Clinical Effects of the Neutrophil-to-Lymphocyte Ratio/Serum Albumin Ratio in Patients with Gastric Cancer after Gastrectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Measurement of the PNI, NLR, and Alb
2.3. Analyzed Parameters
2.4. Statistical Analyses
3. Results
3.1. Association of PNI, NLR, and NLR/Alb with Clinicopathological Factors
3.2. 3Y OS and RFS Rates According to PNI, NLR, and NLR/Alb
3.3. Univariate and Multivariate Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Sasako, M.; Sakuramoto, S.; Katai, H.; Kinoshita, T.; Furukawa, H.; Yamaguchi, T.; Nashimoto, A.; Fujii, M.; Nakajima, T.; Ohashi, Y. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in Stage II or III gastric cancer. J. Clin. Oncol. 2011, 29, 4387–4393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, K.; Kodera, Y.; Kochi, M.; Ichikawa, W.; Kakeji, Y.; Sano, T.; Nagao, N.; Takahashi, M.; Takagane, A.; Watanabe, T.; et al. Addition of docetaxel to oral fluoropyrimidine improves efficacy in patients with Stage III gastric cancer: Interim analysis of JACCRO GC-07, a randomized controlled trial. J. Clin. Oncol. 2019, 37, 1296–1304. [Google Scholar] [CrossRef]
- Kang, Y.K.; Boku, N.; Satoh, T.; Ryu, M.H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, Phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, Phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Shitara, K.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.-H.; Fornaro, L.; Olesiński, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, Phase 3 trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Bang, Y.J.; Iwasa, S.; Sugimoto, N.; Ryu, M.H.; Sakai, D.; Chung, H.C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Doi, T.; Dvorkin, M.; Mansoor, W.; Arkenau, H.-T.; Prokharau, A.; Alsina, M.; Ghidini, M.; Faustino, C.; Gorbunova, V.; et al. Trifluridine/tipiracil versus placebo in patients with heavily pretreated metastatic gastric cancer (TAGS): A randomised, double-blind, placebo-controlled, Phase 3 trial. Lancet Oncol. 2018, 19, 1437–1448. [Google Scholar] [CrossRef]
- Zhou, C.; Hu, J.; Wang, Y.; Ji, M.H.; Tong, J.; Yang, J.J.; Xia, H. A machine learning-based predictor for the identification of the recurrence of patients with gastric cancer after operation. Sci. Rep. 2021, 11, 1571. [Google Scholar] [CrossRef]
- Liu, X.; Lei, S.; Wei, Q.; Wang, Y.; Liang, H.; Chen, L. Machine learning-based correlation study between perioperative immunonutritional index and postoperative anastomotic leakage in patients with gastric cancer. Int. J. Med. Sci. 2022, 19, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.X.; Wei, Z.J.; Xu, A.M.; Zang, J.H. Can the neutrophil-lymphocyte ratio and platelet-lymphocyte ratio be beneficial in predicting lymph node metastasis and promising prognostic markers of gastric cancer patients? tumor maker retrospective study. Int. J. Surg. 2018, 56, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, S.; Ying, X.; Zhang, L.; Shan, F.; Jia, Y.; Ji, J. The clinical value and usage of inflammatory and nutritional markers in survival prediction for gastric cancer patients with neoadjuvant chemotherapy and D2 lymphadenectomy. Gastric Cancer 2020, 23, 540–549. [Google Scholar] [CrossRef] [Green Version]
