/CDs | -improves the water solubility of natamycin -more effective in delivering natamycin | natamycin/methacrylated beta-cyclodextrin (Mβ-CD) natamycin/methacrylated 2-hydroxypropyl-β-cyclodextrin | Incorporation of Functional Molecules | [84] |
6 | HEMA/HEMA–co-GMA/α-, β- and γ-cyclodextrins functionalized | -reduced protein sorption -HEMA γ-cyclodextrins has the highest loading for miconazole -sustained miconazole delivery for over 14 days -high efficiency against biofilm formation | miconazole | Incorporation of Functional Molecules | [85] |
7 | poly-CDs-HEMA | -high drug doses loaded -sustained drug release for 6 days | ethoxzolamide | Incorporation of Functional Molecules | [86] |
8 | MAA and methacrylamide (MAm) functional comonomers | -atropine release for up to 72 h -good balance of light transmission, water content, and contact angle | atropine | Molecularly Imprinted | [87] |
9 | MAA/HEMA/EGDMA | -acyclovir-imprinted hydrogels were not effective in terms of drug loading -valacyclovir-imprinted hydrogels has a sustained release profile for 10 h -relevant amount of valacyclovir is accumulated in the cornea -promising for delivery to the posterior segment | acyclovir valacyclovir | Molecularly Imprinted | [18] |
10 | Hilafilcon B commercial | -higher flurbiprofen loaded -sustained release profiles | flurbiprofen | Supercritical fluid (SCF)-assisted molecular imprinting | [88] |
11 | HEMA/MAA EGDMA/Prednisolone loaded PLGA nanoparticles | -slow drug release of drug over 24 h -release of 10.8% encapsulated drug -insignificant changes in light transmission, wettability, and hydration by loading Prednisolone-loaded PLGA nanoparticles | Prednisolone | Colloidal nanoparticles | [89] |
12 | Dailies AquaComfort PLUS® | -inhibit/eradicate the formation of Pseudomonas aeruginosa and Staphylococcus biofilm | Ozodrop® Ozodrop® gel | Liposome | [90] |
13 | DMA/siloxane/NVP/EGDMA/HEMA loaded Pluronic® F-68/gatifloxacin | -Pluronic® F-68 improves the drug uptake and sustained drug delivery -excellent optical transmittance, swelling and mechanical features | Gatifloxacin/Pluronic® F-68 | Micelles | [91] |
3.3. Molecular Imprinted Contact Lenses
3.4. Supercritical Fluid Method
3.5. Colloidal Nanoparticles
4. Non-Interventional Future Perspectives in Keratoconus
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Otto, W.; Drahoslav, L. Cross-Linked Hydrophilic Polymers and Articles Made Therefrom. U.S. Patent 3,220,960, 30 November 1965. [Google Scholar]
- Dixon, P.; Shafor, C.; Gause, S.; Hsu, K.H.; Powell, K.C.; Chauhan, A. Therapeutic contact lenses: A patent review. Expert Opin. Ther. Pat. 2015, 25, 1117–1129. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, J. Therapeutic Contact Lenses with Polymeric Vehicles for Ocular Drug Delivery: A Review. Materials 2018, 11, 1125. [Google Scholar] [CrossRef] [PubMed]
- Janagam, D.R.; Wu, L.; Lowe, T.L. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev. 2017, 122, 31–64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Prausnitz, M.R.; Edwards, A. Model of transient drug diffusion across cornea. J. Control. Release 2004, 99, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Holgado, M.A.; Anguiano-Domínguez, A.; Martín-Banderas, L. Contact lenses as drug-delivery systems: A promising therapeutic tool. Arch. Soc. Esp. Oftalmol. 2020, 95, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Upadhyay, P.; Mishra, M.; Srividya, M.; Akshara, M.R.; Kamali, N.; Zaidi, Z.S.; Iqbal, S.F.; Misra, S.K. Advances in chemistry and composition of soft materials for drug releasing contact lenses. RSC Adv. 2020, 10, 36751–36777. [Google Scholar] [CrossRef]
- Lim, L.; Lim, E.W.L. Therapeutic Contact Lenses in the Treatment of Corneal and Ocular Surface Diseases—A Review. Asia Pac. J. Ophthalmol. 2020, 9, 524–532. [Google Scholar] [CrossRef]
