External Validation of Prediction Models for Surgical Complications in People Considering Total Hip or Knee Arthroplasty Was Successful for Delirium but Not for Surgical Site Infection, Postoperative Bleeding, and Nerve Damage: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Population
2.2. Data Extraction and Handling
2.3. Predictor Variables
2.4. Predictor Variables
2.5. Sample Size
2.6. Data Analysis
2.6.1. Predicted Probabilities
- Surgical site infection: −7.272 + (0.031 × age − 0.002 × BMI + 0.757 × smoking status + 0.891 × immunological disorder + 0.904 × diabetes mellitus + 2.345 × liver disease + 0.619 × NSAID’s);
- Postoperative bleeding: −7.172 + (0.033 × age + 0.012 × BMI − 0.023 × smoking status + 0.729 × heart disease + 0.787 × vitamin K antagonist use);
- Delirium: −14.307 + (0.127 × age + 0.348 × heart disease + 0.898 × disease of central nervous system);
- Nerve damage: −2.250 + (−0.051 × age − 0.254 × gender + 0.572 × smoking status − 0.009 × dysplasia).
2.6.2. Predicted Probabilities
3. Results
3.1. Model Development
3.2. Model Performance
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Podmore, B.; Hutchings, A.; van der Meulen, J.; Aggarwal, A.; Konan, S. Impact of comorbid conditions on outcomes of hip and knee replacement surgery: A systematic review and meta-analysis. BMJ Open 2018, 8, e021784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweerts, L.; Hoogeboom, T.J.; van Wessel, T.; van der Wees, P.J.; van de Groes, S.A.W. Development of prediction models for complications after primary total hip and knee arthroplasty: A single-centre retrospective cohort study in the Netherlands. BMJ Open 2022, 12, e062065. [Google Scholar] [CrossRef]
- Trickey, A.W.; Ding, Q.; Harris, A.H.S. How Accurate Are the Surgical Risk Preoperative Assessment System (SURPAS) Universal Calculators in Total Joint Arthroplasty? Clin. Orthop. Relat. Res. 2020, 478, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.H.S.; Kuo, A.C.; Weng, Y.; Trickey, A.W.; Bowe, T.; Giori, N.J. Can Machine Learning Methods Produce Accurate and Easy-to-use Prediction Models of 30-day Complications and Mortality After Knee or Hip Arthroplasty? Clin. Orthop. Relat. Res. 2019, 477, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.H.; Kuo, A.C.; Bowe, T.; Gupta, S.; Nordin, D.; Giori, N.J. Prediction Models for 30-Day Mortality and Complications After Total Knee and Hip Arthroplasties for Veteran Health Administration Patients with Osteoarthritis. J. Arthroplast. 2018, 33, 1539–1545. [Google Scholar] [CrossRef]
- Bilimoria, K.Y.; Liu, Y.; Paruch, J.L.; Zhou, L.; Kmiecik, T.E.; Ko, C.Y.; Cohen, M.E. Development and evaluation of the universal ACS NSQIP surgical risk calculator: A decision aid and informed consent tool for patients and surgeons. J. Am. Coll. Surg. 2013, 217, 833–842.e831–833. [Google Scholar] [CrossRef] [Green Version]
- Protopapa, K.L.; Simpson, J.C.; Smith, N.C.; Moonesinghe, S.R. Development and validation of the Surgical Outcome Risk Tool (SORT). Br. J. Surg. 2014, 101, 1774–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meguid, R.A.; Bronsert, M.R.; Juarez-Colunga, E.; Hammermeister, K.E.; Henderson, W.G. Surgical Risk Preoperative Assessment System (SURPAS): III. Accurate Preoperative Prediction of 8 Adverse Outcomes Using 8 Predictor Variables. Ann. Surg. 2016, 264, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Bozic, K.J.; Ong, K.; Lau, E.; Berry, D.J.; Vail, T.P.; Kurtz, S.M.; Rubash, H.E. Estimating risk in Medicare patients with THA: An electronic risk calculator for periprosthetic joint infection and mortality. Clin. Orthop. Relat. Res. 2013, 471, 574–583. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.L.; Maltenfort, M.G.; Chen, A.F.; Shahi, A.; Higuera, C.A.; Siqueira, M.; Parvizi, J. Development and Evaluation of a Preoperative Risk Calculator for Periprosthetic Joint Infection Following Total Joint Arthroplasty. JBJS 2018, 100, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Zotov, E.; Hills, A.F.; de Mello, F.L.; Aram, P.; Sayers, A.; Blom, A.W.; McCloskey, E.V.; Wilkinson, J.M.; Kadirkamanathan, V. JointCalc: A web-based personalised patient decision support tool for joint replacement. Int. J. Med. Inform. 2020, 142, 104217. [Google Scholar] [CrossRef] [PubMed]
- Paxton, E.W.; Inacio, M.C.S.; Khatod, M.; Yue, E.; Funahashi, T.; Barber, T. Risk Calculators Predict Failures of Knee and Hip Arthroplasties: Findings from a Large Health Maintenance Organization. Clin. Orthop. Relat. Res. 2015, 473, 3965–3973. [Google Scholar] [CrossRef] [PubMed]
- Klemt, C.; Tirumala, V.; Smith, E.J.; Padmanabha, A.; Kwon, Y.-M. Development of a Preoperative Risk Calculator for Reinfection Following Revision Surgery for Periprosthetic Joint Infection. J. Arthroplast. 2021, 36, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Everhart, J.S.; Andridge, R.R.; Scharschmidt, T.J.; Mayerson, J.L.; Glassman, A.H.; Lemeshow, S. Development and Validation of a Preoperative Surgical Site Infection Risk Score for Primary or Revision Knee and Hip Arthroplasty. JBJS 2016, 98, 1522–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inacio, M.C.S.; Pratt, N.L.; Roughead, E.E.; Graves, S.E. Predicting Infections After Total Joint Arthroplasty Using a Prescription Based Comorbidity Measure. J. Arthroplast. 2015, 30, 1692–1698. [Google Scholar] [CrossRef]
- Edelstein, A.I.; Kwasny, M.J.; Suleiman, L.I.; Khakhkhar, R.H.; Moore, M.A.; Beal, M.D.; Manning, D.W. Can the American College of Surgeons Risk Calculator Predict 30-Day Complications After Knee and Hip Arthroplasty? J. Arthroplast. 2015, 30, 5–10. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Moons, K.G.; van der Windt, D.A.; Hayden, J.A.; Perel, P.; Schroter, S.; Riley, R.D.; Hemingway, H.; Altman, D.G. Prognosis Research Strategy (PROGRESS) 3: Prognostic model research. PLoS Med. 2013, 10, e1001381. [Google Scholar] [CrossRef] [Green Version]
- Kunutsor, S.K.; Whitehouse, M.R.; Blom, A.W.; Beswick, A.D. Systematic review of risk prediction scores for surgical site infection or periprosthetic joint infection following joint arthroplasty. Epidemiol. Infect. 2017, 145, 1738–1749. [Google Scholar] [CrossRef]
- Kilsdonk, E.; Peute, L.W.; Jaspers, M.W.M. Factors influencing implementation success of guideline-based clinical decision support systems: A systematic review and gaps analysis. Int. J. Med. Inform. 2017, 98, 56–64. [Google Scholar] [CrossRef]
- Ong, K.L.; Lau, E.; Suggs, J.; Kurtz, S.M.; Manley, M.T. Risk of Subsequent Revision after Primary and Revision Total Joint Arthroplasty. Clin. Orthop. Relat. Res. 2010, 468, 3070–3076. [Google Scholar] [CrossRef] [Green Version]
- Van Steenbergen, L.N.; Denissen, G.A.W.; Spooren, A.; van Rooden, S.M.; van Oosterhout, F.J.; Morrenhof, J.W.; Nelissen, R.G.H.H. More than 95% completeness of reported procedures in the population-based Dutch Arthroplasty Register. Acta Orthop. 2015, 86, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Moons, K.G.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.; Macaskill, P.; Steyerberg, E.W.; Vickers, A.J.; Ransohoff, D.F.; Collins, G.S. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CTcue. Empowering Healthcare with Real-World Evidence. Available online: https://ctcue.com/ (accessed on 12 July 2022).
