Evaluation of the Acid–Base Status in Patients Admitted to the ICU Due to Severe COVID-19: Physicochemical versus Traditional Approaches
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Arterial Blood Gas Measurements
SIG = [Na+] + [K+] + [Ca2+] + [Mg2+] − [Cl−] − [HCO3−] − [Alb−] − [Pi−].
2.3. Statistical Analysis
3. Results
Study Participants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stewart, P.A. Independent and dependent variables of acid-base control. Respir. Physiol. 1978, 33, 9–26. [Google Scholar] [CrossRef]
- Stewart, P.A. Modern quantitative acid-base chemistry. Can. J. Physiol. Pharmacol. 1983, 61, 1444–1461. [Google Scholar] [CrossRef]
- Antonogiannaki, E.M.; Mitrouska, I.; Amargianitakis, V.; Georgopoulos, D. Evaluation of acid-base status in patients admitted to ED-physicochemical vs traditional approaches. Am. J. Emerg. Med. 2015, 33, 378–382. [Google Scholar] [CrossRef]
- Figge, J.; Mydosh, T.; Fencl, V. Serum proteins and acid-base equilibria: A follow-up. J. Lab. Clin. Med. 1992, 120, 713–719. [Google Scholar]
- Balasubramanyan, N.; Havens, P.L.; Hoffman, G.M. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit. Care Med. 1999, 27, 1577–1581. [Google Scholar] [CrossRef] [PubMed]
- Fencl, V.; Jabor, A.; Kazda, A.; Figge, J. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am. J. Respir. Crit. Care Med. 2000, 162, 2246–2251. [Google Scholar] [CrossRef]
- Funk, G.C.; Doberer, D.; Sterz, F.; Richling, N.; Kneidinger, N.; Lindner, G.; Schneeweiss, B.; Eisenburger, P. The strong ion gap and outcome after cardiac arrest in patients treated with therapeutic hypothermia: A retrospective study. Intensive Care Med. 2009, 35, 232–239. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, W.; Zhao, X.; Zai, J.; Zhao, Q.; Li, Y.; Chaillon, A. Transmission dynamics and evolutionary history of 2019-nCoV. J. Med. Virol. 2020, 92, 501–511. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Preventing and Managing COVID-19 across Long-Term Care Services: Policy Brief; World Health Organization: Geneva, Switzerland, 2020; (WHO/2019-nCoV/Policy_Brief/Long-term_Care/2020.1). [Google Scholar]
- Jung, C.; Flaatten, H.; Fjolner, J.; Bruno, R.R.; Wernly, B.; Artigas, A.; Bollen Pinto, B.; Schefold, J.C.; Wolff, G.; Kelm, M.; et al. The impact of frailty on survival in elderly intensive care patients with COVID-19: The COVIP study. Crit. Care 2021, 25, 149. [Google Scholar] [CrossRef]
- Al-Azzam, N.; Khassawneh, B.; Al-Azzam, S.; Karasneh, R.A.; Aldeyab, M.A. Acid-base imbalance as a risk factor for mortality among COVID-19 hospitalized patients. Biosci. Rep. 2023, 43, BSR20222362. [Google Scholar] [CrossRef]
- Sanghani, H.; Bansal, S.; Parmar, V.; Shah, R. Study of Arterial Blood Gas Analysis in Moderate-to-Severe COVID-19 Patients. Cureus 2022, 14, e26715. [Google Scholar] [CrossRef] [PubMed]