- Lu, D.; Aksimentiev, A.; Shih, A.Y.; Cruz-Chu, E.; Freddolino, P.L.; Arkhipov, A.; Schulten, K. The role of molecular modeling in bionanotechnology. Phys. Biol. 2006, 3, S40–S53. [Google Scholar] [CrossRef]
- Muraru, S.; Ionita, M. Super Carbonaceous Graphene-based structure as a gas separation membrane: A Non-Equilibrium Molecular Dynamics Investigation. Compos. Part B Eng. 2020, 196, 108140. [Google Scholar] [CrossRef]
- Filipecka-Szymczyk, K.; Makowska-Janusik, M.; Marczak, W. Molecular Dynamics Simulation of Hydrogels Based on Phosphorylcholine-Containing Copolymers for Soft Contact Lens Applications. Molecules 2023, 28, 6562. [Google Scholar] [CrossRef]
- Tonner, R. Molecular Modeling Basics. By Jan H. Hensen. ChemPhysChem 2011, 12, 2352. [Google Scholar] [CrossRef]
- Fernandes, J.B.; Yu, Y.; Klauda, J.B. Molecular dynamics simulations of the human ocular lens with age and cataract. Biochim. Biophys. Acta 2022, 1864, 184025. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Ibañez, E.; Montagud-Martínez, D.; Sawides, L.; Zaytouny, A.; de Castro, A.; Sisó-Fuertes, I.; Barcala, X.; Piñero, D.P.; Furlan, W.D.; Dorronsoro, C.; et al. Simulation of daily soft multifocal contact lenses using SimVis Gekko: From in-vitro and computational characterization to clinical validation. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Abdi, B.; Mofidfar, M.; Hassanpour, F.; Cilingir, E.K.; Kalajahi, S.K.; Milani, P.H.; Ghanbarzadeh, M.; Fadel, D.; Barnett, M.; Ta, C.N.; et al. Therapeutic contact lenses for the treatment of corneal and ocular surface diseases: Advances in extended and targeted drug delivery. Int. J. Pharm. 2023, 638, 122740. [Google Scholar] [CrossRef] [PubMed]
- Franco, P.; De Marco, I. Contact Lenses as Ophthalmic Drug Delivery Systems: A Review. Polymers 2021, 13, 1102. [Google Scholar] [CrossRef]
- Rykowska, I.; Nowak, I.; Nowak, R. Soft Contact Lenses as Drug Delivery Systems: A Review. Molecules 2021, 26, 5577. [Google Scholar] [CrossRef]
- Varela-Garcia, A.; Gomez-Amoza, J.L.; Concheiro, A.; Alvarez-Lorenzo, C. Imprinted Contact Lenses for Ocular Administration of Antiviral Drugs. Polymers 2020, 12, 2026. [Google Scholar] [CrossRef]
- Musgrave, C.S.A.; Fang, F. Contact Lens Materials: A Materials Science Perspective. Materials 2019, 12, 261. [Google Scholar] [CrossRef]
- Bailey, J.; Morgan, P.; Gleeson, H.; Jones, J. Switchable Liquid Crystal Contact Lenses for the Correction of Presbyopia. Crystals 2018, 8, 29. [Google Scholar] [CrossRef]
- Jones, J.C.; Wahle, M.; Bailey, J.; Moorhouse, T.; Snow, B.; Sargent, J. Polarisation independent liquid crystal lenses and contact lenses using embossed reactive mesogens. J. Soc. Inf. Disp. 2020, 28, 211–223. [Google Scholar] [CrossRef]
- Milton, H.E.; Morgan, P.B.; Clamp, J.H.; Gleeson, H.F. Electronic liquid crystal contact lenses for the correction of presbyopia. Opt. Express 2014, 22, 8035–8040. [Google Scholar] [CrossRef]
- Toader, G.; Podaru, A.I.; Diacon, A.; Rusen, E.; Mocanu, A.; Brincoveanu, O.; Alexandru, M.; Zorila, F.L.; Bacalum, M.; Albota, F.; et al. Nanocomposite Hydrogel Films Based on Sequential Interpenetrating Polymeric Networks as Drug Delivery Platforms. Polymers 2023, 15, 3176. [Google Scholar] [CrossRef] [PubMed]
- Panteli, P.A.; Patrickios, C.S. Multiply Interpenetrating Polymer Networks: Preparation, Mechanical Properties, and Applications. Gels 2019, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Kim, H.J.; Noh, H. pH Sensitive Soft Contact Lens for Selective Drug-Delivery. Macromol. Res. 2018, 26, 278–283. [Google Scholar] [CrossRef]
- Maulvi, F.A.; Choksi, H.H.; Desai, A.R.; Patel, A.S.; Ranch, K.M.; Vyas, B.A.; Shah, D.O. pH triggered controlled drug delivery from contact lenses: Addressing the challenges of drug leaching during sterilization and storage. Colloids Surf. B Biointerfaces 2017, 157, 72–82. [Google Scholar] [CrossRef]
