Clinical Impact of the CYP2C19 Gene on Diazepam for the Management of Alcohol Withdrawal Syndrome
Abstract
:1. Introduction
2. Diazepam Pharmacokinetics and Pharmacogenetics
3. Diazepam for Management of Alcohol Withdrawal Syndrome
4. Impact of CYP2C19 Variants on Diazepam Pharmacokinetics
5. Impact of CYP2C19 Variants on Adverse Effects, Efficacy, and Dosing of Diazepam
6. Role of Pharmacogenomic Testing for Diazepam
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Key Substance Use and Mental Health Indicators in the United States: Results from the 2020 National Survey on Drug Use and Health. 2020. Available online: https://www.samhsa.gov/data/sites/default/files/reports/rpt35325/NSDUHFFRPDFWHTMLFiles2020/2020NSDUHFFR1PDFW102121.pdf (accessed on 20 January 2023).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Tokyo, Japan, 2013. [Google Scholar]
- Schuckit, M.A. Alcohol-use disorders. Lancet 2009, 373, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Dixit, D.; Endicott, J.; Burry, L.; Ramos, L.; Yeung, S.Y.A.; Devabhakthuni, S.; Chan, C.; Tobia, A.; Bulloch, M.N. Management of Acute Alcohol Withdrawal Syndrome in Critically Ill Patients. Pharmacotherapy 2016, 36, 797–822. [Google Scholar] [CrossRef] [PubMed]
- ASAM Quality Improvement Council. The ASAM Clinical Practice Guideline on Alcohol Withdrawal Management. J. Addict. Med. 2020, 14, e280. [Google Scholar] [CrossRef]
- Weintraub, S.J. Diazepam in the Treatment of Moderate to Severe Alcohol Withdrawal. CNS Drugs 2017, 31, 87–95. [Google Scholar] [CrossRef]
- Sachdeva, A.; Choudhary, M.; Chandra, M. Alcohol Withdrawal Syndrome: Benzodiazepines and Beyond. J. Clin. Diagn Res. 2015, 9, VE01–VE07. [Google Scholar] [CrossRef] [PubMed]
- Valium Food and Drug Administration (FDA) Labeling. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/013263s094lbl.pdf (accessed on 29 January 2023).
- Perry, E.C. Inpatient management of acute alcohol withdrawal syndrome. CNS Drugs 2014, 28, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Sarff, M.; Gold, J. Alcohol withdrawal syndromes in the intensive care unit. Crit. Care Med. 2010, 38 (Suppl. S9), S494–S501. [Google Scholar] [CrossRef]
- Gold, J.A.; Rimal, B.; Nolan, A.; Nelson, L.S. A strategy of escalating doses of benzodiazepines and phenobarbital administration reduces the need for mechanical ventilation in delirium tremens. Crit. Care Med. 2007, 35, 724–730. [Google Scholar] [CrossRef]
- Hack, J.B.; Hoffmann, R.; Nelson, L. Resistant alcohol withdrawal: Does an unexpectedly large sedative requirement identify these patients early? J. Med. Toxicol. 2006, 2, 55–60. [Google Scholar] [CrossRef]
- Bharadwaj, B.; Bernard, M.; Kattimani, S.; Rajkumar, R.P. Determinants of success of loading dose diazepam for alcohol withdrawal: A chart review. J. Pharmacol. Pharmacother. 2012, 3, 270–272. [Google Scholar] [CrossRef] [Green Version]
- Fukasawa, T.; Suzuki, A.; Otani, K. Effects of genetic polymorphism of cytochrome P450 enzymes on the pharmacokinetics of benzodiazepines. J. Clin. Pharm. Ther. 2007, 32, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Court, M.H.; Hao, Q.; Krishnaswamy, S.; Bekaii-Saab, T.; Al-Rohaimi, A.; Von Moltke, L.L.; Greenblatt, D.J. UDP-glucuronosyltransferase (UGT) 2B15 pharmacogenetics: UGT2B15 D85Y genotype and gender are major determinants of oxazepam glucuronidation by human liver. J. Pharmacol. Exp. Ther. 2004, 310, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Meng, D.; Chen, F.; Wu, Z.; Wang, B.; Wang, S.; Geng, P.; Dai, D.; Zhou, Q.; Qiu, W. Inhibitory Effect of Imperatorin on the Pharmacokinetics of Diazepam In Vitro and In Vivo. Front. Pharmacol. 2020, 11, 01079. [Google Scholar] [CrossRef] [PubMed]
- Botton, M.R.; Whirl-Carrillo, M.; Del Tredici, A.L.; Sangkuhl, K.; Cavallari, L.H.; Agúndez, J.A.G.; Duconge, J.; Lee, M.T.M.; Woodahl, E.L.; Claudio-Campos, K.; et al. PharmVar GeneFocus: CYP2C19. Clin. Pharmacol. Ther. 2021, 109, 352–366. [Google Scholar] [CrossRef]
- PharmGKB. Gene-Specific Information Tables for CYP2C19. Available online: https://www.pharmgkb.org/page/cyp2c19RefMaterials (accessed on 20 January 2023).
