A Prospective Study of Longitudinal Risks of Cognitive Deficit for People Undergoing Glioblastoma Surgery Using a Tablet Computer Cognition Testing Battery: Towards Personalized Understanding of Risks to Cognitive Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Neuropsychological Assessment
2.4. Variables
2.5. Statistical Analysis
2.5.1. Assessment by Cognitive Test: Tumour vs. Normative Assessment
2.5.2. Assessment by Cognitive Test: Tumour vs. Tumour Assessment
2.5.3. Assessment by Cognitive Domain
2.6. Data Availability
3. Results
3.1. Study Participants and Data Collection
3.2. Patients with Glioblastoma Have Impaired Cognitive Function in Several Domains before Surgery
3.3. Cognitive Function Worsens in the Early Postoperative Period
3.4. Some Cognitive Function Recovers over Time in the Late Postoperative Period
3.5. The Observed Risks of Cognitive Deficit Are Independent of Patient-Specific, Tumour-Specific, and Surgery-Specific Characteristics
3.6. Risk Communication via Visual Representation
4. Discussion
4.1. Limitations
4.2. Interpretation
4.3. Generalisability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant\nand Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Stupp, R.; Taillibert, S.; Kanner, A.A.; Kesari, S.; Steinberg, D.M.; Toms, S.A.; Taylor, L.P.; Lieberman, F.; Silvani, A.; Fink, K.L.; et al. Maintenance Therapy with Tumor-Treating Fields Plus Temozolomide vs. Temozolomide Alone for Glioblastoma. JAMA 2015, 314, 2535. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Postma, T.; Taphoorn, M.; Aaronson, N.; Vandertop, W.; Muller, M.; van der Ploeg, H.; Heimans, J. The prognostic value of cognitive functioning in the survival of patients with high-grade glioma. Neurology 2003, 61, 1796–1798. [Google Scholar] [CrossRef] [PubMed]
- Hilverda, K.; Bosma, I.; Heimans, J.J.; Postma, T.J.; Vandertop, W.P.; Slotman, B.; Buter, J.; Reijneveld, J.C.; Klein, M. Cognitive functioning in glioblastoma patients during radiotherapy and temozolomide treatment: Initial findings. J. Neurooncol. 2010, 97, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.R.; Wefel, J.S. Relationship between cognitive function and prognosis in glioblastoma. CNS Oncol. 2013, 2, 195–201. [Google Scholar] [CrossRef]
- Habets, E.J.J.; Kloet, A.; Walchenbach, R.; Vecht, C.J.; Klein, M.; Taphoorn, M.J.B. Tumor and surgery effects on cognitive functioning in high-grade glioma patients. Acta Neurochir. 2014, 156, 1451–1459. [Google Scholar] [CrossRef]
- Lee, S.-T.; Park, C.-K.; Kim, J.W.; Park, M.-J.; Lee, H.; Lim, J.-A.; Choi, S.H.; Kim, T.M.; Lee, S.-H.; Park, S.-H.; et al. Early cognitive function tests predict early progression in glioblastoma. Neuro-Oncol. Pract. 2015, 2, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Rijnen, S.J.M.; Butterbrod, E.; Rutten, G.J.M.; Sitskoorn, M.M.; Gehring, K. Presurgical identification of patients with glioblastoma at risk for cognitive impairment at 3-month follow-up. Neurosurgery 2020, 87, 1119–1129. [Google Scholar] [CrossRef]