- Toader, G.; Podaru, I.A.; Rusen, E.; Diacon, A.; Ginghina, R.E.; Alexandru, M.; Zorila, F.L.; Gavrila, A.M.; Trica, B.; Rotariu, T.; et al. Nafcillin-Loaded Photocrosslinkable Nanocomposite Hydrogels for Biomedical Applications. Pharmaceutics 2023, 15, 1588. [Google Scholar] [CrossRef] [PubMed]
- Vega, S.L.; Kwon, M.Y.; Burdick, J.A. Recent advances in hydrogels for cartilage tissue engineering. Eur. Cells Mater. 2017, 33, 59–75. [Google Scholar] [CrossRef]
- Tan, R.Y.H.; Lee, C.S.; Pichika, M.R.; Cheng, S.F.; Lam, K.Y. PH Responsive Polyurethane for the Advancement of Biomedical and Drug Delivery. Polymers 2022, 14, 1672. [Google Scholar] [CrossRef]
- Chang, H.-C.; Hsu, M.-Y.; Hsiao, W.-T.; Shum, P.J.-T. Finite Element Modeling of an Elderly Person’s Cornea and Rigid Gas Permeable Contact Lenses for Presbyopic Patients. Appl. Sci. 2018, 8, 855. [Google Scholar] [CrossRef]
- Garcia-Millan, E.; Koprivnik, S.; Otero-Espinar, F.J. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications. Int. J. Pharm. 2015, 487, 260–269. [Google Scholar] [CrossRef]
- Xue, Y.; Zhou, J.; Chen, Z.; Xue, F.; Zeng, L.; Qu, X.; Zhou, X. Factors Affecting Long-Term Compliance with Rigid Gas-Permeable Contact Lens Wear in Patients with Keratoconus. J. Clin. Med. 2022, 11, 1091. [Google Scholar] [CrossRef]
- Tran, N.P.; Yang, M.C. Synthesis and Characterization of Silicone Contact Lenses Based on TRIS-DMA-NVP-HEMA Hydrogels. Polymers 2019, 11, 944. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.; Lopes, B.T.; Eliasy, A.; Geraghty, B.; Wu, R.; White, L.; Elsheikh, A.; Abass, A. Simulation of the Effect of Material Properties on Soft Contact Lens On-Eye Power. Bioengineering 2019, 6, 94. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xue, Y.; Hu, G.; Lin, T.; Gou, J.; Yin, T.; He, H.; Zhang, Y.; Tang, X. A comprehensive review on contact lens for ophthalmic drug delivery. J. Control. Release 2018, 281, 97–118. [Google Scholar] [CrossRef] [PubMed]
- Reindel, W.; Mosehauer, G.; Rah, M.; Proskin, H.; Steffen, R. Clinical Performance of Samfilcon A, a Unique Silicone Hydrogel Lens, on a 7-Day Extended Wear Basis. Clin. Ophthalmol. 2020, 14, 3457–3464. [Google Scholar] [CrossRef] [PubMed]
- Gulsen, D.; Chauhan, A. Ophthalmic drug delivery through contact lenses. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2342–2347. [Google Scholar] [CrossRef]
- Gause, S.; Hsu, K.H.; Shafor, C.; Dixon, P.; Powell, K.C.; Chauhan, A. Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses. Adv. Colloid Interface Sci. 2016, 233, 139–154. [Google Scholar] [CrossRef]
- Efron, N. Rigid Lens Materials. In Contact Lens Practice; Elsevier: Amsterdam, The Netherlands, 2018; pp. 115–122.e1. [Google Scholar] [CrossRef]
- Kunitomo, T.; Kenjo, H.; Nagaoka, S.; Yoshioka, T.; Tanzawa, H. Toray Industries Inc. Cross-Linked N-Vinyl Pyrroldone Polymer Composition Suitable for Contact Lenses. U.S. Patent 3,949,021, 6 April 1976. [Google Scholar]
- Kakisu, K.; Matsunaga, T.; Kobayakawa, S.; Sato, T.; Tochikubo, T. Development and efficacy of a drug-releasing soft contact lens. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2551–2561. [Google Scholar] [CrossRef]
- Nguyen-Phuong-Dung Tran, M.-C.Y.; Hasanah, N.; Tran-Nguyen, P.L. Effect of poly(ethylene glycol) methacrylate on the ophthalmic properties of silicone hydrogel contact lenses. Colloids Surf. B Biointerfaces 2022, 217, 112713. [Google Scholar] [CrossRef]
- Chaudhari, P.; Ghate, V.M.; Lewis, S.A. Next-generation contact lenses: Towards bioresponsive drug delivery and smart technologies in ocular therapeutics. Eur. J. Pharm. Biopharm. 2021, 161, 80–99. [Google Scholar] [CrossRef]
- Nichols, J.J.; Fisher, D. Contact Lenses 2008. Contact Lens Spectrum. 2009, 24, 24–32. [Google Scholar]
- Papas, E.B. Contact lens technology to 2020 and beyond: A review of recent patent literature. Clinical and Experimental Optometry. 2017, 100, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://patents.google.com/ (accessed on 16 October 2023).