- Henderson, L.J. The theory of neutrality regulation in the animal organism. Am. J. Phys. 1908, 21, 427–428. [Google Scholar] [CrossRef]
- Siggaard-Andersen, O. The van Slyke equation. Scand. J. Clin. Lab. Investig. Suppl. 1977, 146, 15–20. [Google Scholar] [CrossRef]
- Emmett, M.; Narins, R.G. Clinical use of the anion gap. Medicine 1977, 56, 38–54. [Google Scholar] [CrossRef]
- Figge, J.; Jabor, A.; Kazda, A.; Fencl, V. Anion gap and hypoalbuminemia. Crit. Care Med. 1998, 26, 1807–1810. [Google Scholar] [CrossRef] [PubMed]
- Figge, J.; Rossing, T.H.; Fencl, V. The role of serum proteins in acid-base equilibria. J. Lab. Clin. Med. 1991, 117, 453–467. [Google Scholar]
- Bakakos, A.; Koukaki, E.; Ampelioti, S.; Ioannidou, I.; Papaioannou, A.I.; Loverdos, K.; Koutsoukou, A.; Rovina, N. The Real Impact of Age on Mortality in Critically Ill COVID-19 Patients. J. Pers. Med. 2023, 13, 908. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Fatima, R.; Lee-Smith, W.; Assaly, R. The association of low serum albumin level with severe COVID-19: A systematic review and meta-analysis. Crit. Care 2020, 24, 255. [Google Scholar] [CrossRef]
- Habas, E.; Ali, E.; Habas, A.; Rayani, A.; Ghazouani, H.; Khan, F.; Farfar, K.; Elzouki, A.N. Hyponatremia and SARS-CoV-2 infection: A narrative review. Medicine 2022, 101, e30061. [Google Scholar] [CrossRef]
- Padhi, R.; Panda, B.N.; Jagati, S.; Patra, S.C. Hyponatremia in critically ill patients. Indian J. Crit. Care Med. 2014, 18, 83–87. [Google Scholar] [CrossRef]
- Moviat, M.; van Haren, F.; van der Hoeven, H. Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit. Care 2003, 7, R41–R45. [Google Scholar] [CrossRef]
- Pfortmueller, C.A.; Uehlinger, D.; von Haehling, S.; Schefold, J.C. Serum chloride levels in critical illness-the hidden story. Intensive Care Med. Exp. 2018, 6, 10. [Google Scholar] [CrossRef]
- Hatherill, M.; Waggie, Z.; Purves, L.; Reynolds, L.; Argent, A. Mortality and the nature of metabolic acidosis in children with shock. Intensive Care Med. 2003, 29, 286–291. [Google Scholar] [CrossRef]
- Kellum, J.A.; Bellomo, R.; Kramer, D.J.; Pinsky, M.R. Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock 1998, 9, 364–368. [Google Scholar] [CrossRef]
- Waters, J.H.; Miller, L.R.; Clack, S.; Kim, J.V. Cause of metabolic acidosis in prolonged surgery. Crit. Care Med. 1999, 27, 2142–2146. [Google Scholar] [CrossRef] [PubMed]
