Nomograms for Predicting the Risk and Prognosis of Liver Metastases in Pancreatic Cancer: A Population-Based Analysis
Abstract
:1. Introduction
2. Methods
2.1. Data Sources and Extraction
2.2. Nomogram Construction and Validation
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients
3.2. Independent Risk Factors of PCLM
3.3. Diagnostic Nomogram Construction and Validation
3.4. Independent Prognostic Factors of PCLM
3.5. Predictive Nomogram Construction and Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Ethics statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016, 66, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Partensky, C.; Bray, F. More deaths from pancreatic cancer than breast cancer in the EU by 2017. Acta Oncol. 2016, 55, 1158–1160. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-X.; Zhu, X.-X.; Wu, X.; Li, J.-H.; Ni, X.-H.; Li, S.-J.; Zhao, W.; Yin, X.-X. ACLP promotes activation of cancer-associated fibroblasts and tumor metastasis via ACLP-PPARγ-ACLP feedback loop in pancreatic cancer. Cancer Lett. 2022, 544, 215802. [Google Scholar] [CrossRef]
- Bello, H.R.; Sekhar, A.; Filice, R.W.; Radmard, A.R.; Davarpanah, A.H. Pancreaticoduodenal Groove: Spectrum of Disease and Imaging Features. Radiographics 2022, 42, 1062–1080. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, U.A.; Badr-Eldin, S.M.; Aldawsari, H.M.; Alhakamy, N.A.; Ahmed, O.A.A.; Radwan, M.F.; Eid, B.G.; Sayed, S.R.M.; Sherbiny, G.A.E.; Abualsunun, W. Potentiality of raloxifene loaded melittin functionalized lipidic nanovesicles against pancreatic cancer cells. Drug Deliv. 2022, 29, 1863–1877. [Google Scholar] [CrossRef]
- Mayo, S.C.; Nathan, H.; Cameron, J.L.; Olino, K.; Edil, B.H.; Herman, J.M.; Hirose, K.; Schulick, R.D.; Choti, M.A.; Wolfgang, C.L.; et al. Conditional survival in patients with pancreatic ductal adenocarcinoma resected with curative intent. Cancer 2012, 118, 2674–2681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groot, V.P.; Rezaee, N.; Wu, W.; Cameron, J.L.; Fishman, E.K.; Hruban, R.H.; Weiss, M.J.; Zheng, L.; Wolfgang, C.L.; He, J. Patterns, Timing, and Predictors of Recurrence Following Pancreatectomy for Pancreatic Ductal Adenocarcinoma. Ann. Surg. 2018, 267, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Stathis, A.; Moore, M.J. Advanced pancreatic carcinoma: Current treatment and future challenges. Nat. Rev. Clin. Oncol. 2010, 7, 163–172. [Google Scholar] [CrossRef]
- Shi, S.; Luo, Y.; Wang, M.; Lin, Z.; Song, M.; Li, Z.; Peng, Z.; Feng, S.-T. Tumor fibrosis correlates with the survival of patients with pancreatic adenocarcinoma and is predictable using clinicoradiological features. Eur. Radiol. 2022, 32, 6314–6326. [Google Scholar] [CrossRef]
- Wood, L.D.; Canto, M.I.; Jaffee, E.M.; Simeone, D.M. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology 2022, 163, 386–402.E1. [Google Scholar] [CrossRef] [PubMed]
- Guenther, M.; Boeck, S.; Heinemann, V.; Werner, J.; Engel, J.; Ormanns, S. The impact of adjuvant therapy on outcome in UICC stage I pancreatic cancer. Int. J. Cancer 2022, 151, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Liang, C.; Xu, J.; Meng, Q.; Hua, J.; Yang, X.; Ni, Q.; Yu, X. The Strain Ratio as Obtained by Endoscopic Ultrasonography Elastography Correlates with the Stroma Proportion and the Prognosis of Local Pancreatic Cancer. Ann. Surg. 2020, 271, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Kamisawa, T.; Isawa, T.; Koike, M.; Tsuruta, K.; Okamoto, A. Hematogenous metastases of pancreatic ductal carcinoma. Pancreas 1995, 11, 345–349. [Google Scholar] [CrossRef]
- Disibio, G.; French, S.W. Metastatic patterns of cancers: Results from a large autopsy study. Arch. Pathol. Lab. Med. 2008, 132, 931–939. [Google Scholar] [CrossRef]
