Immunocyte Infiltration Analysis and Immunohistochemistry Identify EVL as a Potential Prognostic Biomarker for Pancreatic Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. RNA-Seq Data Download
2.2. Clinical Data Download
2.3. Functional Analysis of Co-Expressed Genes
2.4. Functional Analysis of EVL-Related DEGs
2.5. Gene Set Enrichment Analysis (GSEA) of EVL
2.6. Correlation Analysis of Immune Infiltration
2.7. Patients and Cell Lines
2.8. RNA Extraction and qRT-PCR
2.9. Western Blotting
2.10. Immunohistochemical Assay
2.11. Statistical Analysis
3. Results
3.1. EVL Was Down-Regulated in PC Tissues
3.2. The Function of EVL Co-Expressed Genes Related to Immune Pathways
3.3. The Function of EVL-Related DEGs Related to Immune Pathways
3.4. EVL Positively Regulates the Immune Pathway
3.5. EVL Promotes the Immunocyte Infiltration of PC
3.6. EVL Indicates a Good Prognosis for PC Patient
3.7. Validating the Expression Differences of EVL
3.8. Validating the Prognostic Value of EVL
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grossberg, A.J.; Chu, L.C.; Deig, C.R.; Fishman, E.K.; Hwang, W.L.; Maitra, A.; Marks, D.L.; Mehta, A.; Nabavizadeh, N.; Simeone, D.M.; et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer. J. Clin. 2020, 70, 375–403. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Werner, J.; Combs, S.E.; Springfeld, C.; Hartwig, W.; Hackert, T.; Büchler, M.W. Advanced-stage pancreatic cancer: Therapy options. Nat. Rev. Clin. Oncol. 2013, 10, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Gbolahan, O.B.; Tong, Y.; Sehdev, A.; O’Neil, B.; Shahda, S. Overall survival of patients with recurrent pancreatic cancer treated with systemic therapy: A retrospective study. BMC Cancer 2019, 19, 468. [Google Scholar] [CrossRef] [Green Version]
- Looi, C.K.; Chung, F.F.; Leong, C.O.; Wong, S.F.; Rosli, R.; Mai, C.W. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. J. Exp. Clin. Cancer Res. 2019, 38, 162. [Google Scholar] [CrossRef]
- Damiano-Guercio, J.; Kurzawa, L.; Mueller, J.; Dimchev, G.; Schaks, M.; Nemethova, M.; Pokrant, T.; Brühmann, S.; Linkner, J.; Blanchoin, L.; et al. Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion. Elife 2020, 9, e55351. [Google Scholar] [CrossRef]
- Bear, J.E.; Gertler, F.B. Ena/VASP: Towards resolving a pointed controversy at the barbed end. J. Cell Sci. 2009, 122, 1947–1953. [Google Scholar] [CrossRef] [Green Version]
- Zink, J.; Frye, M.; Frömel, T.; Carlantoni, C.; John, D.; Schreier, D.; Weigert, A.; Laban, H.; Salinas, G.; Stingl, H.; et al. EVL regulates VEGF receptor-2 internalization and signaling in developmental angiogenesis. EMBO Rep. 2021, 22, e48961. [Google Scholar] [CrossRef]
- Wilton, K.M.; Overlee, B.L.; Billadeau, D.D. NKG2D-DAP10 signaling recruits EVL to the cytotoxic synapse to generate F-actin and promote NK cell cytotoxicity. J. Cell Sci. 2019, 133, jcs230508. [Google Scholar] [CrossRef] [Green Version]
- Mouneimne, G.; Hansen, S.D.; Selfors, L.M.; Petrak, L.; Hickey, M.M.; Gallegos, L.L.; Simpson, K.J.; Lim, J.; Gertler, F.B.; Hartwig, J.H.; et al. Differential remodeling of actin cytoskeleton architecture by profilin isoforms leads to distinct effects on cell migration and invasion. Cancer Cell 2012, 22, 615–630. [Google Scholar] [CrossRef] [Green Version]
