Monocyte/HDL Cholesterol Ratios as a New Inflammatory Marker in Patients with Schizophrenia
Abstract
:1. Introduction
Aims
2. Method
2.1. Participants and Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Assessment Scales and Inventories
2.4. Laboratory Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitations and Strengths
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tandon, R.; Keshavan, M.S.; Nasrallah, H.A. Schizophrenia, “just the facts”: What we know in 2008: Part 1: Overview. Schizophr. Res. 2008, 100, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Paquin, V.; Lapierre, M.; Veru, F.; King, S. Early environmental upheaval and the risk for schizophrenia. Annu. Rev. Clin. Psychol. 2021, 17, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Erkmen, T.; Şahin, C.; ARICIOĞLU, F. Şizofreni’de inflamatuvar mekanizmaların yeri. Clin. Exp. Health Sci. 2015, 5, 134–139. [Google Scholar]
- Han, C.Y.; Tang, C.; Guevara, M.E.; Wei, H.; Wietecha, T.; Shao, B.; Subramanian, S.; Omer, M.; Wang, S.; O’Brien, K.D. Serum amyloid A impairs the antiinflammatory properties of HDL. J. Clin. Investig. 2016, 126, 266–281. [Google Scholar] [CrossRef] [Green Version]
- Ekdahl, C.; Kokaia, Z.; Lindvall, O. Brain inflammation and adult neurogenesis: The dual role of microglia. Neuroscience 2009, 158, 1021–1029. [Google Scholar] [CrossRef]
- Beumer, W.; Gibney, S.M.; Drexhage, R.C.; Pont-Lezica, L.; Doorduin, J.; Klein, H.C.; Steiner, J.; Connor, T.J.; Harkin, A.; Versnel, M.A. The immune theory of psychiatric diseases: A key role for activated microglia and circulating monocytes. J. Leukoc. Biol. 2012, 92, 959–975. [Google Scholar] [CrossRef] [Green Version]
- Massarali, A.; Adhya, D.; Srivastava, D.P.; Baron-Cohen, S.; Kotter, M.R. Virus-Induced Maternal Immune Activation as an Environmental Factor in the Etiology of Autism and Schizophrenia. Front. Neurosci. 2022, 16, 834058. [Google Scholar] [CrossRef] [PubMed]
- Şerifler, S. Investigation of the Effect of Monocyte/HDL and Monocyte/lymphocyte Parameters on the Stage of the Disease and Prognosis in Peripheral Facial Paralysis; Ankara Yıldırım Beyazıt Üniversitesi Tıp Fakültesi: Ankara, Turkiye, 2020. [Google Scholar]
- Aiello, R.J.; Brees, D.; Francone, O.L. ABCA1-deficient mice: Insights into the role of monocyte lipid efflux in HDL formation and inflammation. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Luquain-Costaz, C.; Kockx, M.; Anastasius, M.; Chow, V.; Kontush, A.; Jessup, W.; Kritharides, L. Increased ABCA1 (ATP-Binding Cassette Transporter A1)-specific cholesterol efflux capacity in schizophrenia. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2728–2737. [Google Scholar] [CrossRef]
- Mhalla, A.; Mensi, R.; Amamou, B.; Messaoud, A.; Gassab, L.; Douki, W.; Najjar, M.; Gaha, L. Lipid profile in schizophrenia: Case control study. La Tunis. Med. 2018, 96, 22–29. [Google Scholar]
- Negi, G.; Kumar, A.; Joshi, R.P.; Sharma, S.S. Oxidative stress and Nrf2 in the pathophysiology of diabetic neuropathy: Old perspective with a new angle. Biochem. Biophys. Res. Commun. 2011, 408, 1–5. [Google Scholar] [CrossRef]
- Efe, T.H.; Arslan, E.D.; Ertem, A.G.; Yayla, Ç.; Şahan, H.F.; Felekoğlu, M.A.; Algül, E.; Genç, S.; Yeter, E. PP-103 The Prognostic Value of the Monocyte/HDL ratio in Predicting Short-term Mortality in Patients with Acute Pulmonary Embolism. Am. J. Cardiol. 2016, 117, S76. [Google Scholar] [CrossRef]