- Caudle, K.E.; Dunnenberger, H.M.; Freimuth, R.R.; Peterson, J.F.; Burlison, J.D.; Whirl-Carrillo, M.; Scott, S.A.; Rehm, H.L.; Williams, M.S.; Klein, T.E.; et al. Standardizing terms for clinical pharmacogenetic test results: Consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet. Med. 2017, 19, 215–223. [Google Scholar] [CrossRef]
- Pratt, V.M.; Del Tredici, A.L.; Hachad, H.; Ji, Y.; Kalman, L.V.; Scott, S.A.; Weck, K.E. Recommendations for Clinical CYP2C19 Genotyping Allele Selection: A Report of the Association for Molecular Pathology. J. Mol. Diagn. 2018, 20, 269–276. [Google Scholar] [CrossRef]
- Martis, S.; Peter, I.; Hulot, J.-S.; Kornreich, R.; Desnick, R.J.; Scott, S.A. Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharm. J. 2013, 13, 369–377. [Google Scholar] [CrossRef]
- Pharmacogene Variation Consortium. Available online: https://www.pharmvar.org/gene/CYP3A4 (accessed on 29 January 2023).
- Elens, L.; van Schaik, R.H.; Panin, N.; de Meyer, M.; Wallemacq, P.; Lison, D.; Mourad, M.; Haufroid, V. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors’ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics 2011, 12, 1383–1396. [Google Scholar] [CrossRef]
- Zhou, Y.; Ingelman-Sundberg, M.; Lauschke, V. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin. Pharmacol. Ther. 2017, 102, 688–700. [Google Scholar] [CrossRef]
- Mirijello, A.; D’Angelo, C.; Ferrulli, A.; Vassallo, G.; Antonelli, M.; Caputo, F.; Leggio, L.; Gasbarrini, A.; Addolorato, G. Identification and management of alcohol withdrawal syndrome. Drugs 2015, 75, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Xia, H.; He, N.; Lu, Y.Q.; Zhou, H.H. The elimination of diazepam in Chinese subjects is dependent on the mephenytoin oxidation phenotype. Br. J. Clin. Pharmacol. 1996, 42, 471–474. [Google Scholar]
- Qin, X.P.; Xie, H.-G.; Wang, W.; He, N.; Huang, S.-L.; Xu, Z.-H.; Ou-Yang, D.-S.; Wang, Y.-J.; Zhou, H.-H. Effect of the gene dosage of CgammaP2C19 on diazepam metabolism in Chinese subjects. Clin. Pharmacol. Ther. 1999, 66, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Inomata, S.; Nagashima, A.; Itagaki, F.; Homma, M.; Nishimura, M.; Osaka, Y.; Okuyama, K.; Tanaka, E.; Nakamura, T.; Kohda, Y. CYP2C19 genotype affects diazepam pharmacokinetics and emergence from general anesthesia. Clin. Pharmacol. Ther. 2005, 78, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Bertilsson, L.; Henthorn, T.K.; Sanz, E.; Tybring, G.; Säwe, J.; Villén, T. Importance of genetic factors in the regulation of diazepam metabolism: Relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin. Pharmacol. Ther. 1989, 45, 348–355. [Google Scholar] [CrossRef]