- Zemlin, A.E.; Sigwadhi, L.N.; Wiese, O.J.; Jalavu, T.P.; Chapanduka, Z.C.; Allwood, B.W.; Tamuzi, J.L.; Koegelenberg, C.F.; Irusen, E.M.; Lalla, U.; et al. The association between acid-base status and clinical outcome in critically ill COVID-19 patients admitted to intensive care unit with an emphasis on high anion gap metabolic acidosis. Ann. Clin. Biochem. 2023, 60, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Du, R.H.; Liang, L.R.; Yang, C.Q.; Wang, W.; Cao, T.Z.; Li, M.; Guo, G.Y.; Du, J.; Zheng, C.L.; Zhu, Q.; et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: A prospective cohort study. Eur. Respir. J. 2020, 55, 2000524. [Google Scholar] [CrossRef] [PubMed]
Variable | All N = 185 | Survivors Ν = 139 | Non-Survivors N = 46 | p-Value |
---|---|---|---|---|
Age (years) | 60 (49, 67) | 58 (48, 66) | 66.5 (51, 72.3) | 0.003 |
Sex (female) N% | 52 (28.1) | 42 (30.2) | 10 (21.7) | 0.268 |
Smoking status: N% | 0.167 | |||
Never | 108 (58.4) | 85 (61.2) | 23 (50) | |
Ex | 21 (11.4) | 17 (12.2) | 4 (8.7) | |
Current | 56 (30.3) | 37 (26.6) | 19 (41.3) | |
BMI (kg/m2) | 29.2 (26.1, 32.4) | 29 (26.3, 32.4) | 29.3 (25.8, 32.1) | 0.804 |
CCI score | 2 (1,3) | 2 (0,3) | 3 (1,4) | <0.001 |
Duration of hospital stay (days) | 26 (17.5, 41.5) | 24 (17, 41) | 33 (20, 47) | 0.076 |
Duration of ICU stay (days) | 10 (7, 28) | 9 (6, 15) | 28 (15.8, 38.5) | <0.001 |
WBC (cells/μL) | 8.96 (6.52, 12.46) | 8.61 (6.35, 12.1) | 10.34 (7.33, 15.37) | 0.035 |
Neutrophils (%) | 7.55 (5.05, 11.02) | 7.35 (4.69, 10.69) | 9.21 (6.34, 14.68) | 0.041 |
Lymphocytes (%) | 0.66 (0.48, 0.96) | 0.68 (0.52, 0.96) | 0.56 (0.39, 0.96) | 0.155 |
Eosinophils (%) | 0.01 (0.00, 0.03) | 0.01 (0.00, 0.03) | 0.01 (0.00, 0.04) | 0.846 |
PLTs | 234.5 (185.4, 299.7) | 234.5 (186.0, 297.0) | 236.5 (184.0, 311.3) | 0.940 |
Albumin (g/dL) | 3.4 (3.1, 3.7) | 3.5 (3.2, 3.7) | 3.15 (2.9, 3.42) | <0.001 |
Hb (mg/dL) | 12.9 (11.6, 14.3) | 12.9 (11.8, 14.3) | 12.75 (10.0, 14.05) | 0.209 |
D-dimers (μg/ml) | 0.97 (0.57, 2.00) | 0.82 (0.5, 1.59) | 1.57 (0.83, 3.54) | <0.001 |
Fibrinogen (mg/dL) | 555.0 (461.0, 667.8) | 555.0 (472.0, 671.0) | 541.0 (442.0, 649.0) | 0.476 |
CRP (mg/dL) | 8.49 (3.73, 13.78) | 8.07 (3.69, 13.3) | 9.8 (3.7, 16.37) | 0.488 |
Urea (mg/dL) | 49 (38, 63) | 47 (37, 61) | 57.5 (45, 73.3) | 0.001 |
Creatinin (mg/dL) | 0.8 (0.7, 1) | 0.8 (0.7, 1.0) | 0.95 (0.8, 1.3) | 0.006 |
Respiratory requirements: N% | <0.001 | |||
Intubation | 91 (49.2) | 53 (38.1) | 38 (82.6) | |
Venturi masks | 37 (20.0) | 37 (26.6) | 0 (0.0) | |
NHF | 47 (25.4) | 47 (33.8) | 0 (0.0) | |
ECMO | 10 (5.4) | 2 (1.4) | 8 (17.4) | |
Comorbidities | ||||
Cardiovascular (arterial hypertension, heart failure, atrial fibrillation) | 87 (47%) | 57 (41%) | 28 (60%) | 0.019 |
Respiratory (bronchial asthma, COPD) | 8 (4.3%) | 4 (2.8%) | 4 (8.7%) | 0.093 |
Diabetes mellitus | 35 (18.9%) | 19 (14%) | 16 (34.8%) | 0.002 |
Cancer | 12 (6.5%) | 8 (5.9%) | 4 (8.7%) | 0.482 |
Chronic kidney disease | 2 (1.08%) | 0 (0%) | 2 (4.3%) | n/a |
Variable | All (185) | Survivors (139) | Non-Survivors (46) | p-Value | Reference Values |