- Kaplan, I.; Kaplan, M.; Abacioglu, O.; Yavuz, F.; Saler, T. Monocyte/HDL ratio predicts hypertensive complications. Bratisl. Lek. Listy 2020, 121, 133–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acat, M.; Yazici, O. The Monocyte/HDL Cholesterol Ratio in Obstructive Sleep Apnea Syndrome/Obstruktif Uyku Apne Sendromunda Monosit/HDL Kolesterol Orani. Meandros Med. Dent. J. 2019, 20, 204–209. [Google Scholar] [CrossRef]
- Doğan, H.; Çaltekin, M.D. Comparison of Sleep Quality and Monocyte/High Density Lipoprotein Ratio by Physical Activity Level in Healthy Women. Kırıkkale Üniversitesi Tıp Fakültesi Derg. 2021, 23, 522–529. [Google Scholar] [CrossRef]
- Cakir, I.; Simsek, Y. Total cholesterol/HDL cholesterol ratio and monocyte/HDL cholesterol ratio are related with subclinical hypothyroidism in polycystic ovary syndrome. Turk. J. Biochem. 2022, 47, 65–69. [Google Scholar]
- Gunes, H.; Duksal, F.; Parlak, M. Can monocyte to HDL ratio be used as an inflammatory marker in children with familial mediterranean fever? Ann. Med. Res. 2019, 26, 1453–1457. [Google Scholar] [CrossRef]
- Kosovali, B.D. Monosit Sayısının Yüksek Yoğunluklu Lipoproteine Oranı Akut İskemik İnmede İnflamasyon Belirteci Midir? Abant Tıp Dergisi 2020, 9, 31–34. [Google Scholar]
- CANDEMİR, M.; CANSIZ, A. Predictive Value of Monocyte to High-Density Lipoprotein Cholesterol Ratio (MHR) in Schizophrenia Patients with Stable Coronary Artery Disease. Genel Tıp Derg. 2022, 32, 85–91. [Google Scholar] [CrossRef]
- Sahpolat, M.; Ayar, D.; Ari, M.; Karaman, M.A. Elevated Monocyte to High-density Lipoprotein Ratios as an Inflammation Markers for Schizophrenia Patients. Clin. Psychopharmacol. Neurosci. 2021, 19, 112. [Google Scholar] [CrossRef]
- First, M.; Spitzer, R.; Gibbon, M.; Williams, J. Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition (SCID-I/P) New York: Biometrics Research, New York State Psychiatric Institute; 2002. Schizophr Bull. 1987, 13, 261–276. [Google Scholar]
- Müller, N.; Wagner, J.K.; Krause, D.; Weidinger, E.; Wildenauer, A.; Obermeier, M.; Dehning, S.; Gruber, R.; Schwarz, M.J. Impaired monocyte activation in schizophrenia. Psychiatry Res. 2012, 198, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, P. Uneasy Peace: The Great Crime Decline, the Renewal of City Life, and the Next War on Violence; WW Norton & Company: New York, NY, USA, 2018. [Google Scholar]
- Miller, G.E.; Chen, E.; Finegood, E.; Shimbo, D.; Cole, S.W. Prospective associations between neighborhood violence and monocyte pro-inflammatory transcriptional activity in children. Brain Behav. Immun. 2022, 100, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wysokiński, A.; Strzelecki, D.; Kłoszewska, I. Levels of triglycerides, cholesterol, LDL, HDL and glucose in patients with schizophrenia, unipolar depression and bipolar disorder. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 168–176. [Google Scholar] [CrossRef]
- Özkalayci, Ö. Investigation of Immunological Parameters in the First Episode Psychosis Patients after 6 Months from the Beginning of the Treatment. 2020. Available online: https://www.morressier.com/o/event/5c3da4fd9ae8fb00131ce43e/article/5c642be19ae8fb00131cec5a (accessed on 20 December 2022).