- Hirahara, N.; Matsubara, T.; Fujii, Y.; Kaji, S.; Kawabata, Y.; Hyakudomi, R.; Yamamoto, T.; Taniura, T.; Tajima, Y. Comparison of the prognostic value of immunoinflammation-based biomarkers in patients with gastric cancer. Oncotarget 2020, 11, 2625–2635. [Google Scholar] [CrossRef]
- Wang, S.H.; Zhai, S.T.; Lin, H. Role of prognostic nutritional index in patients with gastric cancer: A meta-analysis. Minerva Med. 2016, 107, 322–327. [Google Scholar] [PubMed]
- Takechi, H.; Fujikuni, N.; Tanabe, K.; Hattori, M.; Amano, H.; Noriyuki, T.; Nakahara, M. Using the preoperative prognostic nutritional index as a predictive factor for non-cancer-related death in post-curative resection gastric cancer patients: A retrospective cohort study. BMC Gastroenterol. 2020, 20, 256. [Google Scholar] [CrossRef] [PubMed]
- Xishan, Z.; Ye, Z.; Feiyan, M.; Liang, X.; Shikai, W. The role of prognostic nutritional index for clinical outcomes of gastric cancer after total gastrectomy. Sci. Rep. 2020, 10, 17373. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, S.; Feng, J.-F. A Novel inflammation-based prognostic index for patients with esophageal squamous cell carcinoma: Neutrophil lymphocyte ratio/albumin ratio. Oncotarget 2017, 8, 103535–103542. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, J.; Liu, Z.; Tian, Y.; Liu, F. A novel inflammation-based prognostic index for patients with esophageal squamous cell carcinoma: Neutrophil lymphocyte ratio/prealbumin ratio. Medicine 2019, 98, e14562. [Google Scholar] [CrossRef]
- Ueda, K.; Ogasawara, N.; Yonekura, S.; Matsunaga, Y.; Hoshino, R.; Kurose, H.; Chikui, K.; Uemura, K.; Nakiri, M.; Nishihara, K.; et al. The prognostic value of systemic inflammatory markers in advanced renal cell carcinoma patients treated with molecular targeted therapies. Anticancer Res. 2020, 40, 1739–1745. [Google Scholar] [CrossRef]
- Greiner, M.; Pfeiffer, D.; Smith, R.D. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev. Vet. Med. 2000, 45, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Proctor, M.J.; McMillan, D.C.; Morrison, D.S.; Fletcher, C.D.; Horgan, P.G.; Clarke, S.J. A derived neutrophil to lymphocyte ratio predicts survival in patients with cancer. Br. J. Cancer 2012, 107, 695–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiorino, L.; Daßler-Plenker, J.; Sun, L.; Egeblad, M. Innate immunity and cancer pathophysiology. Annu. Rev. Pathol. 2022, 17, 425–457. [Google Scholar] [CrossRef] [PubMed]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN Guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, M.; Mizuno, A.; Tanaka, C.; Kobayashi, D.; Fujiwara, M.; Iwata, N.; Hayashi, M.; Yamada, S.; Nakayama, G.; Fujii, T.; et al. Nutritional predictors for postoperative short-term and long-term outcomes of patients with gastric cancer. Medicine 2016, 95, e3781. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, H.-I.; Kim, Y.-N.; Hong, J.H.; Alshomimi, S.; An, J.Y.; Cheong, J.-H.; Hyung, W.J.; Noh, S.H.; Kim, C.-B. Clinical significance of the prognostic nutritional index for predicting short- and long-term surgical outcomes after gastrectomy: A retrospective analysis of 7781 gastric cancer patients. Medicine 2016, 95, e3539. [Google Scholar] [CrossRef]