- Available online: https://eu.usatoday.com/story/tech/2014/01/16/google-smart-contact-lens/4540727/ (accessed on 17 October 2023).
- Park, J.; Kim, J.; Kim, S.-Y.; Cheong, W.H.; Jang, J.; Park, Y.-G.; Nan, K.; Kim, Y.-T.; Heo, Y.H.; Lee, C.Y.; et al. Safe, Durable, and Sustainable Self-Powered Smart Contact Lenses. ACS Nano Sci. Adv. 2018, 4, eaap9841. [Google Scholar]
- Yao, H.; Shum, A.J.; Cowan, M.; Lähdesmäki, I.; Parviz, B.A. A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 2011, 26, 3290–3296. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.E.; Hiraka, K.; Matloff, D.; Johns, J.; Deng, A.; Sode, K.; La Belle, J. Development toward a novel integrated tear lactate sensor using Schirmer test strip and engineered lactate oxidase. Sens. Actuators B Chem. 2018, 270, 525–529. [Google Scholar] [CrossRef]
- Chen, G.Z.; Chan, I.S.; Leung, L.K.; Lam, D.C. Soft wearable contact lens sensor for continuous intraocular pressure monitoring. Med. Eng. Phys. 2014, 36, 1134–1139. [Google Scholar] [CrossRef]
- Kim, J.; Kim, M.; Lee, M.S.; Kim, K.; Ji, S.; Kim, Y.T.; Park, J.; Na, K.; Bae, K.H.; Kyun Kim, H.; et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 2017, 8, 14997. [Google Scholar] [CrossRef]
- Maeng, B.; Chang, H.K.; Park, J. Photonic crystal-based smart contact lens for continuous intraocular pressure moni-toring. Lab Chip 2020, 20, 1740–1750. [Google Scholar] [CrossRef]
- Available online: https://www.chemistryworld.com/news/smart-contact-lens-can-be-charged-up-wirelessly-while-its-worn/4010814.article (accessed on 17 October 2023).
- Available online: https://www.telegraph.co.uk/technology/2019/08/06/samsung-patents-smart-contact-lenses-record-video-let-control/ (accessed on 17 October 2023).
- Efron, N. Augmented reality contact lenses—So near yet so far. Clin. Exp. Optom. 2023, 106, 349–350. [Google Scholar] [CrossRef]
- Park, S.; Lee, D.Y. Materials and applications of smart diagnostic contact lens systems. Cut. Edge Enabling Technol. Regen. 2018, 1078, 155–160. [Google Scholar] [CrossRef]
- Nasreldin, M.; Delattre, R.; Ramuz, M.; Lahuec, C.; Djenizian, T.; de Bougrenet de la Tocnaye, J.L. Flexible Micro-Battery for Powering Smart Contact Lens. Sensors 2019, 19, 2062. [Google Scholar] [CrossRef]
- Jang, J.; Kim, J.; Shin, H.; Park, Y.G.; Joo, B.J.; Seo, H.; Won, J.E.; Kim, D.W.; Lee, C.Y.; Kim, H.K.; et al. Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles. Sci. Adv. 2021, 7, eabf7194. [Google Scholar] [CrossRef] [PubMed]
- Elsherif, M.; Moreddu, R.; Alam, F.; Salih, A.E.; Ahmed, I.; Butt, H. Wearable Smart Contact Lenses for Continual Glucose Monitoring: A Review. Front. Med. 2022, 9, 858784. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Lee, G.H.; Mun, J.; Cheong, S.; Choi, I.; Kim, H.; Hahn, S.K. Smart contact lens systems for ocular drug delivery and therapy. Adv. Drug Deliv. Rev. 2023, 2023, 114817. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.embs.org/pulse/articles/smart-contact-lenses-keep-an-eye-on-health/ (accessed on 17 October 2023).