---|---|---|---|---|---|
Measured variables | |||||
pH | 7.44 (7.37, 7.48) | 7.46 (7.40, 7.48) | 7.39 (7.29, 7.46) | 0.003 | 7.37–7.42 |
PaCO2 (mmHg) | 35.7 (32.2, 40.4) | 35.3 (32, 39) | 36.6 (32.8, 48.2) | 0.032 | 37–43 |
Na+ (mEq) | 137 (135, 140) | 137 (135, 139) | 138 (136, 142) | 0.002 | 138–144 |
K+ (mEq) | 3.9 (3.5, 4.2) | 3.9 (3.55, 4.2) | 3.9 (3.59, 4.2) | 0.871 | 3.7–4.6 |
Cl− (mEq) | 104 (101.5, 107.0) | 104 (102, 107) | 105.00 (100.00, 110.00) | 0.467 | 101–107 |
Ca2+ (mEq) | 2.16 (2.07, 2.23) | 2.15 (2.06, 2.22) | 2.17 (2.12, 2.29) | 0.051 | 2.3–2.7 |
Mg2+ (mEq) | 1.83 (1.67, 2) | 1.83 (1.67, 2) | 1.71 (1.5, 1.83) | 0.008 | 1.6–1.8 |
Pi (mMol/L) | 1.07 (0.87, 1.23) | 1.07 (0.84, 1.19) | 1.11 (0.96, 1.27) | 0.086 | <1.6 |
Alb (g/L) | 3.4 (3.1, 3.7) | 3.5 (3.2, 3.7) | 3.15 (2.9, 3.95) | <0.001 | 3.8–4.9 |
Derived variables | |||||
[HCO3] | 23.8 (21.8, 26.2) | 23.9 (21.8, 26.1) | 23.2 (21.2, 27.1) | 0.927 | 21–27 |
AG | 12.8 (10.4, 15.0) | 12.65 (10.26, 14.67) | 13.85 (10.60, 16.50) | 0.098 | >17 |
AGadj | 14.3 (11.9, 16.6) | 13.85 (11.9, 16.3) | 15.59 (12.43, 18.11)) | 0.013 | >17 |
BE | −0.08 (−2.04, 2.63) | −0.08 (−1.94, 2.43) | −0.265 (−4.11, 3.17) | 0.665 | −2.7 to 2.3 |
SIDeff | 35.45 (32.95, 38.48) | 33.43 (35.57, 38.42) | 34.34 (31.73, 38.76) | 0.359 | 35–42 |
SIG | 5.38 (2.90, 7.68) | 4.94 (2.88, 7.27) | 6.81 (2.98, 8.86) | 0.029 | ≤6 |
SIGcorr | 5.49 (3.03, 7.78) | 5.12 (3.03, 7.42) | 6.87 (3.02, 9.08) | 0.035 | ≤6 |
Cl−corr | 106.5 (103.9, 108.5) | 106.76 (104.0, 108.5) | 105.7 (102.94, 108.5) | 0.166 | 102 to 107 |
Disturbances | All | Survivors (139) | Non-Survivors (46) | p-Value |
---|---|---|---|---|
Cl−corr acidosis (Cl−corr > 107 mEq/L) | 79 (42.7) | 63 (45.3) | 16 (34.7) | 0.210 |
SIGcorr acidosis (SIGcorr > 6 mEq/L) | 81 (43.8) | 54 (38.8) | 27 (58.7) | 0.019 |
Dilutional acidosis (Na+ < 138 mEq/L) | 102 (55.1) | 85 (61.2) | 17 (37) | 0.004 |
Hyperalbuminemic acidosis (Alb > 49 g/L) | 0 (0) | 0 (0) | 0 (0) | n/a |
Hyperphosphatemic acidosis (Pi ≥ 2 mmol/L) | 0 (0) | 0 (0) | 0 (0) | n/a |
Concentrational alkalosis (Na+ > 144 mEq/L) | 10 5.4) | 3 (2.2) | 7 (15.2) | <0.001 |
Cl−corr alkalosis (Cl−corr < 102 mEq/L) | 19 (10.3) | 11 (7.9) | 8 (17.4) | 0.066 |
Hypoalbuminemic alkalosis (Alb < 38 g/L) | 160 (86.5) | 116 (83.5) | 44 (95.7) | 0.036 |
ΒΕ acidosis (BE < −2.7) | 38 (20.5%) | 24 (17.3%) | 14 (30.4%) | 0.055 |
BE alkalosis (BE > 2.3) | 52 (28.1%) | 38 (27.3%) | 14 (30.4%) | 0.685 |
HCO3− acidosis (HCO3− < 21 mEq/L) | 28 (15.1%) | 19 (14%) | 9 (19.6%) | 0.333 |
HCO3− alkalosis (HCO3− > 27 mEq/L) | 33 (17.8%) | 22 (15.8%) | 11 (24%) | 0.214 |
AG > 17 mEq/L | 20 (10.8) | 11 (7.9) | 9 (19.6) | 0.027 |
AGadj > 17 mEq/L | 39 (21.1) | 21 (15.1) | 18 (39.1) | <0.001 |