- Tavares, S.; Vieira, A.F.; Taubenberger, A.V.; Araújo, M.; Martins, N.P.; Brás-Pereira, C.; Polónia, A.; Herbig, M.; Barreto, C.; Otto, O.; et al. Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nat. Commun. 2017, 8, 15237. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Yao, K.; Feng, Q.; Mao, F.; Xin, Z.; Xu, P.; Yao, J. Discovery and Validation of Circulating EVL mRNA as a Prognostic Biomarker in Pancreatic Cancer. J. Oncol. 2021, 2021, 6656337. [Google Scholar] [CrossRef]
- Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic. Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasaikar, S.V.; Straub, P.; Wang, J.; Zhang, B. LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic. Acids Res. 2018, 46, D956–D963. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [Green Version]
- Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.; Lafontaine, L.; Berger, A.; et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013, 39, 782–795. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xia, X.; Xu, E.; Yang, Z.; Shen, X.; Du, S.; Chen, X.; Lu, X.; Jin, W.; Guan, W. Estrogen Receptor Beta Prevents Signet Ring Cell Gastric Carcinoma Progression in Young Patients by Inhibiting Pseudopodia Formation via the mTOR-Arpc1b/EVL Signaling Pathway. Front. Cell Dev. Biol. 2020, 8, 592919. [Google Scholar] [CrossRef]
- Li, X.R.; Chu, H.J.; Lv, T.; Wang, L.; Kong, S.F.; Dai, S.Z. miR-342-3p suppresses proliferation, migration and invasion by targeting FOXM1 in human cervical cancer. FEBS Lett. 2014, 588, 3298–3307. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, J.; Zhang, B.; Liu, J.; Liang, C.; Meng, Q.; Hua, J.; Yu, X.; Shi, S. The reciprocal regulation between host tissue and immune cells in pancreatic ductal adenocarcinoma: New insights and therapeutic implications. Mol. Cancer 2019, 18, 184. [Google Scholar] [CrossRef] [PubMed]
- Foley, K.; Kim, V.; Jaffee, E.; Zheng, L. Current progress in immunotherapy for pancreatic cancer. Cancer Lett. 2016, 381, 244–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balli, D.; Rech, A.J.; Stanger, B.Z.; Vonderheide, R.H. Immune Cytolytic Activity Stratifies Molecular Subsets of Human Pancreatic Cancer. Clin. Cancer Res. 2017, 23, 3129–3138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tassi, E.; Gavazzi, F.; Albarello, L.; Senyukov, V.; Longhi, R.; Dellabona, P.; Doglioni, C.; Braga, M.; Di Carlo, V.; Protti, M.P. Carcinoembryonic antigen-specific but not antiviral CD4+ T cell immunity is impaired in pancreatic carcinoma patients. J. Immunol. 2008, 181, 6595–6603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Lazarus, J.; Steele, N.G.; Yan, W.; Lee, H.J.; Nwosu, Z.C.; Halbrook, C.J.; Menjivar, R.E.; Kemp, S.B.; Sirihorachai, V.R.; et al. Regulatory T-cell Depletion Alters the Tumor Microenvironment and Accelerates Pancreatic Carcinogenesis. Cancer Discov. 2020, 10, 422–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estin, M.L.; Thompson, S.B.; Traxinger, B.; Fisher, M.H.; Friedman, R.S.; Jacobelli, J. Ena/VASP proteins regulate activated T-cell trafficking by promoting diapedesis during transendothelial migration. Proc. Natl. Acad. Sci. USA 2017, 114, E2901–E2910. [Google Scholar] [CrossRef] [Green Version]
