SLC1A2 Gene Polymorphism Influences Methamphetamine-Induced Psychosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Subject Recruitment and Sample Collection
2.3. DNA Preparation and Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Office on Drugs and Crime. Synthetic Drugs in East and South-East Asia Trends and Patterns of Am-phetamine-Type Stimulants and New Psychoactive Substances. A Report from the Global SMART Programme March 2019. 2019. Available online: https://www.unodc.org/documents/southeastasiaandpacific/Publications/2019/2019_The_Challenge_of_Synthetic_Drugs_in_East_and_SEA.pdf (accessed on 23 November 2022).
- National Anti-Drugs Agency Malaysia. Drug Statistics. 2019. Available online: https://www.adk.gov.my/en/public/drugs-statistics/ (accessed on 23 November 2022).
- United Nations Office on Drugs and Crime. Methamphetamine Continues to Dominate Synthetic Drug Markets, Global SMART Update Volume 20. 2018. Available online: https://www.unodc.org/documents/scientific/Global_Smart_Update_20_web.pdf (accessed on 23 November 2022).
- National Center for Biotechnology Information. SLC1A2 Solute Carrier Family 1 Member 2 [Homo Sapiens (Human)]. 2020. Available online: https://www.ncbi.nlm.nih.gov/gene/6506 (accessed on 23 November 2022).
- Kanai, Y.; Clémençon, B.; Simonin, A.; Leuenberger, M.; Lochner, M.; Weisstanner, M.; Hediger, M.A. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol. Asp. Med. 2013, 34, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Luo, Q.; Chen, L. Amino Acid Solute Carrier Transporters in Inflammation and Autoimmunity. Drug Metab. Dispos. 2022, 50, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Foster, J.B.; Lin, C.-L.G. Glutamate transporter EAAT2: Regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell. Mol. Life Sci. 2015, 72, 3489–3506. [Google Scholar] [CrossRef] [PubMed]
- Matute, C.; Melone, M.; Vallejo-Illarramendi, A.; Conti, F. Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia 2004, 49, 451–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustillo, J.R.; Chen, H.; Jones, T.; Lemke, N.; Abbott, C.; Qualls, C.; Canive, J.; Gasparovic, C. Increased Glutamine in Patients Undergoing Long-term Treatment for Schizophrenia: A proton magnetic resonance spectroscopy study at 3 T. JAMA Psychiatry 2014, 71, 265–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalumiere, R.T.; Kalivas, P.W. Glutamate Release in the Nucleus Accumbens Core Is Necessary for Heroin Seeking. J. Neurosci. 2008, 28, 3170–3177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarland, K.; Lapish, C.C.; Kalivas, P.W. Prefrontal Glutamate Release into the Core of the Nucleus Accumbens Mediates Cocaine-Induced Reinstatement of Drug-Seeking Behavior. J. Neurosci. 2003, 23, 3531–3537. [Google Scholar] [CrossRef] [PubMed]
- White, T.L.; Monnig, M.A.; Walsh, E.G.; Nitenson, A.Z.; Harris, A.D.; Cohen, R.A.; Porges, E.C.; Woods, A.J.; Lamb, D.G.; Boyd, C.A.; et al. Psychostimulant drug effects on glutamate, Glx, and creatine in the anterior cingulate cortex and subjective response in healthy humans. Neuropsychopharmacology 2018, 43, 1498–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Yang, R.; Luo, J.; He, L.; Liu, J.; Zhang, J. Increased Absolute Glutamate Concentrations and Glutamate-to-Creatine Ratios in Patients with Methamphetamine Use Disorders. Front. Psychiatry 2018, 9, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sander, T.; Ostapowicz, A.; Samochowiec, J.; Smolka, M.; Winterer, G.; Schmidt, L.G. Genetic variation of the glutamate transporter EAAT2 gene and vulnerability to alcohol dependence. Psychiatr. Genet. 2000, 10, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Gass, J.T.; Olive, M.F. Glutamatergic substrates of drug addiction and alcoholism. Biochem. Pharmacol. 2008, 75, 218–265. [Google Scholar] [CrossRef] [Green Version]