- Gjerde, P.B.; Dieset, I.; Simonsen, C.; Hoseth, E.Z.; Iversen, T.; Lagerberg, T.V.; Lyngstad, S.H.; Mørch, R.H.; Skrede, S.; Andreassen, O.A. Increase in serum HDL level is associated with less negative symptoms after one year of antipsychotic treatment in first-episode psychosis. Schizophr. Res. 2018, 197, 253–260. [Google Scholar] [CrossRef]
- Kanagasundaram, P.; Lee, J.; Prasad, F.; Costa-Dookhan, K.A.; Hamel, L.; Gordon, M.; Remington, G.; Hahn, M.K.; Agarwal, S.M. Pharmacological interventions to treat antipsychotic-induced dyslipidemia in schizophrenia patients: A systematic review and meta analysis. Front. Psychiatry 2021, 12, 642403. [Google Scholar] [CrossRef]
- Ganjali, S.; Gotto Jr, A.M.; Ruscica, M.; Atkin, S.L.; Butler, A.E.; Banach, M.; Sahebkar, A. Monocyte-to-HDL-cholesterol ratio as a prognostic marker in cardiovascular diseases. J. Cell. Physiol. 2018, 233, 9237–9246. [Google Scholar] [CrossRef]
- İpekçioğlu, D.; Kendirlioğlu, B.K. Physical comorbidity and causes of death among schizophrenia patients: A retrospective descriptive study. Bakirkoy Tip Derg. 2019, 15, 103. [Google Scholar] [CrossRef]
- Newcomer, J.W. Second-generation (atypical) antipsychotics and metabolic effects. CNS Drugs 2005, 19, 1–93. [Google Scholar] [CrossRef]
- Delibaş, D.H.; Aydin, M.; Sati-Kirkan, T.; Oğuz, E.G.; Karasu, U.; Şimşek, Y.; Kiliç, C.; Kirci-Ercan, S.; Bayrakçi, A.; Talas-Özçimen, A. Clinical Characteristics, Comorbid Medical Diagnoses, and Causes of Death of Individuals with Severe Mental Illness Who Died During Follow-up in Community Mental Health Centers: A Multicenter, Retrospective Study. Turk. Psikiyatr. Derg. 2021, 32, 246. [Google Scholar] [CrossRef]
- Açıkgöz, H.E. Cardiovascular risk factors in obese and non-obese patients with spectrum disorder schizophrenia. West Indian Med. J. 2013, 21. [Google Scholar]
- Baykara, S.; Bozdağ, P.G.; Baykara, M.; Namlı, M.N. Evaluation of arterial stiffness in patients with schizophrenia. J. Clin. Neurosci. 2020, 79, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.J.; Kandhal, P.; Rapaport, M.H.; Mellor, A.; Buckley, P. Total and differential white blood cell counts, high-sensitivity C-reactive protein, and cardiovascular risk in non-affective psychoses. Brain Behav. Immun. 2015, 45, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Balõtšev, R.; Koido, K.; Vasar, V.; Janno, S.; Kriisa, K.; Mahlapuu, R.; Ljubajev, U.; Parksepp, M.; Veiksaar, P.; Volke, V. Inflammatory, cardio-metabolic and diabetic profiling of chronic schizophrenia. Eur. Psychiatry 2017, 39, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Köylü, E.; Kurtoğlu, Y.K. Relationship between elevated monocyteHDL ratio, an inflammatory marker, with smoking. J. Turk. Fam. Physician 2021, 12, 22–31. [Google Scholar]