- Scherer, H.J. The forms of growth in gliomas and their practical significance. Brain 1940, 63, 1–35. [Google Scholar] [CrossRef]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Soussain, C.; Ricard, D.; Fike, J.R.; Mazeron, J.J.; Psimaras, D.; Delattre, J.Y. CNS complications of radiotherapy and chemotherapy. Lancet 2009, 374, 1639–1651. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Taphoorn, M.J.; Heimans, J.J.; van der Ploeg, H.M.; Vandertop, W.P.; Smit, E.F.; Leenstra, S.; Tulleken, C.A.; Boogerd, W.; Belderbos, J.S.; et al. Neurobehavioral status and health-related quality of life in newly diagnosed high-grade glioma patients. J. Clin. Oncol. 2001, 19, 4037–4047. [Google Scholar] [CrossRef] [PubMed]
- Bunevicius, A.; Tamasauskas, S.; Deltuva, V.; Tamasauskas, A.; Radziunas, A.; Bunevicius, R. Predictors of health-related quality of life in neurosurgical brain tumor patients: Focus on patient-centered perspective. Acta Neurochir. 2014, 156, 367–374. [Google Scholar] [CrossRef] [PubMed]
- The Brain Tumor Charity. Losing Myself: The Reality of Life with a Brain Tumor; The Brain Tumor Charity: Fleet, UK, 2015. [Google Scholar]
- Kurako, K.; Salgado, E. Quality of life in adults with gliomas: Literature review. Neurology 2015, 17 Suppl. 8, viii1. [Google Scholar] [CrossRef] [Green Version]
- De Witt Hamer, P.C.; De Witt Hamer, P.C.; Klein, M.; Hervey-Jumper, S.L.; Wefel, J.S.; Berger, M.S. Functional Outcomes and Health-Related Quality of Life Following Glioma Surgery. Neurosurgery 2021, 88, 720–732. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Stephenson, J.M.; Price, S.J. A systematic review of cognitive function in patients with glioblastoma undergoing surgery. Neuro-Oncol. Pract. 2020, 7, 131–142. [Google Scholar] [CrossRef]
- van Loenen, I.S.; Rijnen, S.J.M.; Bruijn, J.; Rutten, G.J.M.; Gehring, K.; Sitskoorn, M.M. Group Changes in Cognitive Performance After Surgery Mask Changes in Individual Patients with Glioblastoma. World Neurosurg. 2018, 117, e172–e179. [Google Scholar] [CrossRef]
- Butterbrod, E.; Bruijn, J.; Braaksma, M.M.; Rutten, G.-J.M.; Tijssen, C.C.; Hanse, M.C.J.; Sitskoorn, M.M.; Gehring, K. Predicting disease progression in high-grade glioma with neuropsychological parameters: The value of personalized longitudinal assessment. J. Neurooncol. 2019, 144, 511–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demeyere, N.; Riddoch, M.J.; Slavkova, E.D.; Bickerton, W.L.; Humphreys, G.W. The Oxford Cognitive Screen (OCS): Validation of a stroke-specific short cognitive screening tool. Psychol. Assess. 2015, 27, 883–894. [Google Scholar] [CrossRef]
- Sinha, R.; Dijkshoorn, A.B.C.; Li, C.; Manly, T.; Price, S.J. Glioblastoma surgery related emotion recognition deficits are associated with right cerebral hemisphere tract changes. Brain Commun. 2020, 2, fcaa169. [Google Scholar] [CrossRef]
- Romero-Garcia, R.; Suckling, J.; Owen, M.; Assem, M.; Sinha, R.; Coelho, P.; Woodberry, E.; Price, S.J.; Burke, A.; Santarius, T.; et al. Memory recovery in relation to default mode network impairment and neurite density during brain tumor treatment. J. Neurosurg. 2022, 136, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Romero-Garcia, R.; Owen, M.; McDonald, A.; Woodberry, E.; Assem, M.; Coelho, P.; Morris, R.C.; Price, S.J.; Santarius, T.; Suckling, J.; et al. Assessment of neuropsychological function in brain tumor treatment: A comparison of traditional neuropsychological assessment with app-based cognitive screening. Acta Neurochir. 2022, 164, 2021–2034. [Google Scholar] [CrossRef] [PubMed]