- Veldic, M.; Millischer, V.; Port, J.D.; Ho, A.M.-C.; Jia, Y.-F.; Geske, J.R.; Biernacka, J.M.; Backlund, L.; McElroy, S.L.; Bond, D.J.; et al. Genetic variant in SLC1A2 is associated with elevated anterior cingulate cortex glutamate and lifetime history of rapid cycling. Transl. Psychiatry 2019, 9, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nudmamud-Thanoi, S.; Iamjan, S.-A.; Kerdsan-Phusan, W.; Thanoi, S. Pharmacogenetics of drug dependence: Polymorphisms of genes involved in glutamate neurotransmission. Neurosci. Lett. 2020, 726, 134128. [Google Scholar] [CrossRef] [PubMed]
- Ujike, H.; Sato, M. Clinical Features of Sensitization to Methamphetamine Observed in Patients with Methamphetamine Dependence and Psychosis. Ann. N. Y. Acad. Sci. 2004, 1025, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Bulatao, R.A.; Anderson, N.B. Genetic Influences. In Understanding Racial and Ethnic Differences in Health in Late Life: A Research Agenda; National Academy Press: Washington, DC, USA, 2004. [Google Scholar]
- Chiarella, P.; Capone, P.; Sisto, R. The role of Genetic Polymorphisms in the Occupational Exposure. In The Recent Topics in Genetic Polymorphisms; IntechOpen: Lodon, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar] [CrossRef]
- Sim, M.S.; Hatim, A.; Diong, S.H.; Mohamed, Z. Genetic Polymorphism in DTNBP1 Gene Is Associated with Methamphetamine-Induced Panic Disorder. J. Addict. Med. 2014, 8, 431–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric interview (M.I.N.I.): The development and validation of a structured diag-nostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59 (Suppl. 20), 22–33. [Google Scholar] [PubMed]
- Gordon, D.; Finch, S.J.; Nothnagel, M.; Ott, J. Power and Sample Size Calculations for Case-Control Genetic Association Tests when Errors Are Present: Application to Single Nucleotide Polymorphisms. Hum. Hered. 2002, 54, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.; Levenstien, M.A.; Finch, S.J.; Ott, J. Errors and Linkage Disequilibrium Interact Multiplicatively when Computing Sample Sizes for Genetic Case-Control Association Studies. In Proceedings of the Pacific Symposium on Biocomputing, Lihue, HI, USA, 3–7 January 2003. [Google Scholar]
- Dallaspezia, S.; Poletti, S.; Lorenzi, C.; Pirovano, A.; Colombo, C.; Benedetti, F. Influence of an Interaction between Lithium Salts and a Functional Polymorphism in SLC1A2 on the History of Illness in Bipolar Disorder. Mol. Diagn. Ther. 2012, 16, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.S.; Hatim, A.; Reynolds, G.P.; Mohamed, Z. Association of a functional FAAH polymorphism with methamphetamine-induced symptoms and dependence in a Malaysian population. Pharmacogenomics 2013, 14, 505–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merk, W.; Kucia, K.; Mędrala, T.; Kowalczyk, M.; Owczarek, A.; Kowalski, J. Association study of the excitatory amino acid transporter 2 (EAAT2) and glycine transporter 1 (GlyT1) gene polymorphism with schizophrenia in a Polish population. Neuropsychiatr. Dis. Treat. 2019, 15, 989–1000. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Malay (n = 185) | Chinese (n = 98) | Kadazan-Dusun (n = 144) | Bajau (n = 109) | Total (n = 536) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Case (n = 95) | Control (n = 90) | Case (n = 36) | Control (n = 62) | Case (n = 79) | Control (n = 65) | Case (n = 75) | Control (n = 34) | Case (n = 285) | Control (n = 251) | |