- Oweira, H.; Petrausch, U.; Helbling, D.; Schmidt, J.; Mannhart, M.; Mehrabi, A.; Mehrabi, A.; Schöb, O.; Giryes, A.; Decker, M.; et al. Prognostic value of site-specific metastases in pancreatic adenocarcinoma: A Surveillance Epidemiology and End Results database analysis. World J. Gastroenterol. 2017, 23, 1872–1880. [Google Scholar] [CrossRef]
- Sato, H.; Yoshida, R.; Yasui, K.; Umeda, Y.; Yoshida, K.; Fuji, T.; Kumano, K.; Takagi, K.; Yagi, T.; Fujiwara, T. Feasibility of local therapy for recurrent pancreatic cancer. Pancreatology 2022, 22, 774–781. [Google Scholar] [CrossRef]
- Yamada, S.; Kobayashi, A.; Nakamori, S.; Baba, H.; Yamamoto, M.; Yamaue, H.; Fujii, T. Resection for recurrent pancreatic cancer in the remnant pancreas after pancreatectomy is clinically promising: Results of a project study for pancreatic surgery by the Japanese Society of Hepato-Biliary-Pancreatic Surgery. Surgery 2018, 164, 1049–1056. [Google Scholar] [CrossRef]
- Kurahara, H.; Maemura, K.; Mataki, Y.; Tanoue, K.; Iino, S.; Kawasaki, Y.; Idichi, T.; Arigami, T.; Mori, S.; Shinden, Y.; et al. Lung recurrence and its therapeutic strategy in patients with pancreatic cancer. Pancreatology 2020, 20, 89–94. [Google Scholar] [CrossRef]
- Shi, W.; Jiang, R.; Liang, F.; Yu, G.; Long, J.; Zhao, J. Definitive chemoradiotherapy and salvage chemotherapy for patients with isolated locoregional recurrence after radical resection of primary pancreatic cancer. Cancer Manag. Res. 2019, 11, 5065–5073. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Deng, W.; Guan, L.; Xu, H. Nomogram forecasting 3-, 5-, and 8-year overall survival and cancer-specific survival of gingival squamous cell carcinoma. Cancer Med. 2020, 9, 8266–8274. [Google Scholar] [CrossRef]
- Khaliq, F.; Oberhauser, J.; Wakhloo, D.; Mahajani, S. Decoding degeneration: The implementation of machine learning for clinical detection of neurodegenerative disorders. Neural Regen. Res. 2023, 18, 1235–1242. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Uddin, M.R.; Ali, M.S.; Islam, M.K.; Farjana, M.; Sakib, A.N.; Momin, K.A.; Luna, S.A. Deep transfer learning approaches for Monkeypox disease diagnosis. Expert Syst. Appl. 2023, 216, 119483. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ji, L.; Zhong, X.; Zhu, S.; Zhang, Y.; Ge, M.; Kang, Y.; Bi, Q. Two Novel Nomograms Predicting the Risk and Prognosis of Pancreatic Cancer Patients with Lung Metastases: A Population-Based Study. Front. Public Health 2022, 10, 884349. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ji, L.; Wang, X.; Zhu, S.; Luo, J.; Zhang, Y.; Tong, Y.; Feng, F.; Kang, Y.; Bi, Q. Nomogram Predicts Risk and Prognostic Factors for Bone Metastasis of Pancreatic Cancer: A Population-Based Analysis. Front. Endocrinol. 2021, 12, 752176. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, C.N. Are nomograms better than currently available stage groupings for bladder cancer? J. Clin. Oncol. 2006, 24, 3819–3820. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Zhou, X.; Wang, J.; Li, N.; Liu, F.; Gao, S.; Liu, X.; Xu, W. A radiomics nomogram for predicting the meningioma grade based on enhanced WI images. Br. J. Radiol. 2022, 95, 20220141. [Google Scholar] [CrossRef]
- Huang, X.; Luo, Z.; Fu, D.-Y. ASO Author Reflections: Simplified Nomogram Predictive of Survival for Young Breast Cancer Patients. Ann. Surg. Oncol. 2022, 29, 5782–5783. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Wu, B.; Li, M.; Han, X.; Hao, X.; Zhang, Y.; Cheng, W.; Guo, C. Prediction Model and Nomogram of Early Recurrence of Hepatocellular Carcinoma after Radiofrequency Ablation Based on Logistic Regression Analysis. Ultrasound Med. Biol. 2022, 48, 1733–1744. [Google Scholar] [CrossRef]