- Skryabin, V.Y.; Zastrozhin, M.; Torrado, M.; Grishina, E.; Ryzhikova, K.; Shipitsyn, V.; Galaktionova, T.; Sorokin, A.; Bryun, E.; Sychev, D. Effects of CYP2C19*17 Genetic Polymorphisms on the Steady-State Concentration of Diazepam in Patients With Alcohol Withdrawal Syndrome. Hosp. Pharm. 2021, 56, 592–596. [Google Scholar] [CrossRef]
- Skryabin, V.Y.; Zastrozhin, M.; Torrado, M.; Grishina, E.; Ryzhikova, K.; Shipitsyn, V.; Galaktionova, T.; Bryun, E.; Sychev, D. Effects of CYP2C19*17 genetic polymorphisms on plasma and saliva concentrations of diazepam in patients with alcohol withdrawal syndrome. Psychiatr. Genet. 2022, 32, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Garmen, A.K.; Pettersson, N.; Unge, C.; Lindh, J.D. Extreme Duration of Diazepam-Associated Sedation in a Patient With Alcohol Delirium and CYP2C19 Polymorphisms. J. Clin. Psychopharmacol. 2015, 35, 475–477. [Google Scholar] [CrossRef]
- Andersson, T.; Cederberg, C.; Edvardsson, G.; Heggelund, A.; Lundborg, P. Effect of omeprazole treatment on diazepam plasma levels in slow versus normal rapid metabolizers of omeprazole. Clin. Pharmacol. Ther. 1990, 47, 79–85. [Google Scholar] [CrossRef]
- Ishizaki, T.; Horai, Y.; Tomono, Y.; Nakai, H.; Yamato, C.; Manabe, K.; Kobayashi, K.; Chiba, K.; Ishizaki, T. Comparison of the interaction potential of a new proton pump inhibitor, E3810, versus omeprazole with diazepam in extensive and poor metabolizers of S-mephenytoin 4’-hydroxylation. Clin. Pharmacol. Ther. 1995, 58, 155–164. [Google Scholar] [CrossRef]
- Sohn, D.R.; Kusaka, M.; Ishizaki, T.; Shin, S.-G.; Jang, I.-J.; Shin, J.-G.; Chiba, K. Incidence of S-mephenytoin hydroxylation deficiency in a Korean population and the interphenotypic differences in diazepam pharmacokinetics. Clin. Pharmacol. Ther. 1992, 52, 160–169. [Google Scholar] [CrossRef]
- Sugimoto, M.; Furuta, T.; Nakamura, A.; Shirai, N.; Ikuma, M.; Misaka, S.; Uchida, S.; Watanabe, H.; Ohashi, K.; Ishizaki, T.; et al. Maintenance time of sedative effects after an intravenous infusion of diazepam: A guide for endoscopy using diazepam. World J. Gastroenterol. 2008, 14, 5197–5203. [Google Scholar] [CrossRef] [PubMed]
- Skryabin, V.Y.; Zastrozhin, M.S.; Torrado, M.V.; Grishina, E.A.; Ryzhikova, K.A.; Shipitsyn, V.V.; Galaktionova, T.E.; Sorokin, A.S.; Bryun, E.A.; Sychev, D.A. How do CYP2C19*2 and CYP2C19*17 genetic polymorphisms affect the efficacy and safety of diazepam in patients with alcohol withdrawal syndrome? Drug Metab. Pers. Ther. 2020, 35. [Google Scholar] [CrossRef] [PubMed]
- Jose, M.; Mathaiyan, J.; Kattimani, S.; Adithan, S.; Chandrasekaran, A. Role of CYP2C19 gene polymorphism in acute alcohol withdrawal treatment with loading dose of diazepam in a South Indian population. Eur. J. Clin. Pharmacol. 2016, 72, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Diastat Food and Drug Administration (FDA) Labeling. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/020648s014lbl.pdf (accessed on 29 January 2023).
