Association between COVID-19 Infection or Vaccination Outcomes and Methylenetetrahydrofolate Reductase Gene Polymorphism: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Source and Search Strategies
2.2. Eligibilty Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Quality Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, C.; Li, Z.; Li, C.; Huang, M.; Liu, J.; Fang, Q.; Cao, Z.; Zhang, L.; Gao, P.; Nie, W.; et al. SARS-CoV-2: The Monster Causes COVID-19. Front. Cell. Infect. Microbiol. 2022, 12, 835750. [Google Scholar] [CrossRef] [PubMed]
- COVID Live—Coronavirus Statistics—Worldometer. Available online: https://www.worldometers.info/coronavirus/ (accessed on 16 October 2022).
- Abu-Farha, M.; Al-Sabah, S.; Hammad, M.M.; Hebbar, P.; Channanath, A.M.; John, S.E.; Taher, I.; Almaeen, A.; Ghazy, A.; Mohammad, A.; et al. Prognostic Genetic Markers for Thrombosis in COVID-19 Patients: A Focused Analysis on D-Dimer, Homocysteine and Thromboembolism. Front. Pharmacol. 2020, 11, 587451. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Noubouossie, D.F.; Gandotra, S.; Cao, L. Elevated Plasma Fibrinogen Is Associated with Excessive Inflammation and Disease Severity in COVID-19 Patients. Front. Cell. Infect. Microbiol. 2021, 11, 734005. [Google Scholar] [CrossRef] [PubMed]
- Abou-Ismail, M.Y.; Diamond, A.; Kapoor, S.; Arafah, Y.; Nayak, L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb. Res. 2020, 194, 101–115. [Google Scholar] [CrossRef]
- Parasher, A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Heart 2020, 97, 312–320. [Google Scholar] [CrossRef]
- Karst, M.; Hollenhorst, J.; Achenbach, J. Life-threatening course in coronavirus disease 2019 (COVID-19): Is there a link to methylenetetrahydrofolic acid reductase (MTHFR) polymorphism and hyperhomocysteinemia? Med. Hypotheses 2020, 144, 110234. [Google Scholar] [CrossRef] [PubMed]
- Liew, S.-C.; Das Gupta, E. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: Epidemiology, metabolism and the associated diseases. Eur. J. Med. Genet. 2015, 58, 1–10. [Google Scholar] [CrossRef]
- Moll, S.; Varga, E.A. Homocysteine and MTHFR Mutations. Circulation 2015, 132, e6–e9. [Google Scholar] [CrossRef]
- Aday, A.W.; Duran, E.K.; Van Denburgh, M.; Kim, E.; Christen, W.G.; Manson, J.E.; Ridker, P.M.; Pradhan, A.D. Homocysteine Is Associated with Future Venous Thromboembolism in 2 Prospective Cohorts of Women. Arter. Thromb. Vasc. Biol. 2021, 41, 2215–2224. [Google Scholar] [CrossRef]
- Carpenè, G.; Negrini, D.; Henry, B.M.; Montagnana, M.; Lippi, G. Homocysteine in coronavirus disease (COVID-19): A systematic literature review. Diagnosis 2022, 9, 306–310. [Google Scholar] [CrossRef]
- Keskin, A.; Ustun, G.U.; Aci, R.; Duran, U. Homocysteine as a marker for predicting disease severity in patients with COVID-19. Biomark. Med. 2022, 16, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Gadiyaram, V.K.; Khan, M.A.; Hogan, T.; Altaha, R.; Crowell, E.; Hobbs, G.; Perrota, P. Significance of MTHFR gene mutation with normal homocysteine level in vascular events. J. Clin. Oncol. 2009, 27, e20520. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Lapić, I.; Antolic, M.R.; Horvat, I.; Premužić, V.; Palić, J.; Rogić, D.; Zadro, R. Association of polymorphisms in genes encoding prothrombotic and cardiovascular risk factors with disease severity in COVID-19 patients: A pilot study. J. Med. Virol. 2022, 94, 3669–3675. [Google Scholar] [CrossRef]
- Kose, M.; Senkal, N.; Konyaoglu, H.; Emet, A.; Oyaci, Y.; Pehlivan, S.; Sayin, G.Y. The effect of hereditary thrombotic factors and comorbidities on the severity of COVID-19 disease. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 395–403. [Google Scholar] [CrossRef]