- Roghanian, A.; Fraser, C.; Kleyman, M.; Chen, J. B Cells Promote Pancreatic Tumorigenesis. Cancer Discov. 2016, 6, 230–232. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Morgan, R.; Podack, E.R.; Rosenblatt, J. B cell regulation of anti-tumor immune response. Immunol. Res. 2013, 57, 115–124. [Google Scholar] [CrossRef]
- Herbst, F.; Lang, T.J.L.; Eckert, E.S.P.; Wünsche, P.; Wurm, A.A.; Kindinger, T.; Laaber, K.; Hemmati, S.; Hotz-Wagenblatt, A.; Zavidij, O.; et al. The balance between the intronic miR-342 and its host gene Evl determines hematopoietic cell fate decision. Leukemia 2021, 35, 2948–2963. [Google Scholar] [CrossRef]
- Noël, G.; Fontsa, M.L.; Garaud, S.; De Silva, P.; de Wind, A.; Van den Eynden, G.G.; Salgado, R.; Boisson, A.; Locy, H.; Thomas, N.; et al. Functional Th1-oriented T follicular helper cells that infiltrate human breast cancer promote effective adaptive immunity. J. Clin. Invest. 2021, 131, e139905. [Google Scholar] [CrossRef]
- Gu-Trantien, C.; Loi, S.; Garaud, S.; Equeter, C.; Libin, M.; de Wind, A.; Ravoet, M.; Le Buanec, H.; Sibille, C.; Manfouo-Foutsop, G.; et al. CD4+ follicular helper T cell infiltration predicts breast cancer survival. J. Clin. Invest. 2013, 123, 2873–2892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Liang, H.; Xu, Y.; Liu, L.; Ren, X.; Zhang, S.; Wei, S.; Xu, P. The Role of Circulating T Follicular Helper Cells and Regulatory Cells in Non-Small Cell Lung Cancer Patients. Scand. J. Immunol. 2017, 86, 107–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasca, V.; Chiaravalli, M.; Piro, G.; Esposito, A.; Salvatore, L.; Tortora, G.; Corbo, V.; Carbone, C. Intraductal Pancreatic Mucinous Neoplasms: A Tumor-Biology Based Approach for Risk Stratification. Int. J. Mol. Sci. 2020, 21, 6386. [Google Scholar] [CrossRef] [PubMed]
- Chellappa, S.; Hugenschmidt, H.; Hagness, M.; Line, P.D.; Labori, K.J.; Wiedswang, G.; Taskén, K.; Aandahl, E.M. Regulatory T cells that co-express RORγt and FOXP3 are pro-inflammatory and immunosuppressive and expand in human pancreatic cancer. Oncoimmunology 2016, 5, e1102828. [Google Scholar] [CrossRef] [Green Version]
- Sathaliyawala, T.; Kubota, M.; Yudanin, N.; Turner, D.; Camp, P.; Thome, J.J.; Bickham, K.L.; Lerner, H.; Goldstein, M.; Sykes, M.; et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 2013, 38, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Vahidi, Y.; Faghih, Z.; Talei, A.R.; Doroudchi, M.; Ghaderi, A. Memory CD4(+) T cell subsets in tumor draining lymph nodes of breast cancer patients: A focus on T stem cell memory cells. Cell Oncol. 2018, 41, 1–11. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef]
- Ochoa de Olza, M.; Navarro Rodrigo, B.; Zimmermann, S.; Coukos, G. Turning up the heat on non-immunoreactive tumours: Opportunities for clinical development. Lancet Oncol. 2020, 21, e419–e430. [Google Scholar] [CrossRef]