- Assignment of CPIC Levels for Genes/Drugs. 2022. Available online: https://cpicpgx.org/prioritization/#cpicLevels (accessed on 19 December 2022).
- PharmGKB Clinical Annotations. Available online: https://www.pharmgkb.org/chemical/PA449283/clinicalAnnotation (accessed on 29 January 2023).
- Borden, B.A.; Jhun, E.H.; Danahey, K.; Schierer, E.; Apfelbaum, J.L.; Anitescu, M.; Knoebel, R.; Shahul, S.; Truong, T.M.; Ratain, M.J.; et al. Appraisal and development of evidence-based clinical decision support to enable perioperative pharmacogenomic application. Pharm. J. 2021, 21, 691–711. [Google Scholar] [CrossRef]
- Skryabin, V.Y.; Franck, J.; Lauschke, V.M.; Zastrozhin, M.S.; Shipitsyn, V.V.; Bryun, E.A.; Sychev, D.A. CYP3A4*22 and CYP3A5*3 impact efficacy and safety of diazepam in patients with alcohol withdrawal syndrome. Nord. J. Psychiatry 2022, 77, 73–76. [Google Scholar] [CrossRef]
- Skryabin, V.Y.; Zastrozhin, M.S.; Grishina, E.A.; Ryzhikova, K.A.; Shipitsyn, V.V.; Barna, I.V.; Galaktionova, T.E.; Ivanov, A.V.; Sorokin, A.S.; Bryun, E.A.; et al. Using the CYP3A Activity Evaluation to Predict the Efficacy and Safety of Diazepam in Patients With Alcohol Withdrawal Syndrome. J. Pharm. Pract. 2022, 35, 518–523. [Google Scholar] [CrossRef]
Author, Year | Study Design | Objective | Study Population | CYP2C19 Genotype or Phenotype Distribution | Diazepam Dosing Strategy | Efficacy and/or Safety Results |
---|---|---|---|---|---|---|
Garmen et al., 2015 [32] | Case report | Report on outcome of AWS patient treated with diazepam | 77-year-old male with AWS and delirium | CYP2C19 IM (CYP2C19*1/*2) | 10 mg IV (received cumulative dose of 400 mg to achieve continuous sedation within 54 h) | Extreme sedation requiring 18 days of flumazenil |
Jose et al., 2016 [38] | Prospective cohort study | Evaluate the effect of CYP2C19 variants on diazepam loadingdose requirement and time to reversal of AWS | 69 South Indian patients with CIWA-AR ≥ 10 | CYP2C19 UM (*1/*17, *17/*17): 18 CYP2C19 NM (*1/*1): 9 CYP2C19 IM (*1/*2, *1/*3, *2/*17): 32 CYP2C19 PM (*2/*2, *2/*3: 10 | 10 mg IV loading dose followed by 20 mg PO if CIWA-AR ≥ 8 at end of each two hourly assessments | No association identified between CYP2C19 variants and loading dose requirements or time to reversal of AWS |
Skryabin et al., 2020 [37] | Prospective cohort study | Evaluate the effect of CYP2C19*2 and CYP2C19*17 on the efficacy and safety of diazepam in patients with AWS | 30 Russian patients with CIWA-AR > 10 | CYP2C19*1/*1: 22 CYP2C19*1/*2 or CYP2C19*2/*2: 8 | 10 mg IM every eight hours for 5 days | Change in CIWA-AR score from day 1 to day 5: CYP2C19*1/*1, −8.5 [−15.0; −5.0] vs CYP2C19*2 allele carriers, −12.0 [−13.0; −9.0], p = 0.021 Change in UKU score from day 1 to day 5: CYP2C19*1/*1, 7.0 [6.0; 12.0] vs. CYP2C19*2 allele carriers, 9.5 [8.0; 11.0], p = 0.009 Change in CIWA-AR score from day 1 to day 5: CYP2C19*1/*1, −12.0 [−15.0; −8.0] vs. CYP2C19*17 allele carriers, −7.0 [−14.0; −5.0], p < 0.001 Change in UKU score from day 1 to day 5: CYP2C19*1/*1, 8.0 [6.0; 12.0] vs. CYP2C19*17 allele carriers, 6.0 [6.0; 12.0], p < 0.001 |