Age, mean (SD), year | 30.94 (7.4) | 32.0 (9.8) | 38.3 (9.2) | 31.2 (9.2) | 29.3 (6.7) | 31.9 (11.2) | 27.9 (6.9) | 33.7 (12.1) | 30.6 (8.0) | 31.8 (10.3) |
METH-dependent subjects: | ||||||||||
With psychosis, n (%) | 55 (0.579) | 15 (0.416) | 26 (0.329) | 23 (0.307) | 119 (0.418) | |||||
Without psychosis, n (%) | 40 (0.421) | 21 (0.584) | 53 (0.671) | 52 (0.693) | 166 (0.582) | |||||
Case (n = 70) | Case (n = 34) | Case (n = 58) | Case (n = 65) | Case (n = 227) | ||||||
Age, mean (SD), year | 31.3 (8.2) | 38.6 (9.4) | 28.2 (6.6) | 27.8 (7.0) | 30.6 (8.0) | |||||
METH-dependent subjects: | ||||||||||
With mania, n (%) | 12 (0.171) | 6 (0.176) | 12 (0.207) | 8 (0.123) | 38 (0.167) | |||||
Without mania, n (%) | 58 (0.829) | 28 (0.824) | 46 (0.793) | 57 (0.877) | 189 (0.833) |
Ethnicity | Subject | Genotype, n (Frequency) | p-Value | Allele, n (Frequency) | p-Value | OR (95% CI) | |||
---|---|---|---|---|---|---|---|---|---|
C/C | C/G | G/G | C | G | |||||
Malay | Cases | 35 (0.368) | 47 (0.495) | 13 (0.137) | 0.115 | 117 (0.616) | 73 (0.384) | 0.054 | 1.533 (1.014–2.318) |
Controls | 24 (0.267) | 44 (0.489) | 22 (0.244) | 92 (0.511) | 88 (0.489) | ||||
Chinese | Cases | 11 (0.305) | 20 (0.556) | 5 (0.139) | 0.606 | 42 (0.583) | 30 (0.417) | 0.798 | 0.884 (0.489–1.598) |
Controls | 24 (0.387) | 28 (0.452) | 10 (0.161) | 76 (0.613) | 48 (0.397) | ||||
Kadazan-Dusun | Cases | 22 (0.278) | 38 (0.481) | 19 (0.241) | 0.929 | 82 (0.519) | 76 (0.481) | 0.833 | 0.925 (0.581–1.472) |
Controls | 20 (0.308) | 30 (0.461) | 15 (0.231) | 70 (0.538) | 60 (0.462) | ||||
Bajau | Cases | 34 (0.453) | 25 (0.333) | 16 (0.213) | 0.505 | 93 (0.620) | 57 (0.380) | 0.981 | 0.949 (0.524–1.716) |
Controls | 14 (0.412) | 15 (0.441) | 5 (0.147) | 43 (0.632) | 25 (0.368) | ||||
Total | Cases | 102 (0.358) | 130 (0.456) | 53 (0.186) | 0.700 | 334 (0.586) | 236 (0.414) | 0.422 | 1.113 (0.873–1.419) |
Controls | 82 (0.327) | 117 (0.466) | 52 (0.207) | 281 (0.560) | 221 (0.440) |
Ethnicity | Subject | Genotype, n (Frequency) | p-Value | Allele, n (Frequency) | p-Value | OR (95% CI) | |||
---|---|---|---|---|---|---|---|---|---|
C/C | C/G | G/G | C | G | |||||
Malay | Psychosis | 21 (0.382) | 28 (0.509) | 6 (0.109) | 0.653 | 70 (0.636) | 40 (0.364) | 0.594 | 1.229 (0.681–2.218) |
No psychosis | 14 (0.350) | 19 (0.475) | 7 (0.175) | 47 (0.588) | 33 (0.412) | ||||
Chinese | Psychosis | 4 (0.267) | 9 (0.600) | 2 (0.133) | 0.894 | 17 (0.567) | 13 (0.433) | 1.000 | 0.889 (0.344–2.298) |
No psychosis | 7 (0.333) | 11 (0.524) | 3 (0.143) | 25 (0.595) | 17 (0.405) | ||||
Kadazan-Dusun | Psychosis | 8 (0.308) | 13 (0.500) | 5 (0.192) | 0.770 | 29 (0.558) | 23 (0.442) | 0.608 | 1.261 (0.647–2.456) |
No psychosis | 14 (0.264) | 25 (0.472) | 14 (0.264) | 53 (0.500) | 53 (0.500) | ||||
Bajau | Psychosis | 12 (0.522) | 10 (0.435) | 1 (0.043) | 0.054 | 34 (0.739) | 12 (0.261) | 0.069 | 2.161 (1.007–4.639) |
No psychosis | 22 (0.424) | 15 (0.288) | 15 (0.288) | 59 (0.567) | 45 (0.433) | ||||
Total | Psychosis | 45 (0.378) | 60 (0.504) | 14 (0.118) | 0.041 | 150 (0.630) | 88 (0.370) | 0.083 | 1.371 (0.975–1.928) |
No psychosis | 57 (0.343) | 70 (0.422) | 39 (0.235) | 184 (0.554) | 148 (0.446) |
Symptom | Genotype | Malay | Chinese | Kadazan-Dusun | Bajau | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | ||
METH dependence | CC vs. GG | 2.468 (1.044–5.833) | 0.062 | 0.917 (0.253–3.327) | 0.843 | 0.868 (0.350–2.154) | 0.942 | 0.759 (0.233–2.473) | 0.869 | 1.220 (0.755–1.973) | 0.490 |