Characteristics | EVL Expression | p Value | |
---|---|---|---|
Low, No. of Cases | High, No. of Cases | ||
Gender | 0.503 | ||
Female | 30 (0.682) | 27 (0.75) | |
Male | 14 (0.318) | 9 (0.25) | |
Age | 0.886 | ||
≤65 | 30 (0.682) | 24 (0.667) | |
>65 | 14 (0.318) | 12 (0.333) | |
CA199 | 0.747 | ||
≤35 | 12 (0.273) | 11 (0.306) | |
>35 | 32 (0.727) | 25 (0.694) | |
CEA | 0.848 | ||
≤5.2 | 35 (0.795) | 28 (0.778) | |
>5.2 | 9 (0.205) | 8 (0.222) | |
T stage | 0.154 | ||
T1/2 | 25 (0.568) | 26 (0.722) | |
T3/4 | 19 (0.432) | 10 (0.278) | |
N stage | 0.398 | ||
N0 | 24 (0.545) | 23 (0.639) | |
N1 | 20 (0.455) | 13 (0.361) | |
M stage | 0.267 | ||
M0 | 42 (0.955) | 32 (0.889) | |
M1 | 2 (0.045) | 4 (0.111) | |
Pathologic stage | 0.116 | ||
Stage1/2 | 38 (0.864) | 26 (0.722) | |
Stage3/4 | 6 (0.136) | 10 (0.278) | |
Histologic grade | 0.011 | ||
G1 | 9 (0.205) | 17 (0.472) | |
G2/3 | 35 (0.795) | 19 (0.528) |
Characteristics | Spearman Correlation | p Value |
---|---|---|
Gender | −0.075 | 0.509 |
Age | 0.016 | 0.887 |
CA199 | −0.036 | 0.751 |
CEA | 0.021 | 0.85 |
T stage | −0.159 | 0.158 |
N stage | −0.094 | 0.405 |
M stage | 0.124 | 0.273 |
Pathologic stage | 0.176 | 0.119 |
Histologic grade | −0.284 | 0.011 |
Characteristics | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value | |
Gender (male vs. female) | 0.984 (0.560–1.731) | 0.956 | 0.867 (0.47–1.6) | 0.649 |
Age (≥65 vs. <65) | 1.457 (0.845–2.512) | 0.176 | 1.912 (1.055–3.467) | 0.033 |
T stage (T3/4 vs. T1/2) | 2.199 (1.299–3.725) | 0.003 | 1.692 (0.967–2.962) | 0.065 |
N stage (N1 vs. N0) | 1.85 (1.099–3.115) | 0.021 | 1.948 (1.103–3.44) | 0.022 |
M stage (M1 vs. M0) | 1.528 (0.608–3.840) | 0.368 | 1.89 (0.722–4.946) | 0.195 |
Histologic grade (G3/4 vs. G1/2) | 0.896 (0.518–1.550) | 0.694 | 1.175 (0.647–2.134) | 0.597 |
EVL (high vs. low) | 0.414 (0.24–0.713) | 0.001 | 0.457 (0.256–0.818) | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Zhu, L.; Li, X.; Shi, H.; Jiang, W.; Zhou, W. Immunocyte Infiltration Analysis and Immunohistochemistry Identify EVL as a Potential Prognostic Biomarker for Pancreatic Cancer. J. Pers. Med. 2023, 13, 433. https://doi.org/10.3390/jpm13030433
Du Y, Zhu L, Li X, Shi H, Jiang W, Zhou W. Immunocyte Infiltration Analysis and Immunohistochemistry Identify EVL as a Potential Prognostic Biomarker for Pancreatic Cancer. Journal of Personalized Medicine. 2023; 13(3):433. https://doi.org/10.3390/jpm13030433
Chicago/Turabian StyleDu, Yan, Lin Zhu, Xin Li, Huaqing Shi, Wenkai Jiang, and Wence Zhou. 2023. "Immunocyte Infiltration Analysis and Immunohistochemistry Identify EVL as a Potential Prognostic Biomarker for Pancreatic Cancer" Journal of Personalized Medicine 13, no. 3: 433. https://doi.org/10.3390/jpm13030433
APA StyleDu, Y., Zhu, L., Li, X., Shi, H., Jiang, W., & Zhou, W. (2023). Immunocyte Infiltration Analysis and Immunohistochemistry Identify EVL as a Potential Prognostic Biomarker for Pancreatic Cancer. Journal of Personalized Medicine, 13(3), 433. https://doi.org/10.3390/jpm13030433