- Huang, X.; Luo, Z.; Liang, W.; Xie, G.; Lang, X.; Gou, J.; Liu, C.; Xu, X.; Fu, D. Survival Nomogram for Young Breast Cancer Patients Based on the SEER Database and an External Validation Cohort. Ann. Surg. Oncol. 2022, 29, 5772–5781. [Google Scholar] [CrossRef]
- Nakauchi, M.; Court, C.M.; Tang, L.H.; Gönen, M.; Janjigian, Y.Y.; Maron, S.B.; Molena, D.; Coit, D.G.; Brennan, M.F.; Strong, V.E. Validation of the Memorial Sloan Kettering Gastric Cancer Post-Resection Survival Nomogram: Does It Stand the Test of Time? J. Am. Coll. Surg. 2022, 235, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.; Eldred-Evans, D.; Kurver, P.; Falagario, U.G.; Connor, M.J.; Shah, T.T.; Verhoeff, J.J.; Taimen, P.; Aronen, H.J.; Knaapila, J.; et al. Predicting the Need for Biopsy to Detect Clinically Significant Prostate Cancer in Patients with a Magnetic Resonance Imaging-detected Prostate Imaging Reporting and Data System/Likert ≥ 3 Lesion: Development and Multinational External Validation of the Imperial Rapid Access to Prostate Imaging and Diagnosis Risk Score. Eur. Urol. 2022, 82, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Chen, H.; Huang, F.; Li, J.; Liu, H.; Zheng, Z.; Lu, Z. Nomograms predicting cancer-specific survival for stage IV colorectal cancer with synchronous lung metastases. Sci. Rep. 2022, 12, 13952. [Google Scholar] [CrossRef]
- Iasonos, A.; Schrag, D.; Raj, G.V.; Panageas, K.S. How to build and interpret a nomogram for cancer prognosis. J. Clin. Oncol. 2008, 26, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Ravandi, F.; Kadia, T.M.; DiNardo, C.D.; Short, N.J.; Borthakur, G.; Jabbour, E.; Kantarjian, H.M. De novo acute myeloid leukemia: A population-based study of outcome in the United States based on the Surveillance, Epidemiology, and End Results (SEER) database, 1980 to 2017. Cancer 2021, 127, 2049–2061. [Google Scholar] [CrossRef]
- Chen, H.; Kong, Y.; Yao, Q.; Zhang, X.; Fu, Y.; Li, J.; Liu, C.; Wang, Z. Three hypomethylated genes were associated with poor overall survival in pancreatic cancer patients. Aging 2019, 11, 885–897. [Google Scholar] [CrossRef]
- Li, D.; Xie, K.; Wolff, R.; Abbruzzese, J.L. Pancreatic cancer. Lancet 2004, 363, 1049–1057. [Google Scholar] [CrossRef]
- Bertelli, E.; Di Gregorio, F.; Bertelli, L.; Mosca, S. The arterial blood supply of the pancreas: A review. I. The superior pancreaticoduodenal and the anterior superior pancreaticoduodenal arteries. An anatomical and radiological study. Surg. Radiol. Anat. 1995, 17, 97–106. [Google Scholar] [CrossRef]
- Azizoglu, D.B.; Chong, D.C.; Villasenor, A.; Magenheim, J.; Barry, D.M.; Lee, S.; Marty-Santos, L.; Fu, S.; Dor, Y.; Cleaver, O. Vascular development in the vertebrate pancreas. Dev. Biol. 2016, 420, 67–78. [Google Scholar] [CrossRef]
- Hu, J.-X.; Zhao, C.-F.; Chen, W.-B.; Liu, Q.-C.; Li, Q.-W.; Lin, Y.-Y.; Gao, F. Pancreatic cancer: A review of epidemiology, trend, and risk factors. World J. Gastroenterol. 2021, 27, 4298–4321. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 2012, 62, 10–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, G.P.; Poruk, K.E.; Zenati, M.S.; Steve, J.; Bahary, N.; Hogg, M.E.; Zuriekat, A.H.; Wolfgang, C.L.; 3rd, H.J.Z.; Weiss, M.J. Primary Tumor Resection Following Favorable Response to Systemic Chemotherapy in Stage IV Pancreatic Adenocarcinoma with Synchronous Metastases: A Bi-institutional Analysis. J. Gastrointest. Surg. 2016, 20, 1830–1835. [Google Scholar] [CrossRef]
- Crippa, S.; Bittoni, A.; Sebastiani, E.; Partelli, S.; Zanon, S.; Lanese, A.; Andrikou, K.; Muffatti, F.; Balzano, G.; Reni, M.; et al. Is there a role for surgical resection in patients with pancreatic cancer with liver metastases responding to chemotherapy? Eur. J. Surg. Oncol. 2016, 42, 1533–1539. [Google Scholar] [CrossRef]