- Shimada, H.; Takiguchi, N.; Kainuma, O.; Soda, H.; Ikeda, A.; Cho, A.; Miyazaki, A.; Gunji, H.; Yamamoto, H.; Nagata, M. High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer. Gastric Cancer 2010, 13, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.C.; Chou, J.F.; Strong, V.E.; Brennan, M.F.; Capanu, M.; Coit, D.G. Pretreatment neutrophil to lymphocyte ratio independently predicts disease-specific survival in resectable gastroesophageal junction and gastric adenocarcinoma. Ann. Surg. 2016, 263, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Xin-Ji, Z.; Yong-Gang, L.; Xiao-Jun, S.; Xiao-Wu, C.; Dong, Z.; Da-Jian, Z. The prognostic role of neutrophils to lymphocytes ratio and platelet count in gastric cancer: A meta-analysis. Int. J. Surg. 2015, 21, 84–91. [Google Scholar] [CrossRef]
- Jiang, N.; Deng, J.Y.; Ding, X.W.; Ke, B.; Liu, N.; Zhang, R.P.; Liang, H. Prognostic nutritional index predicts postoperative complications and long-term outcomes of gastric cancer. World J. Gastroenterol. 2014, 20, 10537–10544. [Google Scholar] [CrossRef]
- Aoyama, T.; Nakazono, M.; Segami, K.; Nagasawa, S.; Kano, K.; Yamada, T.; Maezawa, Y.; Hara, K.; Hashimoto, I.; Suematsu, H.; et al. The clinical influence of the C-reactive protein-to-albumin ratio in patients who received curative treatment for gastric cancer. In Vivo 2021, 35, 3475–3482. [Google Scholar] [CrossRef]
- Xu, B.B.; Lu, J.; Zheng, Z.F.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Chen, Q.Y.; Cao, L.L.; Lin, M.; Tu, R.H.; et al. The predictive value of the preoperative C-reactive protein-albumin ratio for early recurrence and chemotherapy benefit in patients with gastric cancer after radical gastrectomy: Using randomized phase III trial data. Gastric Cancer 2019, 22, 1016–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okugawa, Y.; Toiyama, Y.; Yamamoto, A.; Shigemori, T.; Ichikawa, T.; Yin, C.; Suzuki, A.; Fujikawa, H.; Yasuda, H.; Hiro, J.; et al. Lymphocyte-to-C-reactive protein ratio and score are clinically feasible nutrition-inflammation markers of outcome in patients with gastric cancer. Clin. Nutr. 2020, 39, 1209–1217. [Google Scholar] [CrossRef]
- Xiong, J.; Hu, H.; Kang, W.; Liu, H.; Ma, F.; Ma, S.; Li, Y.; Jin, P.; Tian, Y. Prognostic impact of preoperative naples prognostic score in gastric cancer patients undergoing surgery. Front. Surg. 2021, 8, 617744. [Google Scholar] [CrossRef] [PubMed]
- Ongaro, E.; Buoro, V.; Cinausero, M.; Caccialanza, R.; Turri, A.; Fanotto, V.; Basile, D.; Vitale, M.G.; Ermacora, P.; Cardellino, G.G.; et al. Sarcopenia in gastric cancer: When the loss costs too much. Gastric Cancer 2017, 20, 563–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, S.; Golubnitschaja, O.; Zhan, X. Chronic inflammation: Key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J. 2019, 10, 365–381. [Google Scholar] [CrossRef] [Green Version]
- Zavros, Y.; Merchant, J.L. The immune microenvironment in gastric adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 451–467. [Google Scholar] [CrossRef]