- Available online: https://www.healio.com/news/optometry/20220104/smart-contact-lens-shows-positive-study-results (accessed on 17 October 2023).
- Available online: https://cheme.stanford.edu/smart-contact-lens-monitors-blood-sugar (accessed on 17 October 2023).
- Available online: https://www.forbes.com/sites/johnkoetsier/2020/09/25/this-smart-contact-lens-is-already-in-clinical-trials-at-ghent-university-in-belgium/ (accessed on 17 October 2023).
- Available online: https://www.purdue.edu/newsroom/releases/2022/Q4/study-specialized-smart-soft-contact-lenses-can-address-global-issue-of-glaucoma-diagnosis,-management.html (accessed on 17 October 2023).
- Available online: https://www.medgadget.com/2019/07/smart-contact-lens-zooms-on-demand.html (accessed on 17 October 2023).
- Du, Z.; Zhao, G.; Wang, A.; Sun, W.; Mi, S. Pressure-Triggered Microfluidic Contact Lens for Ocular Drug Delivery. ACS Appl. Polym. Mater. 2022, 4, 7290–7299. [Google Scholar] [CrossRef]
- Maldonado-Codina, C.; Efron, N. Impact of manufacturing technology and material composition on the mechanical properties of hydrogel contact lenses. Ophthalmic Physiol. Opt. 2004, 24, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Chia, H.N.; Wu, B.M. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 2015, 9, 4. [Google Scholar] [CrossRef]
- Yang, H.; Leow, W.R.; Chen, X. 3D Printing of Flexible Electronic Devices. Small Methods 2018, 2, 1700259. [Google Scholar] [CrossRef]
- Hittini, S.; Salih, A.E.; Alam, F.; Shanti, A.; Lee, S.; Polychronopoulou, K.; AlSafar, H.; Almaskari, F.; Butt, H. Fabrication of 3D-Printed Contact Lenses and Their Potential as Color Blindness Ocular Aids. Macromol. Mater. Eng. 2023, 308, 2200601. [Google Scholar] [CrossRef]
- Alam, F.; Elsherif, M.; AlQattan, B.; Salih, A.; Lee, S.M.; Yetisen, A.K.; Park, S.; Butt, H. 3D Printed Contact Lenses. ACS Biomater. Sci. Eng. 2021, 7, 794–803. [Google Scholar] [CrossRef]
- Vaidya, N.; Solgaard, O. 3D printed optics with nanometer scale surface roughness. Microsyst. Nanoeng. 2018, 4, 18. [Google Scholar] [CrossRef]
- Vallejo-Melgarejo, L.D.; Reifenberger, R.G.; Newell, B.A.; Narváez-Tovar, C.A.; Garcia-Bravo, J.M. Characterization of 3D-printed lenses and diffraction gratings made by DLP additive manufacturing. Rapid Prototyp. J. 2019, 25, 1684–1694. [Google Scholar] [CrossRef]
- Toffoletto, N.; Saramago, B.; Serro, A.P. Therapeutic Ophthalmic Lenses: A Review. Pharmaceutics 2020, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Anthony Soluri, A.H.; Hui, A.; Jones, J. Delivery of Ketotifen Fumarate by Commercial Contact Lens Materials. Am. Acad. Optom. 2012, 89, 1140–1149. [Google Scholar] [CrossRef]
- Lokendrakumar, C.; Bengani, K.-H.H.; Gause, S.; Chauhan, A. Contact lenses as a platform for ocular drug delivery. Expert Opin. Drug Deliv. 2013, 10, 1483–1496. [Google Scholar] [CrossRef]
- Maulvi, F.A.; Soni, T.G.; Shah, D.O. A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv. 2016, 23, 3017–3026. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.H.; Carbia, B.E.; Plummer, C.; Chauhan, A. Dual drug delivery from vitamin E loaded contact lenses for glaucoma therapy. Eur. J. Pharm. Biopharm. 2015, 94, 312–321. [Google Scholar] [CrossRef]