- Gleisner, A.L.; Assumpcao, L.; Cameron, J.L.; Wolfgang, C.L.; Choti, M.A.; Herman, J.M.; Schulick, R.D.; Pawlik, T.M. Is resection of periampullary or pancreatic adenocarcinoma with synchronous hepatic metastasis justified? Cancer 2007, 110, 2484–2492. [Google Scholar] [CrossRef]
- Koike, T.; Tomii, N.; Watanabe, Y.; Azuma, T.; Takagi, S. Deep learning for hetero-homo conversion in channel-domain for phase aberration correction in ultrasound imaging. Ultrasonics 2023, 129, 106890. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Wahab, B.S.; Nasr, M.E.; Khamis, S.; Ashour, A.S. BTC-fCNN: Fast Convolution Neural Network for Multi-class Brain Tumor Classification. Health Inf. Sci. Syst. 2023, 11, 3. [Google Scholar] [CrossRef]
- Diao, Y.; Jelescu, I. Parameter estimation for WMTI-Watson model of white matter using encoder-decoder recurrent neural network. Magn. Reson. Med. 2023, 89, 1193–1206. [Google Scholar] [CrossRef]
- Shi, R.; Sheng, C.; Jin, S.; Zhang, Q.; Zhang, S.; Zhang, L.; Ding, C.; Wang, L.; Wang, L.; Han, Y.; et al. Generative adversarial network constrained multiple loss autoencoder: A deep learning-based individual atrophy detection for Alzheimer’s disease and mild cognitive impairment. Hum. Brain Mapp. 2023, 44, 1129–1146. [Google Scholar] [CrossRef]
- Chen, Y.; Han, S.; Chen, G.; Yin, J.; Wang, K.N.; Cao, J. A deep reinforcement learning-based wireless body area network offloading optimization strategy for healthcare services. Health Inf. Sci. Syst. 2023, 11, 8. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Wu, X.; Li, R.; He, Z.; Yu, T.; Cheng, C. A value-based deep reinforcement learning model with human expertise in optimal treatment of sepsis. NPJ Digit. Med. 2023, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Liu, Y.; Xu, Z.; Zhan, Y.; Chen, J.; Lukasiewicz, T. Painless and accurate medical image analysis using deep reinforcement learning with task-oriented homogenized automatic pre-processing. Comput. Biol. Med. 2023, 153, 106487. [Google Scholar] [CrossRef]
- Daneshjou, R.; Smith, M.P.; Sun, M.D.; Rotemberg, V.; Zou, J. Lack of Transparency and Potential Bias in Artificial Intelligence Data Sets and Algorithms: A Scoping Review. JAMA Dermatol. 2021, 157, 1362–1369. [Google Scholar] [CrossRef]
- Liu, C.; Wang, T.; Yang, J.; Zhang, J.; Wei, S.; Guo, Y.; Yu, R.; Tan, Z.; Wang, S.; Dong, W. Distant Metastasis Pattern and Prognostic Prediction Model of Colorectal Cancer Patients Based on Big Data Mining. Front. Oncol. 2022, 12, 878805. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, R.; Zhou, Y.; Wang, Q.; Yang, C.-Y.; Hao, B.-C.; Ke, C.-F. Prediction of distant metastasis and survival prediction of gastric cancer patients with metastasis to the liver, lung, bone, and brain: Research based on the SEER database. Ann. Transl. Med. 2022, 10, 16. [Google Scholar] [CrossRef]
- Chen, X.; Lu, Y.; Shi, X.; Chen, X.; Rong, D.; Han, G.; Zhang, L.; Ni, C.; Zhao, J.; Gao, Y.; et al. Morbidity, Prognostic Factors, and Competing Risk Nomogram for Combined Hepatocellular-Cholangiocarcinoma. J. Oncol. 2021, 2021, 3002480. [Google Scholar] [CrossRef]
- Van der Velden, J.; Willmann, J.; Spałek, M.; Oldenburger, E.; Brown, S.; Kazmierska, J.; Andratschke, N.; Menten, J.; Linden, Y.V.D.; Hoskin, P. ESTRO ACROP guidelines for external beam radiotherapy of patients with uncomplicated bone metastases. Radiother. Oncol. 2022, 173, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Moustakis, C.; Blanck, O.; Chan, M.K.H.; Boda-Heggemann, J.; Andratschke, N.; Duma, M.-N.; Albers, D.; Bäumer, C.; Fehr, R.; Körber, S.A.; et al. Planning Benchmark Study for Stereotactic Body Radiation Therapy of Liver Metastases: Results of the DEGRO/DGMP Working Group on Stereotactic Radiation Therapy and Radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Hiraoka, M.; Itasaka, S.; Nakamura, M.; Akimoto, M.; Ishihara, Y.; Mukumoto, N.; Goto, Y.; Kishi, T.; Yoshimura, M.; et al. Evaluation of Dynamic Tumor-tracking Intensity-modulated Radiotherapy for Locally Advanced Pancreatic Cancer. Sci. Rep. 2018, 8, 17096. [Google Scholar] [CrossRef]