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vittinghoff, E.; McCulloch, C.E. Relaxing the rule of ten events per variable in logistic and Cox regression. Am. J. Epidemiol. 2007, 165, 710–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Arkel, E.; van der Kraan, J.; Hageman, M.; Venhorst, K. Consultkaart Artrose in de heup. 2016. Available online: https://cdn.nimbu.io/s/yba55wt/assets/20161219_CK_Artrose-in-de-heup.pdf (accessed on 12 July 2022).
- Steyerberg, E.W. Clinical Prediction Models; Springer: New York, NY, USA, 2009. [Google Scholar]
- Steyerberg, E.W.; Vickers, A.J.; Cook, N.R.; Gerds, T.; Gonen, M.; Obuchowski, N.; Pencina, M.J.; Kattan, M.W. Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology 2010, 21, 128–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R. Applied Logistic Regression, 3rd ed.; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A language and environment for statistical computing, R Foundation for Statistical Computing. 2010. Available online: http://www.R-project.org (accessed on 27 July 2022).
- Siontis, G.C.; Tzoulaki, I.; Castaldi, P.J.; Ioannidis, J.P. External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination. J. Clin. Epidemiol. 2015, 68, 25–34. [Google Scholar] [CrossRef]
- Wynants, L.; Collins, G.S.; Van Calster, B. Key steps and common pitfalls in developing and validating risk models. BJOG 2017, 124, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Shipe, M.E.; Deppen, S.A.; Farjah, F.; Grogan, E.L. Developing prediction models for clinical use using logistic regression: An overview. J. Thorac. Dis. 2019, 11, S574–S584. [Google Scholar] [CrossRef]
- Moons, K.G.; Kengne, A.P.; Grobbee, D.E.; Royston, P.; Vergouwe, Y.; Altman, D.G.; Woodward, M. Risk prediction models: II. External validation, model updating, and impact assessment. Heart 2012, 98, 691–698. [Google Scholar] [CrossRef]
- Van Laar, S.A.; Gombert-Handoko, K.B.; Guchelaar, H.-J.; Zwaveling, J. An Electronic Health Record Text Mining Tool to Collect Real-World Drug Treatment Outcomes: A Validation Study in Patients with Metastatic Renal Cell Carcinoma. Clin. Pharmacol. Ther. 2020, 108, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; Harvey, W.F.; Saillant, J.; Kazakin, A.; Talmo, C.; Bono, J. Pharmacologic Risk Factors for Post-Operative Delirium in Total Joint Arthroplasty Patients: A Case–Control Study. J. Arthroplast. 2014, 29, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Kitsis, P.; Zisimou, T.; Gkiatas, I.; Kostas-Agnantis, I.; Gelalis, I.; Korompilias, A.; Pakos, E. Postoperative Delirium and Postoperative Cognitive Dysfunction in Patients with Elective Hip or Knee Arthroplasty: A Narrative Review of the Literature. Life 2022, 12, 314. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | Missing Values | Total Cohort (n = 2614) | Patients after THA (n = 1407) | Patients after TKA (n = 1207) |
---|---|---|---|---|
Age (years, mean ± SD) | 0% | 68.1 ± 10 | 68.8 ± 10.5 | 67.4 ± 9.4 |
Gender: female (n, %) | 0% | 1628 (62.3) | 892 (63.4) | 736 (61) |
BMI (mean ± SD) | 1.20% | 28.8 ± 5 | 27.7 ± 4.8 | 30.1 ± 5.1 |
Smoking: yes (n, %) | 1.30% | 522 (20) | 304 (21.9) | 218 (18.2) |
Surgical complications (n, %) | ||||
-surgical site infection | 0% | 38 (1.5) | 23 (1.6) | 15 (1.2) |