- Demir, F.; Taşcı, B. An effective and robust approach based on r-cnn+ lstm model and ncar feature selection for ophthalmological disease detection from fundus images. J. Pers. Med. 2021, 11, 1276. [Google Scholar] [CrossRef]
- Taşcı, B.; Acharya, M.R.; Barua, P.D.; Yildiz, A.M.; Gun, M.V.; Keles, T.; Dogan, S.; Tuncer, T. A new lateral geniculate nucleus pattern-based environmental sound classification using a new large sound dataset. Appl. Acoust. 2022, 196, 108897. [Google Scholar] [CrossRef]
- Macin, G.; Tasci, B.; Tasci, I.; Faust, O.; Barua, P.D.; Dogan, S.; Tuncer, T.; Tan, R.-S.; Acharya, U.R. An accurate multiple sclerosis detection model based on exemplar multiple parameters local phase quantization: ExMPLPQ. Appl. Sci. 2022, 12, 4920. [Google Scholar] [CrossRef]
- Tasci, B.; Tasci, I. Deep feature extraction based brain image classification model using preprocessed images: PDRNet. Biomed. Signal Process. Control. 2022, 78, 103948. [Google Scholar] [CrossRef]
- Dogan, S.; Baygin, M.; Tasci, B.; Loh, H.W.; Barua, P.D.; Tuncer, T.; Tan, R.-S.; Acharya, U.R. Primate brain pattern-based automated Alzheimer’s disease detection model using EEG signals. Cogn. Neurodynamics 2022, 1–13. [Google Scholar] [CrossRef]
- Tasci, G.; Loh, H.W.; Barua, P.D.; Baygin, M.; Tasci, B.; Dogan, S.; Tuncer, T.; Palmer, E.E.; Tan, R.-S.; Acharya, U.R. Automated accurate detection of depression using twin Pascal’s triangles lattice pattern with EEG Signals. Knowl.-Based Syst. 2023, 260, 110190. [Google Scholar] [CrossRef]
- Tasci, B. Automated ischemic acute infarction detection using pre-trained CNN models’ deep features. Biomed. Signal Process. Control. 2023, 82, 104603. [Google Scholar] [CrossRef]
- Demir, F.; Akbulut, Y.; Taşcı, B.; Demir, K. Improving brain tumor classification performance with an effective approach based on new deep learning model named 3ACL from 3D MRI data. Biomed. Signal Process. Control. 2023, 81, 104424. [Google Scholar] [CrossRef]
- Tasci, B.; Tasci, G.; Dogan, S.; Tuncer, T. A novel ternary pattern-based automatic psychiatric disorders classification using ECG signals. Cogn. Neurodynamics 2022, 1–14. [Google Scholar] [CrossRef]
- Tasci, B. Classification of Skin Lesion Images Using Feature Selection Algorithm in Pre-Trained Convolutional Neural Network Models. Fırat Üniversitesi Mühendislik Bilim. Derg. 2020, 34, 541–552. [Google Scholar]
- Tasci, İ.; Tasci, B.; Doğan, S.; Tuncer, T. A new dataset for EEG abnormality detection MTOUH. Turk. J. Sci. Technol. 2022, 17, 135–141. [Google Scholar] [CrossRef]
Patient (n = 85) | Control (n = 50) | p * | ||
---|---|---|---|---|
n (%) | n (%) | |||
Gender | Female | 3 (3.5) | 1 (2) | 0.613 |
Male | 82 (96.5) | 49 (98) | ||
Marital status | Single | 59 (69.4) | 25 (50) | 0.005 |
Married | 19 (22.4) | 24 (48) | ||