CC vs. (CG + GG) | 1.604 (0.868–3.000) | 0.185 | 0.697 (0.291–1.670) | 0.553 | 0.868 (0.422–1.785) | 0.842 | 1.185 (0.522–2.691) | 0.844 | 1.149 (0.803–1.643) | 0.504 | |
(CC + CG) vs. GG | 2.041 (0.957–4.352) | 0.093 | 1.192 (0.373–3.811) | 0.995 | 0.947 (0.437–2.054) | 0.952 | 0.636 (0.212–1.907) | 0.582 | 1.144 (0.746–1.753) | 0.611 | |
METH- induced psychosis | CC vs. GG | 1.750 (0.485–6.314) | 0.595 | 0.857 (0.098–7.510) | 0.676 | 1.600 (0.419–6.114) | 0.724 | 8.182 (0.960–69.750) | 0.066 | 2.199 (1.065–4.541) | 0.048 |
CC vs. (CG + GG) | 1.147 (0.492–2.677) | 0.919 | 0.727 (0.169–3.133) | 0.951 | 1.238 (0.441–3.477) | 0.890 | 1.488 (0.555–3.987) | 0.589 | 1.163 (0.713–1.898) | 0.632 | |
(CC + CG) vs. GG | 1.732 (0.534–5.617) | 0.535 | 1.083 (0.158–7.435) | 0.684 | 1.508 (0.477–4.765) | 0.673 | 8.919 (1.101–72.248) | 0.037 | 2.303 (1.187–4.470) | 0.019 | |
METH- induced mania | CC vs. GG | 0.947 (0.150–5.994) | 0.677 | 0.444 (0.022–9.032) | 0.788 | 0.619 (0.089–4.316) | 1.000 | 2.308 (0.236–22.598) | 0.812 | 1.038 (0.381–2.824) | 0.856 |
CC vs. (CG + GG) | 2.053 (0.584–7.218) | 0.422 | 0.422 (0.043–4.165) | 0.794 | 0.457 (0.088–2.364) | 0.557 | 1.192 (0.271–5.241) | 0.884 | 0.925 (0.445–1.926) | 0.982 | |
(CC + CG) vs. GG | 0.577 (0.102–3.279) | 0.898 | 0.833 (0.076–9.129) | 0.627 | 1.182 (0.276–5.067) | 0.891 | 2.500 (0.284–22.043) | 0.681 | 1.114 (0.456–2.725) | 0.988 |
Ethnicity | n | Mean Onset Age (Year) | Standard Deviation | p-Value |
---|---|---|---|---|
Malay | 95 | 23.9 | 8.8 | <0.001† |
Chinese | 36 | 30.2 | 9.4 | |
Kadazan-Dusun | 79 | 23.5 | 7.9 | |
Bajau | 75 | 22.0 | 8.1 |
Symptoms | Mean Age (Year) | Standard Deviation | Standard Error | p-Value |
---|---|---|---|---|
Dependence without psychosis (n = 166) | 24.2 | 9.1 | 0.7 | 0.810 |
Dependence with psychosis (n = 119) | 23.9 | 8.2 | 0.8 | |
Dependence without mania (n = 189) | 24.7 | 9.2 | 1.0 | 0.002† |
Dependence with mania (n = 38) | 19.9 | 6.2 | 0.7 |
Symptoms | Genotype | n | Mean Onset Age (Year) | Standard Deviation | p-Value |
---|---|---|---|---|---|
METH dependence | Homozygous C/C | 102 | 23.7 | 0.9 | 0.793 |
Heterozygous C/G | 130 | 24.5 | 0.7 | ||
Homozygous G/G | 53 | 23.9 | 1.3 | ||
METH-induced psychosis | Homozygous C/C | 45 | 22.6 | 7.8 | 0.376 |
Heterozygous C/G | 60 | 24.7 | 8.0 | ||
Homozygous G/G | 14 | 25.0 | 10.3 | ||
METH-induced mania | Homozygous C/C | 13 | 20.3 | 6.6 | 0.813 |
Heterozygous C/G | 18 | 19.2 | 5.7 | ||
Homozygous G/G | 7 | 20.9 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahya, D.N.; Guad, R.M.; Wu, Y.-S.; Gan, S.H.; Gopinath, S.C.B.; Zakariah, H.A.; Rashid, R.A.; Sim, M.S. SLC1A2 Gene Polymorphism Influences Methamphetamine-Induced Psychosis. J. Pers. Med. 2023, 13, 270. https://doi.org/10.3390/jpm13020270
Yahya DN, Guad RM, Wu Y-S, Gan SH, Gopinath SCB, Zakariah HA, Rashid RA, Sim MS. SLC1A2 Gene Polymorphism Influences Methamphetamine-Induced Psychosis. Journal of Personalized Medicine. 2023; 13(2):270. https://doi.org/10.3390/jpm13020270
Chicago/Turabian StyleYahya, Dayang Nooreffazleen, Rhanye Mac Guad, Yuan-Seng Wu, Siew Hua Gan, Subash C. B. Gopinath, Hasif Adli Zakariah, Rusdi Abdul Rashid, and Maw Shin Sim. 2023. "SLC1A2 Gene Polymorphism Influences Methamphetamine-Induced Psychosis" Journal of Personalized Medicine 13, no. 2: 270. https://doi.org/10.3390/jpm13020270
APA StyleYahya, D. N., Guad, R. M., Wu, Y. -S., Gan, S. H., Gopinath, S. C. B., Zakariah, H. A., Rashid, R. A., & Sim, M. S. (2023). SLC1A2 Gene Polymorphism Influences Methamphetamine-Induced Psychosis. Journal of Personalized Medicine, 13(2), 270. https://doi.org/10.3390/jpm13020270