- Cappadona, C.; Paraboschi, E.M.; Ziliotto, N.; Bottaro, S.; Rimoldi, V.; Gerussi, A.; Azimonti, A.; Brenna, D.; Brunati, A.; Cameroni, C.; et al. MEDTEC Students against Coronavirus: Investigating the Role of Hemostatic Genes in the Predisposition to COVID-19 Severity. J. Pers. Med. 2021, 11, 1166. [Google Scholar] [CrossRef]
- Ponti, G.; Pastorino, L.; Manfredini, M.; Ozben, T.; Oliva, G.; Kaleci, S.; Iannella, R.; Tomasi, A. COVID-19 spreading across world correlates with C677T allele of the methylenetetrahydrofolate reductase (MTHFR) gene prevalence. J. Clin. Lab. Anal. 2021, 35, e23798. [Google Scholar] [CrossRef] [PubMed]
- Khidoyatovna, I.F.; Agzamovna, B.S.; Chutbaevna, K.Z. Relationship between MTHFR gene RS1801133 and rs1801131 polymorphisms with disease severity of COVID-19 and Homocystein levels in Uzbek patients. J. Pharm. Negat. Results 2022, 13, 1879–1888. [Google Scholar]
- Fiorentino, G.; Benincasa, G.; Coppola, A.; Franzese, M.; Annunziata, A.; Affinito, O.; Viglietti, M.; Napoli, C. Targeted genetic analysis unveils novel associations between ACE I/D and APO T158C polymorphisms with D-dimer levels in severe COVID-19 patients with pulmonary embolism. J. Thromb. Thrombolysis 2022, 55, 51–59. [Google Scholar] [CrossRef]
- Fevraleva, I.; Mamchich, D.; Vinogradov, D.; Chabaeva, Y.; Kulikov, S.; Makarik, T.; Margaryan, V.; Manasyan, G.; Novikova, V.; Rachina, S.; et al. Role of Genetic Thrombophilia Markers in Thrombosis Events in Elderly Patients with COVID-19. Genes 2023, 14, 644. [Google Scholar] [CrossRef] [PubMed]
- Tekcan, A.; Cihangiroglu, M.; Capraz, M.; Capraz, A.; Yigit, S.; Nursal, A.F.; Menekse, E.; Durmaz, Z.H.; Demir, H.D.; Ozcelik, B. Association of ACE ID, MTHFR C677T, and MIF-173GC variants with the clinical course of COVID-19 patients. Nucleosides Nucleotides Nucleic Acids 2023, 42, 782–796. [Google Scholar] [CrossRef]
- Sapkota, B.; Karroum, S.B.; Dillawn, S.; Daines, B.; Zaid-Kaylani, S.; Parat, S.; Bhaskaran, S. Does COVID-19 Infection Increase the Risk of Hypercoagulability in Individuals with MTHFR Gene Mutation? J. Med. Case Rep. Case Ser. 2022, 3. [Google Scholar] [CrossRef]
- Staropoli, P.C.; Payson, A.; Negron, C.I.; Prakhunhungsit, S.; Laufer, P.; Berrocal, A.M. CRVO associated with COVID-19 and MTHFR mutation in a 15-year-old male. Am. J. Ophthalmol. Case Rep. 2022, 26, 101522. [Google Scholar] [CrossRef]
- Tabatabaee, S.; Rezania, F.; Soleimani, S.; Mirzaasgari, Z. Hyperhomocysteinemia is related to large vessel occlusion in young patients with COVID -19: Two case reports. Clin. Case Rep. 2022, 10, e6716. [Google Scholar] [CrossRef]
- Fousse, M.; Schub, D.; Merzou, F.; Fassbender, K.; Sester, M.; Kettner, M.; Lochner, P.; Schmidt, T.; Júnior, J.R.G. Case report: Cerebral sinus vein thrombosis in two patients with AstraZeneca SARS-CoV-2 vaccination. J. Neurol. 2021, 269, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Atoui, A.; Jarrah, K.; Al Mahmasani, L.; Bou-Fakhredin, R.; Taher, A.T. Deep venous thrombosis and pulmonary embolism after COVID-19 mRNA vaccination. Ann. Hematol. 2022, 101, 1111–1113. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Testa, S.; Pezzo, M.; Glingani, C.; Caruso, B.; Terenziani, I.; Pognani, C.; Bellometti, S.A.; Castelli, G. Cerebral venous thrombosis and thrombocytopenia post-COVID-19 vaccination. Thromb. Res. 2021, 202, 182–183. [Google Scholar] [CrossRef] [PubMed]
- Ibrahimagic, O.C.; Smajlovic, D.; Dostovic, Z.; Pasic, Z.; Kunic, S.; Iljazovic, A.; Hajdarevic, D.S. Hyperhomocysteinemia and Its Treatment in Patients with Parkinson’s Disease. Mater. Socio Medica 2016, 28, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, R.; Kim, S.H.; Shah, H.; Zhang, S.; Liang, J.H.; Fang, Y.; Gentili, M.; Leary, C.N.O.; Elledge, S.J.; et al. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat. Commun. 2021, 12, 1676. [Google Scholar] [CrossRef]