- Liotti, F.; Marotta, M.; Melillo, R.M.; Prevete, N. The impact of resolution of inflammation on tumor microenvironment: Exploring new ways to control cancer progression. Cancers 2022, 14, 3333. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, J. Neutrophil extracellular traps: New players in cancer research. Front. Immunol. 2022, 13, 937565. [Google Scholar] [CrossRef]
- Li, T.J.; Jiang, Y.M.; Hu, Y.F.; Huang, L.; Yu, J.; Zhao, L.Y.; Deng, H.J.; Mou, T.Y.; Liu, H.; Yang, Y.; et al. Interleukin-17-producing neutrophils link inflammatory stimuli to disease progression by promoting angiogenesis in gastric cancer. Clin. Cancer Res. 2017, 23, 1575–1585. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Gu, J.; Chen, J.; Zhang, P.; Ji, R.; Qian, H.; Xu, W.; Zhang, X. Interaction with neutrophils promotes gastric cancer cell migration and invasion by inducing epithelial-mesenchymal transition. Oncol. Rep. 2017, 38, 2959–2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.T.; Zhao, Y.L.; Peng, L.S.; Chen, N.; Chen, W.; Lv, Y.P.; Mao, F.Y.; Zhang, J.Y.; Cheng, P.; Teng, Y.S.; et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut 2017, 66, 1900–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiramatsu, S.; Tanaka, H.; Nishimura, J.; Yamakoshi, Y.; Sakimura, C.; Tamura, T.; Toyokawa, T.; Muguruma, K.; Yashiro, M.; Hirakawa, K.; et al. Gastric cancer cells alter the immunosuppressive function of neutrophils. Oncol. Rep. 2020, 43, 251–259. [Google Scholar] [CrossRef]
- Lim, Y.J.; Koh, J.; Kim, K.; Chie, E.K.; Kim, B.; Lee, K.B.; Jang, J.-Y.; Kim, S.-W.; Oh, D.-Y.; Bang, Y.-J.; et al. High ratio of programmed cell death protein 1 (PD-1)(+)/CD8(+) tumor-infiltrating lymphocytes identifies a poor prognostic subset of extrahepatic bile duct cancer undergoing surgery plus adjuvant chemoradiotherapy. Radiother. Oncol. 2015, 117, 165–170. [Google Scholar] [CrossRef]
- Miura, T.; Yoshizawa, T.; Hirai, H.; Seino, H.; Morohashi, S.; Wu, Y.; Wakiya, T.; Kimura, N.; Kudo, D.; Ishido, K.; et al. Prognostic impact of CD163+ macrophages in tumor stroma and CD8+ T-cells in cancer cell nests in invasive extrahepatic bile duct cancer. Anticancer Res. 2017, 37, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djenidi, F.; Adam, J.; Goubar, A.; Durgeau, A.; Meurice, G.; de Montpréville, V.; Validire, P.; Besse, B.; Mami-Chouaib, F. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol. 2015, 194, 3475–3486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Guo, R.; Jia, J.; He, Y.; He, S. Activation of toll-like receptor 2 enhances peripheral and tumor-infiltrating CD8+ T cell cytotoxicity in patients with gastric cancer. BMC Immunol. 2021, 22, 67. [Google Scholar] [CrossRef]
- Feng, F.; Zheng, G.; Wang, Q.; Liu, S.; Liu, Z.; Xu, G.; Wang, F.; Guo, M.; Lian, X.; Zhang, H. Low lymphocyte count and high monocyte count predicts poor prognosis of gastric cancer. BMC Gastroenterol. 2018, 18, 148. [Google Scholar] [CrossRef] [Green Version]
- Yeun, J.Y.; Kaysen, G.A. Factors influencing serum albumin in dialysis patients. Am. J. Kidney Dis. 1998, 32, S118–S125. [Google Scholar] [CrossRef]