- Liu, Y.; Lyu, S.-C.; Wang, X.-Q.; Wang, Y.-B. Application of preoperative three-dimensional model design in radioactive particle implantation for advanced pancreatic cancer. OncoTargets Ther. 2018, 11, 8685–8693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosein, A.N.; Brekken, R.A.; Maitra, A. Pancreatic cancer stroma: An update on therapeutic targeting strategies. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 487–505. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, N.; Condino, S.; Carbone, M.; Cattari, N.; D’Amato, R.; Cutolo, F.; Ferrari, V. Brain Tumor and Augmented Reality: New Technologies for the Future. Int. J. Environ. Res. Public Health 2022, 19, 6347. [Google Scholar] [CrossRef] [PubMed]
- Templin, R.; Tabriz, N.; Hoffmann, M.; Uslar, V.N.; Lück, T.; Schenk, A.; Malaka, R.; Zachmann, G.; Kluge, A.; Weyhe, D. Case Report: Virtual and Interactive 3D Vascular Reconstruction Before Planned Pancreatic Head Resection and Complex Vascular Anatomy: A Bench-To-Bedside Transfer of New Visualization Techniques in Pancreatic Surgery. Front. Surg. 2020, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Grützmann, R.; Kersting, S.; Distler, M.; Weitz, J. Arterial reconstruction in pancreatic carcinoma–demonstration of surgical techniques. Zentralbl. Chir. 2014, 139, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, Y.; Han, S.; Jin, D.; Xu, X.; Kuang, T.; Wu, W.; Wang, D.; Luo, W. Prognostic Effect of Age in Resected Pancreatic Cancer Patients: A Propensity Score Matching Analysis. Front. Oncol. 2022, 12, 789351. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, J.C.; van der Geest, L.G.M.; de Meijer, V.E.; van Santvoort, H.C.; de Vos-Geelen, J.; Besselink, M.G.; Koerkamp, B.G.; Wilmink, J.W.; Eijck, C.H.J.V.; Group, D.P.C. Age and prognosis in patients with pancreatic cancer: A population-based study. Acta Oncol. 2022, 61, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kang, R.; Zheng, H.; Wang, P.; Jiang, W.; Xiong, B.; Chen, J.; Xu, J. Female Colon Cancer Metastasis Pattern and Prognosis: A SEER-Based Study. Biomed Res. Int. 2022, 2022, 3865601. [Google Scholar] [CrossRef]
- Chen, L.; Gibbons, D.L.; Goswami, S.; Cortez, M.A.; Ahn, Y.-H.; Byers, L.A.; Zhang, X.; Yi, X.; Dwyer, D.; Lin, W.; et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun. 2014, 5, 5241. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Cuaran, S.; Swalduz, A.; Foy, J.-P.; Marteau, S.; Morel, A.-P.; Fauvet, F.; Souza, G.D.; Michon, L.; Boussageon, M.; Gadot, N.; et al. Epithelial-to-mesenchymal transition promotes immune escape by inducing CD70 in non-small cell lung cancer. Eur. J. Cancer 2022, 169, 106–122. [Google Scholar] [CrossRef]
- Park, W.; Chawla, A.; O’Reilly, E.M. Pancreatic Cancer: A Review. JAMA 2021, 326, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Godeau, D.; Petit, A.; Richard, I.; Roquelaure, Y.; Descatha, A. Return-to-work, disabilities and occupational health in the age of COVID-19. Scand. J. Work. Environ. Health 2021, 47, 408–409. [Google Scholar] [CrossRef]
- Schmidt-Hansen, M.; Berendse, S.; Hamilton, W. Symptoms of Pancreatic Cancer in Primary Care: A Systematic Review. Pancreas 2016, 45, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Pokrzywa, C.J.; Abbott, D.E.; Matkowskyj, K.A.; Ronnekleiv-Kelly, S.M.; Winslow, E.R.; Weber, S.M.; Fisher, A.V. Natural History and Treatment Trends in Pancreatic Cancer Subtypes. J. Gastrointest. Surg. 2019, 23, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Yip, D.; Karapetis, C.; Strickland, A.; Steer, C.B.; Goldstein, D. Chemotherapy and radiotherapy for inoperable advanced pancreatic cancer. Cochrane Database Syst. Rev. 2006, 19, CD002093. [Google Scholar] [CrossRef]