- Sharma, P.; Senthilkumar, R.; Brahmachari, V.; Sundaramoorthy, E.; Mahajan, A.; Sharma, A.; Sengupta, S. Mining literature for a comprehensive pathway analysis: A case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Heal. Dis. 2006, 5, 1. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Study type: Cross-sectional studies Cohort studies Case series Case studies Case reports | Study type: Narrative reviews Commentary |
Studies evaluating MTHFR genotypes and COVID-19 severity in the context of thromboembolic events | Studies with primary endpoints outside the scope of our review (e.g., MTHFR polymorphisms and COVID-19-associated neuro-psychiatric conditions) |
Studies reporting data on MTHFR polymorphisms and thrombotic events after COVID-19 vaccination | Studies lacking MTHFR genotypic data |
Human studies | Animal and in vitro studies |
Research published in a language other than English | |
Articles without full-text availability | |
Duplicated research |
Reference, Country | Study Population and Design | MTHFR Variant | Clinical Outcomes | Thromboembolic Event | Conclusion |
---|---|---|---|---|---|
Lapic et al., 2022 [15], Croatia | M/F (n = 79), cross-sectional pilot study, two study subsets
|
| Severe COVID-19, bilateral pneumonia, and at least one of the following:
| Thrombosis DIC PE Acute CV event | No clear association between either MTHFR polymorphism and COVID-19 severity |
Kose et al., 2023 [16], Turkey | M/F (n = 189), cross-sectional study, two study subsets
|
| Severe COVID-19
| Assessed via increased D-dimer levels | No relationship between MTHFR variants and (1) D-dimer levels or (2) COVID-19 severity |
Cappadonna et al., 2021 [17], Italy | M/F (n = 2000), genetic-association analyses, two study subsets
|
| Severe COVID-19 Defined as hospitalisation with respiratory failure | Not specified | Significant evidence of association between COVID-19 severity and MTHFR variant |
Ponti et al., 2021 [18], Italy | M/F, retrospective observational genetic-correlation population analysis
|
| COVID-19-related death | Not specified | Significant relationship between MTHFR C677T allele frequency in different populations and COVID-19 death |
Khidoyatovna et al., 2022 [19], Uzbekistan | M/F (n = 100)
|
| Mild COVID-19 Moderate COVID-19 Severe COVID-19 | Not specified | Positive association between MTHFR C677T and A1298C and the development of severe COVID-19 |
Fiorentino et al., 2023 [20], Italy | M/F (n = 94), retrospective observational genetic analysis, two study subsets
|
| Severe COVID-19
| PE | No relationship between MTHFR C677T or A1298C and pulmonary embolism in COVID-19 |
Fevraleva et al., 2023 [21], Russia | M/F (n = 176), prospective observational study |
| Severe COVID-19
| VTE ACE MI PE | No relationship between MTHFR C677T or A1298C and thrombotic complications in COVID-19 |
Tekcan et al., 2023 [22], Turkey | M/F (n = 100), prospective observational study, 3 study subsets
|
| Severe COVID-19
| Not specified | Significant evidence of association between MTHFR C677T variant and COVID-19 requiring ICU admission |
Reference, Country | Study Population and Design | Presenting Complaint | Thromboembolic Event | Acquired Risk Factors | Inherited Risk Factors | Homocysteine (μmol/L) | Treatment | Outcome |
---|---|---|---|---|---|---|---|---|
Saptoka et al., 2022 [23], USA | Females (n = 3), case series
| P1 = chest pain, left lower extremity pain P2 = abdominal pain, left shoulder pain P3 = fever, RLQ pain | P1 = DVT, bilateral PE P2 = infra-renal IVC thrombus and PE P3 = superior mesenteric thrombus | P1 = OCP, COVID-19 ve+ IgG P2 = OCP, COVID-19 ve+ IgG P3 = COVID-19 +ve IgG | P1 = homozygous C677T P2 = heterozygous C677T and A1298C P3 = heterozygous C677T and A1298C | P1 = 8.9 P2 = 6.5 P3 = 8.9 | P1 = enoxaparin P2 = enoxaparin P3 = enoxaparin | P1 = recovery P2 = recovery P3 = recovery |