Normal BE (95) | Normal HCO3 (124) | Normal BE–HCO3 (91) | |
---|---|---|---|
SID acidosis (SIDeff < 35 mEq/L) | 48 (50.5%) | 55 (44.3%) | 45 (49.5%) |
Cl−corr acidosis (Cl−corr > 107 mEq/L) | 47 (49.5%) | 56 (45.2%) | 45 (49.5%) |
Dilutional acidosis (Na+ < 138 mEq/L) | 60 (63.2%) | 77 (62.1%) | 57 (62.6%) |
SIGcorr acidosis (SIGcorr > 6 mEq/L) | 41 (43.2%) | 55 (44.3%) | 40 (44%) |
Hyperalbuminemic acidosis (Alb > 49 g/L) | 0 (0%) | 0 (0%) | 0 (0%) |
SID alkalosis (SIDeff > 45 mEq/L) | 0 (0%) | 0 (0%) | 0 (0%) |
Cl−corr alkalosis (Cl−corr < 102 mEq/L) | 5 (5.3%) | 9 (7.2%) | 5 (5.5%) |
Concentrational alkalosis (Na+ > 144 mEq/L) | 0 (0%) | 0 (0%) | 0 (0%) |
Hyperalbuminemic acidosis (Alb > 49g/L) | 0 (0%) | 0 (0%) | 0 (0%) |
Hyperphosphatemic acidosis (Pi ≥ 2 mmol/L) | 0 (0%) | 0 (0%) | 0 (0%) |
Hypoalbuminemic alkalosis (Alb < 38 g/L) | 77 (81%) | 104 (83.9%) | 73 (89.2%) |
AGadj acidosis (AGadj >17 mEq/L) | 20 (21%) | 22 (17.7%) | 19 (20.9%) |
AG acidosis (AG > 17 mEq/L) | 8 (8.4%) | 8 (6.5%) | 7 (7.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotiropoulou, Z.; Antonogiannaki, E.M.; Koukaki, E.; Zaneli, S.; Bakakos, A.; Vontetsianos, A.; Anagnostopoulos, N.; Rovina, N.; Loverdos, K.; Tripolitsioti, P.; et al. Evaluation of the Acid–Base Status in Patients Admitted to the ICU Due to Severe COVID-19: Physicochemical versus Traditional Approaches. J. Pers. Med. 2023, 13, 1700. https://doi.org/10.3390/jpm13121700
Sotiropoulou Z, Antonogiannaki EM, Koukaki E, Zaneli S, Bakakos A, Vontetsianos A, Anagnostopoulos N, Rovina N, Loverdos K, Tripolitsioti P, et al. Evaluation of the Acid–Base Status in Patients Admitted to the ICU Due to Severe COVID-19: Physicochemical versus Traditional Approaches. Journal of Personalized Medicine. 2023; 13(12):1700. https://doi.org/10.3390/jpm13121700
Chicago/Turabian StyleSotiropoulou, Zoi, Elvira Markela Antonogiannaki, Evangelia Koukaki, Stavroula Zaneli, Agamemnon Bakakos, Angelos Vontetsianos, Nektarios Anagnostopoulos, Nikoleta Rovina, Konstantinos Loverdos, Paraskevi Tripolitsioti, and et al. 2023. "Evaluation of the Acid–Base Status in Patients Admitted to the ICU Due to Severe COVID-19: Physicochemical versus Traditional Approaches" Journal of Personalized Medicine 13, no. 12: 1700. https://doi.org/10.3390/jpm13121700
APA StyleSotiropoulou, Z., Antonogiannaki, E. M., Koukaki, E., Zaneli, S., Bakakos, A., Vontetsianos, A., Anagnostopoulos, N., Rovina, N., Loverdos, K., Tripolitsioti, P., Kyriakopoulou, M., Pontikis, K., Bakakos, P., Georgopoulos, D., & Papaioannou, A. I. (2023). Evaluation of the Acid–Base Status in Patients Admitted to the ICU Due to Severe COVID-19: Physicochemical versus Traditional Approaches. Journal of Personalized Medicine, 13(12), 1700. https://doi.org/10.3390/jpm13121700