- Middleton, G.; Ghaneh, P.; Costello, E.; Greenhalf, W.; Neoptolemos, J.P. New treatment options for advanced pancreatic cancer. Expert Rev. Gastroenterol. Hepatol. 2008, 2, 673–696. [Google Scholar] [CrossRef] [PubMed]
Variables | n (%) | Without LM Cohort n (%) | With LM Cohort n (%) | p |
---|---|---|---|---|
Age | 12,327 | 10,429 | 1898 | |
≤49 | 1043 (8.5) | 870 (8.3) | 173 (9.1) | 0.088 |
50–64 | 4294 (34.8) | 3602 (34.5) | 692 (36.5) | |
65–74 | 4032 (32.7) | 3417 (32.8) | 615 (32.4) | |
≥75 | 2958 (24.0) | 2540 (24.4) | 418 (22.0) | |
Sex | ||||
Female | 6029 (48.9) | 5187 (49.7) | 842 (44.4) | <0.001 |
Male | 6298 (51.1) | 5242 (50.3) | 1056 (55.6) | |
Race | ||||
Black | 1586 (12.9) | 1281 (12.3) | 305 (16.1) | <0.001 |
Other | 1066 (8.6) | 921 (8.8) | 145 (7.6) | |
White | 9675 (78.5) | 8227 (78.9) | 1448 (76.3) | |
Primary sites | ||||
Other | 1686 (13.7) | 1320 (12.7) | 366 (19.3) | <0.001 |
Pancreatic body tail | 3552 (28.8) | 2820 (27.0) | 732 (38.6) | |
Pancreatic head | 7089 (57.5) | 6289 (60.3) | 800 (42.1) | |
Histopathology | ||||
Adenocarcinoma | 6555 (53.2) | 5243 (50.3) | 1312 (69.1) | <0.001 |
Infiltrating duct carcinoma | 3173 (25.7) | 3028 (29.0) | 145 (7.6) | |
Neuroendocrine carcinoma | 1160 (9.4) | 923 (8.9) | 237 (12.5) | |
Other | 1439 (11.7) | 1235 (11.8) | 204 (10.7) | |
Grade | ||||
I (Well) | 2673 (21.7) | 2439 (23.4) | 234 (12.3) | <0.001 |
II (Moderately) | 5244 (42.5) | 4551 (43.6) | 693 (36.5) | |
III (Poorly) | 4172 (33.8) | 3263 (31.3) | 909 (47.9) | |
IV (Undifferentiated) | 238 (1.9) | 176 (1.7) | 62 (3.3) | |
T stage | ||||
T1 | 1246 (10.1) | 1172 (11.2) | 74 (3.9) | <0.001 |
T2 | 2223 (18.0) | 1648 (15.8) | 575 (30.3) | |
T3 | 7331 (59.5) | 6521 (62.5) | 810 (42.7) | |
T4 | 1527 (12.4) | 1088 (10.4) | 439 (23.1) | |
N stage | ||||
N0 | 6158 (50.0) | 5097 (48.9) | 1061 (55.9) | <0.001 |
N1 | 6169 (50.0) | 5332 (51.1) | 837 (44.1) | |
Bone metastasis | ||||
No | 12,194 (98.9) | 10,387 (99.6) | 1807 (95.2) | <0.001 |
Yes | 133 (1.1) | 42 (0.4) | 91 (4.8) | |
Brain metastasis | ||||
No | 12,316 (99.9) | 10,423 (99.9) | 1893 (99.7) | 0.019 |
Yes | 11 (0.1) | 6 (0.1) | 5 (0.3) | |
Lung metastasis | ||||
No | 11,895 (96.5) | 10,245 (98.2) | 1650 (86.9) | <0.001 |
Yes | 432 (3.5) | 184 (1.8) | 248 (13.1) | |
Tumor size | ||||
≤2 cm | 2099 (17.0) | 1978 (19.0) | 121 (6.4) | <0.001 |
2–4 cm | 5933 (48.1) | 5213 (50.0) | 720 (37.9) | |
>4 cm | 3848 (31.2) | 2935 (28.1) | 913 (48.1) | |
Unknown | 447 (3.6) | 303 (2.9) | 144 (7.6) | |
Surgery | ||||
No | 3708 (30.1) | 2153 (20.6) | 1555 (81.9) | <0.001 |
Yes | 8619 (69.9) | 8276 (79.4) | 343 (18.1) | |
Radiotherapy | ||||
None/Unknown | 9502 (77.1) | 7725 (74.1) | 1777 (93.6) | <0.001 |
Yes | 2825 (22.9) | 2704 (25.9) | 121 (6.4) | |
Chemotherapy | ||||
None/Unknown | 4972 (40.3) | 4270 (40.9) | 702 (37.0) | 0.001 |
Yes | 7355 (59.7) | 6159 (59.1) | 1196 (63.0) |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variables | OR | 95% CI | p | OR | 95% CI | p |
Age | ||||||
≤49 | Ref | |||||
50–64 | 0.966 | 0.805–1.159 | 0.711 | |||
65–74 | 0.905 | 0.753–1.088 | 0.289 | |||
≥75 | 0.828 | 0.682–1.004 | 0.055 | |||
Sex | ||||||
Female | Ref | |||||
Male | 1.241 | 1.125–1.369 | 0 | 1.171 | 1.037–1.322 | 0.011 |
Race | ||||||
Black | Ref | |||||
Other | 0.661 | 0.532–0.818 | 0 | 0.804 | 0.618–1.045 | 0.103 |
White | 0.739 | 0.646–0.849 | 0 | 0.875 | 0.739–1.036 | 0.121 |
Primary sites | ||||||
Other | Ref | |||||
Pancreatic body tail | 0.936 | 0.813–1.079 | 0.361 | 1.338 | 1.121–1.597 | 0.001 |
Pancreatic head | 0.459 | 0.400–0.527 | 0 | 0.751 | 0.633–0.890 | 0.001 |
Histopathology | ||||||