Tabatabaee et al., 2022 [24], Iran | Males (n = 2), case series
| P1 = fever, chills, malaise, cough P2 = right hemiparesis and Broca’s aphasia | P1 = ischemic stroke, aortic arch thrombus, complete RICA occlusion P2 = ischemic stroke, secondary AKI | P1 = PCR COVID-19 ve+ P2 = PCR COVID-19 ve+ | P1 = homozygous A1298C P2 = homozygous C677T | P1 = 50 (↑) P2 = 62 (↑) | P1 = remdesivir, dexamethasone, clot retrieval with rTPA, DAPT and atorvastatin, heparin infusion, rivaroxaban P2 = DAPT and atorvastatin, heparin, rivaroxaban, AKI, methylprednisone | P1 = discharged, lost to follow-up P2 = discharged, lost to follow-up |
Staropoli et al., 2022 [25], USA | Male (n = 1), case report
| P1 = painless blurry vision left eye | P1 = central retinal vein occlusion (CRVO) | P1 = PCR COVID-19 ve+ | P1 = homozygous MTHFR (variant unspecified) | P1 = “normal” | P1 = enoxaparin, intravitreal bevacizumab | P1 = recovery |
Reference, Country | Study Population and Design | Manufacturer, Vaccine Properties | Presenting Complaint | Time since Vaccination | Adverse Event | Acquired Risk Factors | Inherited Risk Factors | Homocysteine (μmol/L) | Treatment | Outcome |
---|---|---|---|---|---|---|---|---|---|---|
Fousse et al., 2022 [26], Germany | Females (n = 2), case series
| AstraZeneca, vector-based | P1 = drug refractory headache and unilateral calf pain P2 = drug refractory headache | P1 = 11 days (1st dose) P2 = 16 days (1st dose) | P1 = CVS P2 = CVST | P1 = OCP, ↑ b2 glycoprotein, Hashimoto’s P2 = OCP, previous PE post-op | P1 = heterozygous A1298C P2 = homozygous C677T and heterozygous PAI-1 | - | P1 = LMWH and discontinue OCP P2 = LMWH and discontinue OCP | P1 = recovery P2 = recovery |
Atoui et al., 2022 [27], Lebanon | Male (n = 1), case report
| Pfizer, mRNA-based | P1 = pleuritic chest pain, low-grade fever and right lower extremity oedema, erythema, pain | P1 = 1 day (2nd dose) | P1 = DVT and PE | - | P1 = homozygous MTHFR A1298C, heterozygous FVL G1691A | P1 = 254 (↑) | P1 = enoxaparin, apixaban (TTO) | P1 = recovery |
Franchini et al., 2022 [28], Italy | Male (n = 1), case report
| AstraZeneca, mRNA-based | P1 = worsening headache | P1 = 7 days (1st dose) | P1 = CVST | Positive FHx for thrombotic and haemorrhagic disorder | P1 = heterozygous C677T | P1 = 16.7 (↑) | P1 = neurosurgery | P1 = death |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jukic, I.; Heffernan, A.; Schelling, A.F.; Kokic Males, V.; Savicevic, N.J.; Kovacic, V. Association between COVID-19 Infection or Vaccination Outcomes and Methylenetetrahydrofolate Reductase Gene Polymorphism: A Systematic Review of the Literature. J. Pers. Med. 2023, 13, 1687. https://doi.org/10.3390/jpm13121687
Jukic I, Heffernan A, Schelling AF, Kokic Males V, Savicevic NJ, Kovacic V. Association between COVID-19 Infection or Vaccination Outcomes and Methylenetetrahydrofolate Reductase Gene Polymorphism: A Systematic Review of the Literature. Journal of Personalized Medicine. 2023; 13(12):1687. https://doi.org/10.3390/jpm13121687
Chicago/Turabian StyleJukic, Ivana, Aisling Heffernan, Alisa Franceska Schelling, Visnja Kokic Males, Nora Josipa Savicevic, and Vedran Kovacic. 2023. "Association between COVID-19 Infection or Vaccination Outcomes and Methylenetetrahydrofolate Reductase Gene Polymorphism: A Systematic Review of the Literature" Journal of Personalized Medicine 13, no. 12: 1687. https://doi.org/10.3390/jpm13121687
APA StyleJukic, I., Heffernan, A., Schelling, A. F., Kokic Males, V., Savicevic, N. J., & Kovacic, V. (2023). Association between COVID-19 Infection or Vaccination Outcomes and Methylenetetrahydrofolate Reductase Gene Polymorphism: A Systematic Review of the Literature. Journal of Personalized Medicine, 13(12), 1687. https://doi.org/10.3390/jpm13121687