- Larner, A.J. Effect Size (Cohen’s d) of Cognitive Screening Instruments Examined in Pragmatic Diagnostic Accuracy Studies. Dement. Geriatr. Cogn. Dis. Extra 2014, 4, 236–241. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Lowe, B.; Löwe, B. A Brief Measure for Assessing Generalized Anxiety Disorder. Arch. Intern. Med. 2006, 166, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaton, R.K.; Temkin, N.; Dikmen, S.; Avitable, N.; Taylor, M.J.; Marcotte, T.D.; Grant, I. Detecting change: A comparison of three neuropsychological methods, using normal and clinical samples. Arch. Clin. Neuropsychol. 2001, 16, 75–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, C.N.; Natelson Love, M.C.; Triebel, K.L. Normal cognitive aging. Clin. Geriatr. Med. 2013, 29, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Parisi, J.M.; Rebok, G.W.; Xue, Q.-L.; Fried, L.P.; Seeman, T.E.; Tanner, E.K.; Gruenewald, T.L.; Frick, K.D.; Carlson, M.C. The role of education and intellectual activity on cognition. J. Aging Res. 2012, 2012, 416132. [Google Scholar] [CrossRef] [Green Version]
- Robinson, O.J.; Vytal, K.; Cornwell, B.R.; Grillon, C. The impact of anxiety upon cognition: Perspectives from human threat of shock studies. Front. Hum. Neurosci. 2013, 7, 203. [Google Scholar] [CrossRef] [Green Version]
- Perini, G.; Ramusino, M.C.; Sinforiani, E.; Bernini, S.; Petrachi, R.; Costa, A. Cognitive impairment in depression: Recent advances and novel treatments. Neuropsychiatr. Dis. Treat. 2019, 15, 1249–1258. [Google Scholar] [CrossRef] [Green Version]
- Pitter, K.L.; Tamagno, I.; Alikhanyan, K.; Hosni-Ahmed, A.; Pattwell, S.S.; Donnola, S.; Dai, C.; Ozawa, T.; Chang, M.; Chan, T.A.; et al. Corticosteroids compromise survival in glioblastoma. Brain 2016, 139, 1458–1471. [Google Scholar] [CrossRef] [Green Version]
- Rai, J.; Shah, A.; Yadav, P.; Chaudhari, M. Impact of anti-epileptic drugs on cognition: A review. Int. J. Basic Clin. Pharmacol. 2016, 5, 599–604. [Google Scholar] [CrossRef]
- Eckel-Passow, J.E.; Lachance, D.H.; Molinaro, A.M.; Walsh, K.M.; Decker, P.A.; Sicotte, H.; Pekmezci, M.; Rice, T.W.; Kosel, M.L.; Smirnov, I.V.; et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N. Engl. J. Med. 2015, 372, 2499–2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wefel, J.S.; Noll, K.R.; Rao, G.; Cahill, D.P. Neurocognitive function varies by IDH1 genetic mutation status in patients with malignant glioma prior to surgical resection. Neuro Oncol. 2016, 18, 1656–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffau, H. New Philosophy, Clinical Pearls, and Methods for Intraoperative Cognition Mapping and Monitoring “à la carte” in Brain Tumor Patients. Neurosurgery 2021, 88, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Molinaro, A.M.; Hervey-Jumper, S.; Morshed, R.A.; Young, J.; Han, S.J.; Chunduru, P.; Zhang, Y.; Phillips, J.J.; Shai, A.; Lafontaine, M.; et al. Association of Maximal Extent of Resection of Contrast-Enhanced and Non-Contrast-Enhanced Tumor with Survival Within Molecular Subgroups of Patients with Newly Diagnosed Glioblastoma. JAMA Oncol. 2020, 6, 495–503. [Google Scholar] [CrossRef]