Adenocarcinoma | Ref | |||||
Infiltrating duct carcinoma | 0.191 | 0.160–0.228 | 0 | 0.676 | 0.550–0.832 | 0 |
Neuroendocrine carcinoma | 1.026 | 0.877–1.196 | 0.745 | 3.69 | 2.931–4.645 | 0 |
Other | 0.660 | 0.561–0.773 | 0 | 1.576 | 1.261–1.970 | 0 |
Grade | ||||||
I (Well) | Ref | |||||
II (Moderately) | 1.587 | 1.360–1.859 | 0 | 1.903 | 1.557–2.325 | 0 |
III (Poorly) | 2.904 | 2.496–3.390 | 0 | 2.652 | 2.170–3.240 | 0 |
IV (Undifferentiated) | 3.672 | 2.654–5.028 | 0 | 1.918 | 1.278–2.879 | 0.002 |
T stage | ||||||
T1 | Ref | |||||
T2 | 5.526 | 4.317–7.171 | 0 | 1.591 | 1.019–2.484 | 0.041 |
T3 | 1.967 | 1.549–2.535 | 0 | 1.207 | 0.785–1.858 | 0.391 |
T4 | 6.390 | 4.959–8.343 | 0 | 0.955 | 0.610–1.495 | 0.841 |
N stage | ||||||
N0 | Ref | |||||
N1 | 0.754 | 0.683–0.832 | 0 | 1.49 | 1.307–1.698 | 0 |
Bone metastasis | ||||||
No | Ref | |||||
Yes | 12.454 | 8.672–18.179 | 0 | 3.982 | 2.552–6.212 | 0 |
Brain metastasis | ||||||
No | Ref | |||||
Yes | 4.588 | 1.321–15.250 | 0.012 | 0.569 | 0.146–2.214 | 0.416 |
Lung metastasis | ||||||
No | Ref | |||||
Yes | 8.369 | 6.873–10.208 | 0 | 1.907 | 1.515–2.400 | 0 |
Tumor size | ||||||
≤2 cm | Ref | |||||
2–4 cm | 2.258 | 1.857–2.768 | 0 | 1.292 | 0.914–1.827 | 0.147 |
>4 cm | 5.085 | 4.189–6.226 | 0 | 1.734 | 1.226–2.452 | 0.002 |
Unknown | 7.769 | 5.934–10.192 | 0 | 1.537 | 1.028–2.298 | 0.036 |
Surgery | ||||||
No | Ref | |||||
Yes | 0.057 | 0.051–0.065 | 0 | 0.066 | 0.056–0.078 | 0 |
Radiotherapy | ||||||
None/Unknown | Ref | |||||
Yes | 0.195 | 0.160–0.234 | 0 | 0.190 | 0.153–0.236 | 0 |
Chemotherapy | ||||||
None/Unknown | Ref | |||||
Yes | 1.181 | 1.068–1.307 | 0.001 | 1.359 | 1.190–1.551 | 0 |
Variables | n (%) | Training Cohort n (%) | Validation Cohort n (%) | p |
---|---|---|---|---|
Age | 1898 | 1328 | 570 | |
≤49 | 173 (9.1) | 128 (9.6) | 45 (7.9) | 0.176 |
50–64 | 692 (36.5) | 464 (34.9) | 228 (40.0) | |
65–74 | 615 (32.4) | 438 (33.0) | 177 (31.1) | |
≥75 | 418 (22.0) | 298 (22.4) | 120 (21.1) | |
Sex | ||||
Female | 842 (44.4) | 572 (43.1) | 270 (47.4) | 0.094 |
Male | 1056 (55.6) | 756 (56.9) | 300 (52.6) | |
Race | ||||
Black | 305 (16.1) | 204 (15.4) | 101 (17.7) | 0.426 |
Other | 145 (7.6) | 101 (7.6) | 44 (7.7) | |
White | 1448 (76.3) | 1023 (77.0) | 425 (74.6) | |
Primary sites | ||||
Other | 366 (19.3) | 264 (19.9) | 102 (17.9) | 0.224 |
Pancreatic body tail | 732 (38.6) | 521 (39.2) | 211 (37.0) | |
Pancreatic head | 800 (42.1) | 543 (40.9) | 257 (45.1) | |
Histopathology | ||||
Adenocarcinoma | 1312 (69.1) | 919 (69.2) | 393 (68.9) | 0.493 |
Infiltrating duct carcinoma | 145 (7.6) | 105 (7.9) | 40 (7.0) | |
Neuroendocrine carcinoma | 237 (12.5) | 157 (11.8) | 80 (14.0) | |
Other | 204 (10.7) | 147 (11.1) | 57 (10.0) | |
Grade | ||||
I (Well) | 234 (12.3) | 157 (11.8) | 77 (13.5) | 0.061 |
II (Moderately) | 693 (36.5) | 469 (35.3) | 224 (39.3) | |
III (Poorly) | 909 (47.9) | 652 (49.1) | 257 (45.1) | |
IV (Undifferentiated) | 62 (3.3) | 50 (3.8) | 12 (2.1) | |
T stage | ||||
T1 | 74 (3.9) | 52 (3.9) | 22 (3.9) | 0.897 |
T2 | 575 (30.3) | 397 (29.9) | 178 (31.2) | |
T3 | 810 (42.7) | 574 (43.2) | 236 (41.4) | |
T4 | 439 (23.1) | 305 (23.0) | 134 (23.5) | |
N stage | ||||
N0 | 1061 (55.9) | 745 (56.1) | 316 (55.4) | 0.829 |
N1 | 837 (44.1) | 583 (43.9) | 254 (44.6) | |
Bone metastasis | ||||
No | 1807 (95.2) | 1260 (94.9) | 547 (96.0) | 0.37 |
Yes | 91 (4.8) | 68 (5.1) | 23 (4.0) | |
Brain metastasis | ||||
No | 1893 (99.7) | 1324 (99.7) | 569 (99.8) | 0.999 |
Yes | 5 (0.3) | 4 (0.3) | 1 (0.2) | |
Lung metastasis | ||||
No | 1650 (86.9) | 1150 (86.6) | 500 (87.7) | 0.554 |
Yes | 248 (13.1) | 178 (13.4) | 70 (12.3) | |
Tumor size | ||||
≤2 cm | 121 (6.4) | 89 (6.7) | 32 (5.6) | 0.682 |
2–4 cm | 720 (37.9) | 510 (38.4) | 210 (36.8) | |
>4 cm | 913 (48.1) | 630 (47.4) | 283 (49.6) | |