Divorced | 7 (8.2) | 1 (2) | ||
Educational status | Literate | 32 (37.6) | 0 (0) | <0.001 |
Primary school | 22 (25.9) | 0 (0) | ||
Secondary school | 9 (10.6) | 4 (8) | ||
High school | 10 (11.8) | 16 (32) | ||
University | 3 (3.5) | 30 (60) | ||
Continues education | 9 (10.6) | 0 (0) | ||
Occupation | Military personnel | 0 (0) | 29 (58) | <0.001 |
Healthcare worker | 1 (1.2) | 17 (34) | ||
Worker | 32 (37.6) | 4 (8) | ||
Unemployed | 45 (52.9) | 0 (0) | ||
Self-employment | 7 (8.2) | 0 (0) | ||
Prison history | Yes | 50 (58.8) | 0 (0) | <0.001 |
No | 35 (41.2) | 50 (100) | ||
Hospitalization | Yes | 65 (76.5) | 0 (0) | <0.001 |
No | 20 (23.5) | 50 (100) | ||
History of physical illnesses | Yes | 7 (8.2) | 0 (0) | 0.037 |
No | 78 (91.8) | 50 (100) | ||
Psychiatric disease in the family | Yes | 21 (24.7) | 0 (0) | <0.001 |
No | 64 (75.3) | 50 (100) | ||
Suicide attempt history | Yes | 24 (28.2) | 0 (0) | <0.001 |
No | 61 (71.8) | 50 (100) | ||
Disease duration | 0 | 0 (0) | 50 (100) | <0.001 |
Less than 1 year | 33 (38.8) | 0 (0) | ||
1–10 years | 31 (36.5) | 0 (0) | ||
More than 10 years | 21 (24.7) | 0 (0) |
Patient | Control | p | |
---|---|---|---|
Age (Mean±Standard deviation) | 32.77 ± 6.42 | 31.08 ± 7.04 | 0.155 |
Monocyte/HDL-C | 0.02 ± 0.01 | 0.01 ± 0.01 | <0.001 * |
Glucose (mg/dL) | 92.72 ± 23.51 | 89.56 ± 6.96 | 0.357 |
Urea (mg/dL) | 26.91 ± 13.56 | 28.66 ± 6.84 | 0.399 |
Creatine (mg/dL) | 0.86 ± 0.61 | 0.86 ± 0.11 | 0.958 |
Total Cholesterol (mg/dL) | 188.88 ± 48.04 | 173.02 ± 36.76 | 0.046 * |
HDL-C(mg/dL) | 42.29 ± 8.72 | 46.6 ± 7.39 | 0.004 |
LDL-C (mg/dL) | 113.41 ± 38.45 | 107.3 ± 30.16 | 0.337 |
TG (mg/dL) | 190.08 ± 150.01 | 108.02 ± 59.62 | <0.001 * |
WBC (103/uL) | 8.7 ± 2.19 | 7.45 ± 1.60 | <0.001 * |
RBC (106/uL) | 5.07 ± 0.45 | 5.3 ± 0.35 | 0.002 * |
Hemoglobin (g/dL) | 15.30 ± 1.46 | 15.8 ± 0.73 | 0.014 * |
Hematocrit (%) | 44.66 ± 3.88 | 45.94 ± 2.26 | 0.034 * |
MCV (fL) | 87.93 ± 6.81 | 86.81 ± 3.35 | 0.278 |
Platelet(103/uL) | 278.35 ± 83.24 | 239.92 ± 54.41 | 0.004 * |
Neutrophil (106/uL) | 5.52 ± 1.80 | 4.36 ± 1.17 | <0.001 * |
Lymphocyte(103/uL) | 2.26 ± 0.86 | 2.19 ± 0.63 | 0.611 |
Monocyte(103/uL) | 0.74 ± 0.27 | 0.6 ± 0.20 | 0.002 * |
Eosinophil (103/uL) | 0.18 ± 0.15 | 0.21 ± 0.19 | 0.31 |
Basophil (103/uL) | 0.06 ± 0.05 | 0.04 ± 0.02 | 0.016 * |
PANSS Positive | 26.59 ± 11.86 | 8.62 ± 1.34 | <0.001 * |
PANSS Negative | 21.58 ± 10.86 | 9.22 ± 2.630 | <0.001 * |
PANSS GPP | 43.36 ± 19.54 | 17.08 ± 1.72 | <0.001 * |
PANSS Total | 91.19 ± 34.84 | 34.92 ± 3.90 | <0.001 * |
Height (cm) | 172.46 ± 7.04 | 177.84 ± 6.16 | <0.001 * |
Weight (kg) | 76.82 ± 13.17 | 76.78 ± 11.42 | 0.985 |
BMI (kg/m²) | 25.85 ± 4.32 | 24.25 ± 3.219 | 0.024 * |