- Satoer, D.; Visch-Brink, E.; Smits, M.; Kloet, A.; Looman, C.; Dirven, C.; Vincent, A. Long-term evaluation of cognition after glioma surgery in eloquent areas. J. Neurooncol. 2014, 116, 153–160. [Google Scholar] [CrossRef]
- Talacchi, A.; Santini, B.; Savazzi, S.; Gerosa, M. Cognitive effects of tumor and surgical treatment in glioma patients. J. Neurooncol. 2011, 103, 541–549. [Google Scholar] [CrossRef]
- Perneger, T.V. What’s wrong with Bonferroni adjustments. Br. Med. J. 1998, 316, 1236–1238. [Google Scholar] [CrossRef] [PubMed]
- Gigerenzer, G.; Edwards, A. Simple tools for understanding risks: From innumeracy to insight. Br. Med. J. 2003, 327, 741–744. [Google Scholar] [CrossRef] [Green Version]
- NICE. Shared Decision Making. NICE Guidel [NG197]; NICE: London, UK, 2021. [Google Scholar]
- Sinha, R.; Mendez, R.F.; Rastall, R.; Ingham, J.; Manly, T.; Price, S. Glioma patients prefer cognitive function assessment by a tablet based application over paper format testing. Neuro Oncol. 2018, 20, i18. [Google Scholar] [CrossRef]
- Jacob, R. Visualising global pandemic: A content analysis of infographics on COVID-19. J. Content Community Commun. 2020, 10, 116–123. [Google Scholar] [CrossRef]
- Lin, E.; Calvano, S.E.; Lowry, S.F. Inflammatory cytokines and cell response in surgery. Surgery 2000, 127, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.G.; Romero-Garcia, R.; Price, S.J.; Suckling, J. Global Effects of Focal Brain Tumors on Functional Complexity and Network Robustness: A Prospective Cohort Study. Clin. Neurosurg. 2019, 84, 1201–1213. [Google Scholar] [CrossRef] [Green Version]
- Stoecklein, V.M.; Stoecklein, S.; Galiè, F.; Ren, J.; Schmutzer, M.; Unterrainer, M.; Albert, N.L.; Kreth, F.-W.; Thon, N.; Liebig, T.; et al. Resting-state fMRI Detects Alterations in Whole Brain Connectivity Related to Tumor Biology in Glioma Patients. Neuro Oncol. 2020, 22, 1388–1398. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Li, C.; Cui, Z.; Mayrand, R.C.; Zou, J.; Wong, A.L.K.C.; Sinha, R.; Matys, T.; Schönlieb, C.-B.; Price, S.J. Structural connectome quantifies tumor invasion and predicts survival in glioblastoma patients. Brain 2022, awac360. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, R.; Asklund, T.; Poulsen, H.S. Impact of therapy on quality of life, neurocognitive function and their correlates in glioblastoma multiforme: A review. J. Neurooncol. 2011, 104, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Bunevicius, A.; Tamasauskas, S.; Tamasauskas, A.; Deltuva, V.; Bunevicius, R. Greater levels of depression and anxiety symptoms are associated with poor health related quality of life in adult brain tumor patients. Neuro Oncol. 2013, 15, iii227. [Google Scholar]
- Ståhl, P.; Fekete, B.; Henoch, I.; Smits, A.; Jakola, A.S.; Rydenhag, B.; Ozanne, A. Health-related quality of life and emotional well-being in patients with glioblastoma and their relatives. J. Neurooncol. 2020, 149, 347–356. [Google Scholar] [CrossRef]