Unknown | 144 (7.6) | 99 (7.5) | 45 (7.9) | |
Surgery | ||||
No | 1555 (81.9) | 1087 (81.9) | 468 (82.1) | 0.947 |
Yes | 343 (18.1) | 241 (18.1) | 102 (17.9) | |
Radiotherapy | ||||
None/Unknown | 1777 (93.6) | 1238 (93.2) | 539 (94.6) | 0.321 |
Yes | 121 (6.4) | 90 (6.8) | 31 (5.4) | |
Chemotherapy | ||||
None/Unknown | 702 (37.0) | 472 (35.5) | 230 (40.4) | 0.053 |
Yes | 1196 (63.0) | 856 (64.5) | 340 (59.6) |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variables | HR | 95% CI | p | HR | 95% CI | p |
Age | ||||||
≤49 | Ref | |||||
50–64 | 1.822 | 1.462–2.27 | 0 | 1.37 | 1.09–1.71 | 0.006 |
65–74 | 1.916 | 1.536–2.389 | 0 | 1.34 | 1.07–1.68 | 0.011 |
≥75 | 2.913 | 2.313–3.67 | 0 | 2.06 | 1.63–2.61 | 0 |
Sex | ||||||
Female | Ref | |||||
Male | 1.004 | 0.896–1.125 | 0.942 | |||
Race | ||||||
Black | Ref | |||||
Other | 0.94 | 0.729–1.211 | 0.63 | |||
White | 0.978 | 0.836–1.146 | 0.786 | |||
Primary sites | ||||||
Other | Ref | |||||
Pancreatic body tail | 0.92 | 0.786–1.076 | 0.294 | |||
Pancreatic head | 1.062 | 0.91–1.239 | 0.446 | |||
Histopathology | ||||||
Adenocarcinoma | Ref | |||||
Infiltrating duct carcinoma | 0.791 | 0.644–0.97 | 0.025 | 1.2 | 0.97–1.5 | 0.092 |
Neuroendocrine carcinoma | 0.251 | 0.204–0.31 | 0 | 0.4 | 0.32–0.51 | 0 |
Other | 0.402 | 0.328–0.494 | 0 | 0.59 | 0.48–0.74 | 0 |
Grade | ||||||
I (Well) | Ref | |||||
II (Moderately) | 2.62 | 2.108–3.255 | 0 | 1.51 | 1.19–1.9 | 0.001 |
III (Poorly) | 3.957 | 3.198–4.896 | 0 | 2.18 | 1.73–2.74 | 0 |
IV (Undifferentiated) | 3.178 | 2.241–4.505 | 0 | 2.62 | 1.84–3.73 | 0 |
T stage | ||||||
T1 | Ref | |||||
T2 | 1.667 | 1.206–2.303 | 0.002 | 0.9 | 0.56–1.45 | 0.664 |
T3 | 1.264 | 0.919–1.738 | 0.149 | 0.76 | 0.48–1.2 | 0.241 |
T4 | 1.755 | 1.264–2.435 | 0.001 | 0.8 | 0.5–1.28 | 0.349 |
N stage | ||||||
N0 | Ref | |||||
N1 | 0.909 | 0.812–1.019 | 0.102 | |||
Bone metastasis | ||||||
No | Ref | |||||
Yes | 1.481 | 1.157–1.895 | 0.002 | 1.51 | 1.17–1.94 | 0.001 |
Brain metastasis | ||||||
No | Ref | |||||
Yes | 1.834 | 0.687–4.897 | 0.226 | |||
Lung metastasis | ||||||
No | Ref | |||||
Yes | 1.72 | 1.464–2.02 | 0 | 1.22 | 1.04–1.44 | 0.016 |
Tumor size | ||||||
≤2 cm | Ref | |||||
2–4 cm | 1.428 | 1.117–1.825 | 0.005 | 1.18 | 0.83–1.7 | 0.356 |
>4 cm | 1.392 | 1.092–1.774 | 0.007 | 1.32 | 0.92–1.88 | 0.126 |
Unknown | 2.168 | 1.6–2.938 | 0 | 1.53 | 1.03–2.29 | 0.036 |
Surgery | ||||||
No | Ref | |||||
Yes | 0.289 | 0.244–0.343 | 0 | 0.46 | 0.38–0.55 | 0 |
Radiotherapy | ||||||
None/Unknown | Ref | |||||
Yes | 0.852 | 0.682–1.065 | 0.16 | |||
Chemotherapy | ||||||
None/Unknown | Ref | |||||
Yes | 0.989 | 0.875–1.117 | 0.856 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Li, X.; Chen, Z.; Jiang, W.; Dong, S.; He, R.; Zhou, W. Nomograms for Predicting the Risk and Prognosis of Liver Metastases in Pancreatic Cancer: A Population-Based Analysis. J. Pers. Med. 2023, 13, 409. https://doi.org/10.3390/jpm13030409
Shi H, Li X, Chen Z, Jiang W, Dong S, He R, Zhou W. Nomograms for Predicting the Risk and Prognosis of Liver Metastases in Pancreatic Cancer: A Population-Based Analysis. Journal of Personalized Medicine. 2023; 13(3):409. https://doi.org/10.3390/jpm13030409
Chicago/Turabian StyleShi, Huaqing, Xin Li, Zhou Chen, Wenkai Jiang, Shi Dong, Ru He, and Wence Zhou. 2023. "Nomograms for Predicting the Risk and Prognosis of Liver Metastases in Pancreatic Cancer: A Population-Based Analysis" Journal of Personalized Medicine 13, no. 3: 409. https://doi.org/10.3390/jpm13030409
APA StyleShi, H., Li, X., Chen, Z., Jiang, W., Dong, S., He, R., & Zhou, W. (2023). Nomograms for Predicting the Risk and Prognosis of Liver Metastases in Pancreatic Cancer: A Population-Based Analysis. Journal of Personalized Medicine, 13(3), 409. https://doi.org/10.3390/jpm13030409