- Liu, Z.; Overton, M.; Chauhan, A. Transport of Vitamin E from Ethanol/Water Solution into Contact Lenses and Impact on Drug Transport. J. Ocul. Pharmacol. Ther. 2022, 38, 396–403. [Google Scholar] [CrossRef]
- Uchida, R.; Sato, T.; Tanigawa, H.; Uno, K. Azulene incorporation and release by hydrogel containing methacrylamide propyltrimenthylammonium chloride, and its application to soft contact lens. J. Control. Release 2003, 92, 259–264. [Google Scholar] [CrossRef]
- Bengani, L.C.; Chauhan, A. Extended delivery of an anionic drug by contact lens loaded with a cationic surfactant. Biomaterials 2013, 34, 2814–2821. [Google Scholar] [CrossRef]
- Phan, C.M.; Subbaraman, L.N.; Jones, L. In vitro drug release of natamycin from beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin-functionalized contact lens materials. J. Biomater. Sci. Polym. Ed. 2014, 25, 1907–1919. [Google Scholar] [CrossRef]
- Dos Santos, J.F.; Torres-Labandeira, J.J.; Matthijs, N.; Coenye, T.; Concheiro, A.; Alvarez-Lorenzo, C. Functionalization of acrylic hydrogels with alpha-, beta- or gamma-cyclodextrin modulates protein adsorption and antifungal delivery. Acta Biomater. 2010, 6, 3919–3926. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Fernandez, M.J.; Tabary, N.; Martel, B.; Cazaux, F.; Oliva, A.; Taboada, P.; Concheiro, A.; Alvarez-Lorenzo, C. Poly-(cyclo)dextrins as ethoxzolamide carriers in ophthalmic solutions and in contact lenses. Carbohydr. Polym. 2013, 98, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Li, T.; Li, X.; Wu, H.; Li, Y.; Hao, L. Preparation of Molecularly Imprinted Hydrogel Contact Lenses for Extended Atropine Eluting. J. Biomed. Nanotechnol. 2023, 19, 804–813. [Google Scholar] [CrossRef]
- Yanez, F.; Martikainen, L.; Braga, M.E.; Alvarez-Lorenzo, C.; Concheiro, A.; Duarte, C.M.; Gil, M.H.; de Sousa, H.C. Supercritical fluid-assisted preparation of imprinted contact lenses for drug delivery. Acta Biomater. 2011, 7, 1019–1030. [Google Scholar] [CrossRef]
- ElShaer, A.; Mustafa, S.; Kasar, M.; Thapa, S.; Ghatora, B.; Alany, R.G. Nanoparticle-Laden Contact Lens for Controlled Ocular Delivery of Prednisolone: Formulation Optimization Using Statistical Experimental Design. Pharmaceutics 2016, 8, 14. [Google Scholar] [CrossRef]
- Zerillo, L.; Polvere, I.; Varricchio, R.; Madera, J.R.; D’Andrea, S.; Voccola, S.; Franchini, I.; Stilo, R.; Vito, P.; Zotti, T. Antibiofilm and repair activity of ozonated oil in liposome. Microb. Biotechnol. 2022, 15, 1422–1433. [Google Scholar] [CrossRef]
- Maulvi, F.A.; Parmar, R.J.; Desai, A.R.; Desai, D.M.; Shukla, M.R.; Ranch, K.M.; Shah, S.A.; Shah, D.O. Tailored gatifloxacin Pluronic(R) F-68-loaded contact lens: Addressing the issue of transmittance and swelling. Int. J. Pharm. 2020, 581, 119279. [Google Scholar] [CrossRef]
- Hiratani, H.; Mizutani, Y.; Alvarez-Lorenzo, C. Controlling drug release from imprinted hydrogels by modifying the characteristics of the imprinted cavities. Macromol. Biosci. 2005, 5, 728–733. [Google Scholar] [CrossRef]
- Choi, J.H.; Li, Y.; Jin, R.; Shrestha, T.; Choi, J.S.; Lee, W.J.; Moon, M.J.; Ju, H.T.; Choi, W.; Yoon, K.C. The Efficiency of Cyclosporine A-Eluting Contact Lenses for the Treatment of Dry Eye. Curr. Eye Res. 2019, 44, 486–496. [Google Scholar] [CrossRef]