CYP2C19*1/*1: 17 CYP2C19*1/*17 or CYP2C19*17/*17: 13 | ||||||
Skryabin et al., 2021 [30] | Prospective cohort study | Evaluate the effects of CYP2C19*17 on the steady-state concentration of diazepam in patients with AWS as well as impact on efficacy and safety | 50 Russian patients with CIWA-AR > 10 | CYP2C19*1/*1: 30 CYP2C19*1/*17: 16 CYP2C19*17/*17: 4 | 10 mg IM every eight hours for 5 days | Change in CIWA-AR score from day 1 to day 5: CYP2C19*1/*1, −12.0 [−15.0; −8.0] vs. CYP2C19*17 allele carriers, −7.0 [−14.0; −5.0], p < 0.001 Change in UKU score from day 1 to day 5: CYP2C19*1/*1, 8.0 [6.0; 12.0] vs. CYP2C19*17 allele carriers, 6.0 [6.0; 12.0], p < 0.001 |
Skryabin et al., 2022 [31] | Prospective cohort study | Evaluate the effects of CYP2C19*17 on plasma and saliva concentrations of diazepam as well as impact on efficacy and safety | 100 Russian patients with CIWA-AR > 10 | CYP2C19*1/*1: 65 CYP2C19*1/*17 or CYP2C19*17/*17: 35 | 10 mg IM every eight hours for 5 days | Patients with the CYP2C19*1/*17 and CYP2C19*17/*17 genotype had a smaller difference in the CIWA-AR (reduced diazepam efficacy) scores and slower increase in the UKU score (lower risk of adverse effects) compared to patients with the CYP2C19*1/*1 genotype from day 1 to day 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, T.T.; Noble, M.; Tran, B.A.; Sunjic, K.; Gupta, S.V.; Turgeon, J.; Crutchley, R.D. Clinical Impact of the CYP2C19 Gene on Diazepam for the Management of Alcohol Withdrawal Syndrome. J. Pers. Med. 2023, 13, 285. https://doi.org/10.3390/jpm13020285
Ho TT, Noble M, Tran BA, Sunjic K, Gupta SV, Turgeon J, Crutchley RD. Clinical Impact of the CYP2C19 Gene on Diazepam for the Management of Alcohol Withdrawal Syndrome. Journal of Personalized Medicine. 2023; 13(2):285. https://doi.org/10.3390/jpm13020285
Chicago/Turabian StyleHo, Teresa T., Melissa Noble, Bao Anh Tran, Katlynd Sunjic, Sheeba Varghese Gupta, Jacques Turgeon, and Rustin D. Crutchley. 2023. "Clinical Impact of the CYP2C19 Gene on Diazepam for the Management of Alcohol Withdrawal Syndrome" Journal of Personalized Medicine 13, no. 2: 285. https://doi.org/10.3390/jpm13020285
APA StyleHo, T. T., Noble, M., Tran, B. A., Sunjic, K., Gupta, S. V., Turgeon, J., & Crutchley, R. D. (2023). Clinical Impact of the CYP2C19 Gene on Diazepam for the Management of Alcohol Withdrawal Syndrome. Journal of Personalized Medicine, 13(2), 285. https://doi.org/10.3390/jpm13020285