- Binder, A.S.; Lancaster, K.; Lengenfelder, J.; Chiaravalloti, N.D.; Genova, H.M. Community Integration in Traumatic Brain Injury: The Contributing Factor of Affect Recognition Deficits. J. Int. Neuropsychol. Soc. 2019, 25, 890–895. [Google Scholar] [CrossRef] [Green Version]
- Macaron, G.; Baldassari, L.E.; Nakamura, K.; Rao, S.M.; McGinley, M.P.; Moss, B.; Li, H.; Miller, D.M.; Jones, S.E.; Bermel, R.; et al. Cognitive processing speed in multiple sclerosis clinical practice: Association with patient-reported outcomes, employment and magnetic resonance imaging metrics. Eur J. Neurol. 2020, 27, 1238–1249. [Google Scholar] [CrossRef]
- Butterbrod, E.; Synhaeve, N.; Rutten, G.J.; Schwabe, I.; Gehring, K.; Sitskoorn, M. Cognitive impairment three months after surgery is an independent predictor of survival time in glioblastoma patients. J. Neurooncol. 2020, 149, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.C.H.; See, A.A.Q.; Ang, T.Y.; Tan, L.Y.R.; Ang, B.T.; King, N.K.K. Effects of surgery on neurocognitive function in patients with glioma: A meta-analysis of immediate post-operative and long-term follow-up neurocognitive outcomes. J. Neurooncol. 2019, 141, 167–182. [Google Scholar] [CrossRef]
- Kesler, S.R.; Lacayo, N.J.; Jo, B. A pilot study of an online cognitive rehabilitation program for executive function skills in children with cancer-related brain injury. Brain Inj. 2011, 25, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Afshan, G.; Ahmed, A. Distance learning is here to stay: Shall we reorganize ourselves for the post-covid-19 world? Anaesth. Pain Intensive Care 2020, 24, 487–489. [Google Scholar] [CrossRef]
- Eidel, O.; Burth, S.; Neumann, J.-O.; Kieslich, P.J.; Sahm, F.; Jungk, C.; Kickingereder, P.; Bickelhaupt, S.; Mundiyanapurath, S.; Bäumer, P.; et al. Tumor infiltration in enhancing and non-enhancing parts of glioblastoma: A correlation with histopathology. PLoS ONE 2017, 12, e0169292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasocki, A.; Gaillard, F. Non-contrast-enhancing tumor: A new frontier in glioblastoma research. Am. J. Neuroradiol. 2019, 40, 758–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, M.P.; Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 2013, 17, 683–696. [Google Scholar] [CrossRef]
- Petersen, S.E.; Sporns, O. Brain Networks and Cognitive Architectures. Neuron 2015, 88, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Maher, L.M.; Rothi, L.J.G.; Heilman, K.M. Praxis performance with left versus right hemisphere lesions. NeuroRehabilitation 1997, 9, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Ardila, A. A proposed reinterpretation of Gerstmann’s syndrome. Arch. Clin. Neuropsychol. 2014, 29, 828–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardila, A. Gerstmann Syndrome. Curr. Neurol. Neurosci. Rep. 2020, 20, 48. [Google Scholar] [CrossRef] [PubMed]
- Bennett, P. Communicating about Risks to Public Health: Pointers to Good Practice; Department of Health: London, UK, 1999; Available online: https://www.regulation.org.uk/library/dh_risk_comms_advice.pdf (accessed on 26 January 2023).
- Lv, G.; Yuan, J.; Xiong, X.; Li, M. Mortality Rate and Characteristics of Deaths Following COVID-19 Vaccination. Front. Med. 2021, 8, 670370. [Google Scholar] [CrossRef] [PubMed]