- Oñate-Ocaña, L.F.; Aiello-Crocifoglio, V.; Gallardo-Rincón, D.; Herrera-Goepfert, R.; Brom-Valladares, R.; Carrillo, J.F.; Cervera, E.; Mohar-Betancourt, A. Serum albumin as a significant prognostic factor for patients with gastric carcinoma. Ann. Surg. Oncol. 2007, 14, 381–389. [Google Scholar] [CrossRef]
- Mulazzani, G.E.G.; Corti, F.; Della Valle, S.; Di Bartolomeo, M. Nutritional support indications in gastroesophageal cancer patients: From perioperative to palliative systemic therapy. A comprehensive review of the last decade. Nutrients 2021, 13, 2766. [Google Scholar] [CrossRef] [PubMed]
- Tsuburaya, A.; Mizusawa, J.; Tanaka, Y.; Fukushima, N.; Nashimoto, A.; Sasako, M.; Stomach Cancer Study Group of the Japan Clinical Oncology Group. Neoadjuvant chemotherapy with S-1 and cisplatin followed by D2 gastrectomy with para-aortic lymph node dissection for gastric cancer with extensive lymph node metastasis. Br. J. Surg. 2014, 101, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, Y.; Terashima, M.; Mizusawa, J.; Katayama, H.; Nakamura, K.; Katai, H.; Yoshikawa, T.; Ito, S.; Kaji, M.; Kimura, Y.; et al. Gastrectomy with or without neoadjuvant S-1 plus cisplatin for type 4 or large type 3 gastric cancer (JCOG0501): An open-label, phase 3, randomized controlled trial. Gastric Cancer 2021, 24, 492–502. [Google Scholar] [CrossRef] [PubMed]
Variables | All Patients (n = 483) | NLR/Alb | p-Value | |
---|---|---|---|---|
Low (n = 139) | High (n = 344) | |||
Age (years) | <65 | 60 (43.2) | 114 (33.1) | 0.05 |
≥65 | 79 (56.8) | 230 (66.9) | ||
Sex | Male | 103 (74.1) | 217 (63.1) | 0.03 |
Female | 36 (25.9) | 127 (36.9) | ||
BMI (kg/m2) | <18.5 | 9 (6.5) | 40 (11.6) | 0.17 |
≥18.5, <25.0 | 94 (67.6) | 231 (67.2) | ||
≥25 | 36 (25.9) | 73 (21.2) | ||
Preoperative CRP level | (Mean SD) | 0.12 (0.19) | 0.22 (0.44) | 0.01 |
Operation | Not TG | 109 (78.4) | 253 (73.5) | 0.30 |
TG | 30 (21.6) | 91 (26.5) | ||
Tumor size (mm) | ≤30 | 78 (56.1) | 169 (49.1) | 0.19 |
>30 | 61 (43.9) | 175 (50.9) | ||
Histological type | Well/moderately | 74 (53.2) | 175 (50.9) | 0.69 |
Poorly | 65 (46.8) | 169 (49.1) | ||
Lymphatic invasion | − | 101 (72.7) | 232 (67.4) | 0.28 |
+ | 38 (27.3) | 112 (32.6) | ||
Venous invasion | − | 83 (59.7) | 197 (57.3) | 0.68 |
+ | 56 (40.3) | 147 (42.7) | ||
pStage | I | 100 (71.9) | 231 (67.2) | 0.33 |
II/III | 39 (28.1) | 113 (32.8) | ||
Surgical complications | − | 116 (83.5) | 290 (84.3) | 0.89 |
+ | 23 (16.5) | 54 (15.7) | ||
Hospitalization | (Mean SD) | 9.81 (7.48) | 10.03 (8.94) | 0.80 |
Factors | Univariate | p-Value | Multivariate | p-Value | |||
---|---|---|---|---|---|---|---|
HR | 95% CI | HR | 95% CI | ||||
Age (years) | <65 | 1 | 1 | ||||
≥65 | 2.99 | 1.33–6.73 | 0.01 | 1.98 | 0.87–4.49 | 0.10 | |
Sex | Male | 1 | |||||
Female | 0.66 | 0.33–1.32 | 0.24 | ||||
BMI (kg/m2) | <18.5 | 1 | |||||
≥18.5, <25.0 | 0.60 | 0.26–1.37 | 0.22 | ||||
≥25 | 0.42 | 0.15–1.21 | 0.11 | ||||
Operation | Not TG | 1 | 1 | ||||
TG | 2.52 | 1.38–4.60 | 0.003 | 1.37 | 0.74–2.54 | 0.32 | |
Tumor size (mm) | ≤30 | 1 | |||||
>30 | 1.80 | 0.97–3.33 | 0.06 | ||||
Histological type | Well/moderately | 1 | |||||
Poorly | 1.50 | 0.82–2.75 | 0.19 | ||||
Lymphatic invasion | − | 1 | 1 | ||||