- Hashemi, H.; Heydarian, S.; Hooshmand, E.; Saatchi, M.; Yekta, A.; Aghamirsalim, M.; Valadkhan, M.; Mortazavi, M.; Hashemi, A.; Khabazkhoob, M. The Prevalence and Risk Factors for Keratoconus: A Systematic Review and Meta-Analysis. Cornea 2019, 1, 263–270. [Google Scholar] [CrossRef]
- Ashar, J.N.; Vadavalli, P.K. Long-term Results of Riboflavin Ultraviolet A Corneal Collagen Cross-linking for Keratoconus in Italy: The Siena Eye Cross Study. Am. J. Ophthalmol. 2010, 150, 588–589. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.S.; Lee, J.H.; Wee, W.R.; Kim, M.K. Effects of multicurve RGP contact lens use on topographic changes in keratoconus. Korean J. Ophthalmol. 2010, 24, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Meiri, Z.; Keren, S.; Rosenblatt, A.; Sarig, T.; Shenhav, L.; Varssano, D. Efficacy of Corneal Collagen Cross-Linking for the Treatment of Keratoconus: A Systematic Review and Meta-Analysis. Cornea 2016, 35, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Sykakis, E.; Karim, R.; Evans, J.R.; Bunce, C.; Amissah-Arthur, K.N.; Patwary, S.; McDonnell, P.J.; Hamada, S. Corneal collagen cross-linking for treating keratoconus. Cochrane Database Syst. Rev. 2015, 3, CD010621. [Google Scholar] [CrossRef]
- Hovakimyan, M.; Guthoff, R.F.; Stachs, O. Collagen cross-linking: Current status and future directions. J. Ophthalmol. 2012, 2012, 406850. [Google Scholar] [CrossRef] [PubMed]
- Adamiak, K.; Sionkowska, A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol. 2020, 161, 550–560. [Google Scholar] [CrossRef]
- Spoerl, E.; Huhle, M.; Seiler, T. Induction of cross-links in corneal tissue. Exp. Eye Res. 1998, 66, 97–103. [Google Scholar] [CrossRef]
- McCall, A.S.; Kraft, S.; Edelhauser, H.F.; Kidder, G.W.; Lundquist, R.R.; Bradshaw, H.E.; Dedeic, Z.; Dionne, M.J.; Clement, E.M.; Conrad, G.W. Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Investig. Ophthalmol. Vis. Sci. 2010, 51, 129–138. [Google Scholar] [CrossRef]
- Seiler, T.G.; Ehmke, T.; Fischinger, I.; Zapp, D.; Stachs, O.; Seiler, T.; Heisterkamp, A. Two-Photon Fluorescence Microscopy for Determination of the Riboflavin Concentration in the Anterior Corneal Stroma When Using the Dresden Protocol. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6740–6746. [Google Scholar] [CrossRef]
- Atalay, E.; Ozalp, O.; Yildirim, N. Advances in the diagnosis and treatment of keratoconus. Ther. Adv. Ophthalmol. 2021, 13, 25158414211012796. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioniță, M.; Vlăsceanu, G.M.; Toader, A.G.; Manole, M. Advances in Therapeutic Contact Lenses for the Management of Different Ocular Conditions. J. Pers. Med. 2023, 13, 1571. https://doi.org/10.3390/jpm13111571
Ioniță M, Vlăsceanu GM, Toader AG, Manole M. Advances in Therapeutic Contact Lenses for the Management of Different Ocular Conditions. Journal of Personalized Medicine. 2023; 13(11):1571. https://doi.org/10.3390/jpm13111571
Chicago/Turabian StyleIoniță, Mariana, George Mihail Vlăsceanu, Alin Georgian Toader, and Marius Manole. 2023. "Advances in Therapeutic Contact Lenses for the Management of Different Ocular Conditions" Journal of Personalized Medicine 13, no. 11: 1571. https://doi.org/10.3390/jpm13111571
APA StyleIoniță, M., Vlăsceanu, G. M., Toader, A. G., & Manole, M. (2023). Advances in Therapeutic Contact Lenses for the Management of Different Ocular Conditions. Journal of Personalized Medicine, 13(11), 1571. https://doi.org/10.3390/jpm13111571