- Meyerowitz-Katz, G.; Merone, L. A systematic review and meta-analysis of published research data on COVID-19 infection fatality rates. Int. J. Infect. Dis. 2020, 101, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Dagan, N.; Barda, N.; Kepten, E.; Miron, O.; Perchik, S.; Katz, M.A.; Hernán, M.A.; Lipsitch, M.; Reis, B.; Balicer, R.D. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N. Engl. J. Med. 2021, 384, 1412–1423. [Google Scholar] [CrossRef]
Tumour Volume (cm3) | Age at Surgery (Years) | IDH Status (Mutant) | MIB Index (%) | MGMT Methylation Status (Y/N) | Steroids Pre-operatively (Y/N) | AEDS1 (Y/N) | COVID Era (Y/N) | Age Left Education (Years) | ||
---|---|---|---|---|---|---|---|---|---|---|
Overall | 75.6 (22.4–108.9) | 58 (54–66) | 6% | 28.0 (19.5–33.0) | 40% | 90% | 31% | 27% | 18 (16–21) | |
Deficit | 74.3 (5.6–268.1) | 58.3 (25–78) | 0 (0–1) | 28.6 (5–65) | 0.4 (0–1) | 0.9 (0–1) | 0.3 (0–1) | 0.1 (0–1) | 17.8 (14–23) | |
Perception | No Deficit | 89.4 (14.1–164.6) | 56 (28–69) | 0.2 (0–1) | 20.9 (15–28) | 0.2 (0–1) | 0.8 (0–1) | 0 (0–0) | 0 (0–0) | 19.8 (16–26) |
p.val | 0.70 | 0.83 | 0.23 | 0.05 | 0.64 | 0.36 | 0.29 | 1.00 | 0.49 | |
Deficit | 80.2 (6.4–268.1) | 59.2 (25–78) | 0 (0–1) | 27.5 (5–65) | 0.4 (0–1) | 0.9 (0–1) | 0.3 (0–1) | 0 (0–1) | 17.8 (14–23) | |
Memory | No Deficit | 51.6 (5.6–164.6) | 52.1 (28–61) | 0.1 (0–1) | 30.2 (18–50) | 0.5 (0–1) | 0.9 (0–1) | 0.1 (0–1) | 0.2 (0–1) | 19.2 (16–26) |
p.val | 0.20 | 0.12 | 0.42 | 0.55 | 0.70 | 1.00 | 0.40 | 0.12 | 0.30 | |
Deficit | 67.3 (6.4–137.3) | 58.4 (33–78) | 0.1 (0–1) | 23.7 (5–38) | 0.3 (0–1) | 0.9 (0–1) | 0.3 (0–1) | 0.1 (0–1) | 18.9 (15–23) | |
Language | No Deficit | 78 (5.6–268.1) | 58 (25–74) | 0.1 (0–1) | 29.2 (9.2–65) | 0.4 (0–1) | 0.9 (0–1) | 0.3 (0–1) | 0.1 (0–1) | 17.7 (14–26) |
p.val | 0.52 | 0.93 | 0.54 | 0.12 | 0.48 | 1.00 | 1.00 | 1.00 | 0.30 | |
Deficit | 66.2 (6.4–248.5) | 62.7 (49–78) | 0 (0–0) | 21.2 (10–35) | 0.3 (0–1) | 1 (1–1) | 0.5 (0–1) | 0.2 (0–1) | 17 (15–19) | |
Praxis | No Deficit | 76.9 (5.6–268.1) | 57.4 (25–74) | 0.1 (0–1) | 28.9 (5–65) | 0.4 (0–1) | 0.9 (0–1) | 0.3 (0–1) | 0.1 (0–1) | 18.1 (14–26) |
p.val | 0.79 | 0.30 | 1.00 | 0.15 | 1.00 | 1.00 | 0.37 | 0.42 | 0.15 | |
Deficit | 65.4 (6.4–137.3) | 60.3 (33–78) | 0.1 (0–1) | 26.2 (10–38) | 0.4 (0–1) | 1 (1–1) | 0.2 (0–1) | 0.1 (0–1) | 17.2 (15–23) | |
Number | No Deficit | 77.8 (5.6–268.1) | 57.6 (25–74) | 0 (0–1) | 28.4 (5–65) | 0.4 (0–1) | 0.9 (0–1) | 0.3 (0–1) | 0.1 (0–1) | 18.2 (14–26) |
p.val | 0.50 | 0.55 | 0.46 | 0.59 | 1.00 | 0.57 | 1.00 | 0.57 | 0.35 | |
Deficit | 70.5 (5.6-268.1) | 60.2 (33-78) | 0 (0–1) | 27.3 (9.2–62) | 0.3 (0–1) | 0.9 (0–1) | 0.3 (0–1) | 0.1 (0–1) | 17.8 (14–23) | |
Attention | No Deficit | 86.1 (11.5-248.5) | 53.7 (25–74) | 0.1 (0–1) | 29.3 (5–65) | 0.6 (0–1) | 0.9 (0–1) | 0.4 (0–1) | 0.1 (0–1) | 18.5 (15–26) |
p.val | 0.47 | 0.09 | 0.25 | 0.64 | 0.19 | 1.00 | 0.32 | 1.00 | 0.46 |
Covariate | Perception | Memory | Language | Praxis | Number | Attention | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | ΔA | A1 | A2 | ΔA | A1 | A2 | ΔA | A1 | A2 | ΔA | A1 | A2 | ΔA | A1 | A2 | ΔA | |