+ | 3.21 | 1.75–5.87 | <0.001 | 1.02 | 0.52–2.02 | 0.95 | |
Venous invasion | − | 1 | 1 | ||||
+ | 7.62 | 3.39–17.13 | <0.001 | 3.81 | 1.50–9.68 | 0.005 | |
pStage | I | 1 | 1 | ||||
II/III | 6.09 | 3.13–11.87 | <0.001 | 2.65 | 1.21–5.81 | 0.02 | |
Surgical complications | − | 1 | |||||
+ | 0.59 | 0.21–1.67 | 0.32 | ||||
Preoperative CRP | Low | 1 | 1 | ||||
High | 1.71 | 1.01–2.89 | 0.045 | 1.38 | 0.74–2.55 | 0.31 | |
Preoperative NLR/Alb | Low | 1 | 1 | ||||
High | 5.58 | 1.73–18.05 | 0.004 | 4.13 | 1.26–13.55 | 0.02 |
Factors | Univariate | p-Value | Multivariate | p-Value | |||
---|---|---|---|---|---|---|---|
HR | 95% CI | HR | 95% CI | ||||
Age (years) | <65 | 1 | 1 | ||||
≥65 | 2.12 | 1.15–3.91 | 0.02 | 1.45 | 0.77–2.72 | 0.25 | |
Sex | Male | 1 | |||||
Female | 1.05 | 0.62–1.79 | 0.85 | ||||
BMI (kg/m2) | <18.5 | 1 | |||||
≥18.5, <25.0 | 0.51 | 0.25–1.02 | 0.29 | ||||
≥25 | 0.58 | 0.26–1.30 | 0.18 | ||||
Operation | Not TG | 1 | 1 | ||||
TG | 1.97 | 1.17–3.32 | 0.01 | 1.19 | 0.69–2.05 | 0.53 | |
Tumor size (mm) | ≤30 | 1 | |||||
≥30 | 2.34 | 1.36–4.03 | 0.002 | 0.87 | 0.47–1.60 | 0.65 | |
Histological type | Well/moderately | 1 | |||||
Poorly | 1.63 | 0.97–2.74 | 0.06 | ||||
Lymphatic invasion | − | 1 | 1 | ||||
+ | 4.56 | 2.68–7.75 | <0.001 | 2.13 | 1.03–4.42 | 0.04 | |
Venous invasion | − | 1 | 1 | ||||
+ | 5.51 | 2.98–10.18 | <0.001 | 1.79 | 0.98–3.25 | 0.06 | |
pStage | I | 1 | 1 | ||||
II/III | 6.87 | 3.88–12.19 | <0.001 | 3.48 | 1.68–7.20 | <0.001 | |
Surgical complications | − | 1 | |||||
+ | 1.20 | 0.62–2.30 | 0.59 | ||||
Preoperative CRP | Low | 1 | |||||
High | 1.66 | 0.98–2.81 | 0.06 | ||||
Preoperative NLR/Alb | Low | 1 | 1 | ||||
High | 3.81 | 1.64–8.86 | 0.002 | 3.16 | 1.34–7.45 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onuma, S.; Hashimoto, I.; Suematsu, H.; Nagasawa, S.; Kanematsu, K.; Aoyama, T.; Yamada, T.; Rino, Y.; Ogata, T.; Oshima, T. Clinical Effects of the Neutrophil-to-Lymphocyte Ratio/Serum Albumin Ratio in Patients with Gastric Cancer after Gastrectomy. J. Pers. Med. 2023, 13, 432. https://doi.org/10.3390/jpm13030432
Onuma S, Hashimoto I, Suematsu H, Nagasawa S, Kanematsu K, Aoyama T, Yamada T, Rino Y, Ogata T, Oshima T. Clinical Effects of the Neutrophil-to-Lymphocyte Ratio/Serum Albumin Ratio in Patients with Gastric Cancer after Gastrectomy. Journal of Personalized Medicine. 2023; 13(3):432. https://doi.org/10.3390/jpm13030432
Chicago/Turabian StyleOnuma, Shizune, Itaru Hashimoto, Hideaki Suematsu, Shinsuke Nagasawa, Kyohei Kanematsu, Toru Aoyama, Takanobu Yamada, Yasushi Rino, Takashi Ogata, and Takashi Oshima. 2023. "Clinical Effects of the Neutrophil-to-Lymphocyte Ratio/Serum Albumin Ratio in Patients with Gastric Cancer after Gastrectomy" Journal of Personalized Medicine 13, no. 3: 432. https://doi.org/10.3390/jpm13030432
APA StyleOnuma, S., Hashimoto, I., Suematsu, H., Nagasawa, S., Kanematsu, K., Aoyama, T., Yamada, T., Rino, Y., Ogata, T., & Oshima, T. (2023). Clinical Effects of the Neutrophil-to-Lymphocyte Ratio/Serum Albumin Ratio in Patients with Gastric Cancer after Gastrectomy. Journal of Personalized Medicine, 13(3), 432. https://doi.org/10.3390/jpm13030432