Glucose | Urea | Creatinin | Total Cholesterol | HDL-C | LDL | −CTG | WBC | RBC | Hgb | Hct | MCV | Plt | Neutrophil | Lymphocyte | Monocyte | Eosinophil | Basophil | MHR | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PANSS Positive | r | −0.171 | 0.265 * | −0.005 | −0.134 | −0.022 | −0.112 | −0.068 | 0.030 | −0.210 | −0.059 | −0.033 | 0.111 | 0.042 | 0.066 | −0.103 | 0.123 | 0.040 | 0.020 | 0.072 |
p | 0.117 | 0.014 | 0.964 | 0.220 | 0.839 | 0.309 | 0.534 | 0.783 | 0.054 | 0.595 | 0.763 | 0.313 | 0.700 | 0.548 | 0.350 | 0.261 | 0.717 | 0.854 | 0.515 | |
PANSS Negative | r | 0.082 | −0.061 | −0.024 | −0.020 | −0.101 | 0.003 | −0.097 | 0.003 | −0.097 | −0.108 | −0.090 | 0.032 | 0.031 | 0.065 | −0.105 | 0.015 | −0.143 | −0.251 * | 0.043 |
p | 0.454 | 0.578 | 0.827 | 0.858 | 0.358 | 0.978 | 0.378 | 0.977 | 0.379 | 0.327 | 0.412 | 0.773 | 0.776 | 0.555 | 0.338 | 0.889 | 0.191 | 0.021 | 0.698 | |
PANNS GPP | r | −0.105 | 0.224 * | −0.016 | −0.089 | −0.074 | −0.068 | −0.086 | 0.057 | −0.212 | −0.085 | −0.106 | 0.075 | 0.130 | 0.043 | 0.007 | 0.106 | 0.133 | −0.095 | 0.107 |
p | 0.340 | 0.039 | 0.883 | 0.418 | 0.500 | 0.537 | 0.436 | 0.602 | 0.051 | 0.439 | 0.334 | 0.492 | 0.236 | 0.695 | 0.948 | 0.335 | 0.224 | 0.385 | 0.328 | |
PANSS Total | r | −0.093 | 0.206 | −0.017 | −0.106 | −0.078 | −0.080 | −0.100 | 0.048 | −0.220 * | −0.101 | −0.096 | 0.092 | 0.101 | 0.071 | −0.059 | 0.102 | 0.047 | −0.123 | 0.094 |
p | 0.399 | 0.059 | 0.879 | 0.336 | 0.478 | 0.469 | 0.364 | 0.662 | 0.043 | 0.357 | 0.382 | 0.404 | 0.356 | 0.518 | 0.589 | 0.353 | 0.668 | 0.261 | 0.393 |
B | S.E. | Sig. | Exp(B) | 95% C.I.for EXP(B) | ||
---|---|---|---|---|---|---|
Lower | Upper | |||||
Monocyte/HDL-C | 94.769 | 31.663 | 0.003 | 1.438 | 1.667 | 1.287 |
Constant | −0.701 | 0.491 | 0.154 | 0.496 | ||
Cox & Snell R2 = 0.069; Nagelkerke R2 = 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kılıç, N.; Tasci, G.; Yılmaz, S.; Öner, P.; Korkmaz, S. Monocyte/HDL Cholesterol Ratios as a New Inflammatory Marker in Patients with Schizophrenia. J. Pers. Med. 2023, 13, 276. https://doi.org/10.3390/jpm13020276
Kılıç N, Tasci G, Yılmaz S, Öner P, Korkmaz S. Monocyte/HDL Cholesterol Ratios as a New Inflammatory Marker in Patients with Schizophrenia. Journal of Personalized Medicine. 2023; 13(2):276. https://doi.org/10.3390/jpm13020276
Chicago/Turabian StyleKılıç, Nülüfer, Gulay Tasci, Seda Yılmaz, Pınar Öner, and Sevda Korkmaz. 2023. "Monocyte/HDL Cholesterol Ratios as a New Inflammatory Marker in Patients with Schizophrenia" Journal of Personalized Medicine 13, no. 2: 276. https://doi.org/10.3390/jpm13020276
APA StyleKılıç, N., Tasci, G., Yılmaz, S., Öner, P., & Korkmaz, S. (2023). Monocyte/HDL Cholesterol Ratios as a New Inflammatory Marker in Patients with Schizophrenia. Journal of Personalized Medicine, 13(2), 276. https://doi.org/10.3390/jpm13020276