Tumour Volume (cm3) | 0.99 | 1.00 | 1.00 | 0.12 | 1.00 | 1.00 | 0.52 | 0.63 | 0.15 | 0.47 | 1.00 | 0.11 | 0.13 | 0.27 | 0.46 | 0.97 | 1.00 | 0.97 |
Age at A1 (years) | 0.99 | 1.00 | 1.00 | 0.16 | 1.00 | 1.00 | 0.29 | 0.37 | 0.17 | 0.07 | 1.00 | 0.77 | 0.30 | 0.32 | 0.30 | 0.19 | 1.00 | 0.11 |
IDH status (mutant) | 1.00 | 1.00 | 1.00 | 0.56 | 1.00 | 1.00 | 0.18 | 0.22 | 0.37 | 1.00 | 1.00 | 1.00 | 0.06 | 1.00 | 1.00 | 0.78 | 1.00 | 0.45 |
MIB index (%) | 0.99 | 1.00 | 1.00 | 0.05 | 1.00 | 1.00 | 0.42 | 0.77 | 0.28 | 0.04 | 1.00 | 0.47 | 0.65 | 0.92 | 0.64 | 0.79 | 1.00 | 0.43 |
MGMT Methylation Status (Y/N) | 0.99 | 1.00 | 1.00 | 0.10 | 1.00 | 1.00 | 0.17 | 0.56 | 0.41 | 0.27 | 1.00 | 0.13 | 0.61 | 0.89 | 0.20 | 0.07 | 1.00 | 0.14 |
Steroids pre-operatively | 1.00 | 1.00 | 1.00 | 0.19 | 1.00 | 1.00 | 0.86 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 | 0.34 | 1.00 | 1.00 |
AEDS1 | 1.00 | 1.00 | 1.00 | 0.17 | 1.00 | 1.00 | 0.58 | 0.26 | 0.44 | 0.06 | 1.00 | 0.73 | 0.82 | 0.17 | 0.80 | 0.94 | 1.00 | 0.23 |
COVID era | 0.99 | 1.00 | 1.00 | 0.92 | 1.00 | 1.00 | 0.99 | 0.50 | 0.91 | 0.20 | 1.00 | 0.91 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 0.71 |
Age Left Education (years) | 0.99 | 1.00 | 1.00 | 0.52 | 1.00 | 1.00 | 0.28 | 0.51 | 0.09 | 0.67 | 1.00 | 0.25 | 0.49 | 0.41 | 0.92 | 0.40 | 1.00 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, R.; Masina, R.; Morales, C.; Burton, K.; Wan, Y.; Joannides, A.; Mair, R.J.; Morris, R.C.; Santarius, T.; Manly, T.; et al. A Prospective Study of Longitudinal Risks of Cognitive Deficit for People Undergoing Glioblastoma Surgery Using a Tablet Computer Cognition Testing Battery: Towards Personalized Understanding of Risks to Cognitive Function. J. Pers. Med. 2023, 13, 278. https://doi.org/10.3390/jpm13020278
Sinha R, Masina R, Morales C, Burton K, Wan Y, Joannides A, Mair RJ, Morris RC, Santarius T, Manly T, et al. A Prospective Study of Longitudinal Risks of Cognitive Deficit for People Undergoing Glioblastoma Surgery Using a Tablet Computer Cognition Testing Battery: Towards Personalized Understanding of Risks to Cognitive Function. Journal of Personalized Medicine. 2023; 13(2):278. https://doi.org/10.3390/jpm13020278
Chicago/Turabian StyleSinha, Rohitashwa, Riccardo Masina, Cristina Morales, Katherine Burton, Yizhou Wan, Alexis Joannides, Richard J. Mair, Robert C. Morris, Thomas Santarius, Tom Manly, and et al. 2023. "A Prospective Study of Longitudinal Risks of Cognitive Deficit for People Undergoing Glioblastoma Surgery Using a Tablet Computer Cognition Testing Battery: Towards Personalized Understanding of Risks to Cognitive Function" Journal of Personalized Medicine 13, no. 2: 278. https://doi.org/10.3390/jpm13020278
APA StyleSinha, R., Masina, R., Morales, C., Burton, K., Wan, Y., Joannides, A., Mair, R. J., Morris, R. C., Santarius, T., Manly, T., & Price, S. J. (2023). A Prospective Study of Longitudinal Risks of Cognitive Deficit for People Undergoing Glioblastoma Surgery Using a Tablet Computer Cognition Testing Battery: Towards Personalized Understanding of Risks to Cognitive Function. Journal of Personalized Medicine, 13(2), 278. https://doi.org/10.3390/jpm13020278