-postoperative bleeding | 0% | 74 (2.8) | 40 (2.8) | 34 (2.8) |
-delirium | 0% | 21 (0.8) | 8 (0.6) | 13 (1.1) |
-nerve damage | 0% | - | 2 (0.1) | - |
Comorbidities (n, %) | ||||
-immunological disorder | 0% | 316 (12.1) | 152 (10.8) | 164 (13.6) |
-rheumatoid arthritis | 0% | 205 (7.8) | 101 (7.2) | 104 (8.6) |
-diabetes mellitus | 0% | 348 (13.3) | 159 (11.3) | 189 (15.7) |
-liver disease | 0% | 41 (1.6) | 24 (1.7) | 17 (1.4) |
-heart disease | 0% | 622 (23.8) | 342 (24.3) | 280 (23.2) |
-disease of central nervous system | 0% | 145 (5.5) | 76 (5.4) | 69 (5.7) |
-hip dysplasia | 0% | 39 (1.5) | 36 (2.6) | 3 (0.2) |
Medication use | ||||
-vitamin K antagonist | 0% | 151 (5.8) | 87 (6.2) | 64 (5.3) |
-NSAID | 0% | 296 (11.3) | 189 (13.4) | 107 (8.9) |
Discriminative and Predictive Performance | Area under the Curve (AUC) (95%CI) | H-L Statistic (p-Value) |
---|---|---|
Surgical site infection | 0.55 (0.52–0.58) | <0.001 |
Postoperative bleeding | 0.61 (0.59–0.64) | <0.001 |
Delirium | 0.84 (0.82–0.87) | <0.001 |
Nerve damage | 0.57 (0.53–0.61) | <0.001 |
Overall Performance | Mean Predicted Risk % (SD) | Brier Statistic |
---|---|---|
Surgical site infection | 0.013 (0.022) Range 0.002–0.335 | 0.015 |
Postoperative bleeding | 0.015 (0.012) Range 0.002–0.086 | 0.028 |
Delirium | 0.008 (0.011) Range <0.001–0.118 | 0.008 |
Nerve damage | 0.003 (0.003) Range 0.001–0.041 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sweerts, L.; Dekkers, P.W.; van der Wees, P.J.; van Susante, J.L.C.; de Jong, L.D.; Hoogeboom, T.J.; van de Groes, S.A.W. External Validation of Prediction Models for Surgical Complications in People Considering Total Hip or Knee Arthroplasty Was Successful for Delirium but Not for Surgical Site Infection, Postoperative Bleeding, and Nerve Damage: A Retrospective Cohort Study. J. Pers. Med. 2023, 13, 277. https://doi.org/10.3390/jpm13020277
Sweerts L, Dekkers PW, van der Wees PJ, van Susante JLC, de Jong LD, Hoogeboom TJ, van de Groes SAW. External Validation of Prediction Models for Surgical Complications in People Considering Total Hip or Knee Arthroplasty Was Successful for Delirium but Not for Surgical Site Infection, Postoperative Bleeding, and Nerve Damage: A Retrospective Cohort Study. Journal of Personalized Medicine. 2023; 13(2):277. https://doi.org/10.3390/jpm13020277
Chicago/Turabian StyleSweerts, Lieke, Pepijn W. Dekkers, Philip J. van der Wees, Job L. C. van Susante, Lex D. de Jong, Thomas J. Hoogeboom, and Sebastiaan A. W. van de Groes. 2023. "External Validation of Prediction Models for Surgical Complications in People Considering Total Hip or Knee Arthroplasty Was Successful for Delirium but Not for Surgical Site Infection, Postoperative Bleeding, and Nerve Damage: A Retrospective Cohort Study" Journal of Personalized Medicine 13, no. 2: 277. https://doi.org/10.3390/jpm13020277
APA StyleSweerts, L., Dekkers, P. W., van der Wees, P. J., van Susante, J. L. C., de Jong, L. D., Hoogeboom, T. J., & van de Groes, S. A. W. (2023). External Validation of Prediction Models for Surgical Complications in People Considering Total Hip or Knee Arthroplasty Was Successful for Delirium but Not for Surgical Site Infection, Postoperative Bleeding, and Nerve Damage: A Retrospective Cohort Study. Journal of Personalized Medicine, 13(2), 277. https://doi.org/10.3390/jpm13020277