Bortezomib Pharmacogenetic Biomarkers for the Treatment of Multiple Myeloma: Review and Future Perspectives
Abstract
:1. Introduction
1.1. Multiple Myeloma
1.2. Proteasome Inhibitors
1.3. Bortezomib
2. Materials and Methods
3. Bortezomib Pharmacogenetics
3.1. CYP3A
3.2. CYP3A5
3.3. CYP2C19
3.4. CYP1A2
3.5. CYP2D6
3.6. CYP2C9
3.7. CYP17A1
3.8. ABCB1
3.9. CIP2A
3.10. Other Considerations
4. Conclusions
5. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Firth, J. Haematology: Multiple Myeloma. Clin. Med. 2019, 19, 58–60. [Google Scholar] [CrossRef]
- Castaneda, O.; Baz, R. Multiple Myeloma Genomics—A Concise Review. Acta Med. Acad. 2019, 48, 57–67. [Google Scholar] [CrossRef]
- Kyle, R.A.; Rajkumar, S.V. Treatment of Multiple Myeloma: A Comprehensive Review. Clin. Lymphoma Myeloma 2009, 9, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef] [PubMed]
- Gerecke, C.; Fuhrmann, S.; Strifler, S.; Schmidt-Hieber, M.; Einsele, H.; Knop, S. The Diagnosis and Treatment of Multiple Myeloma. Dtsch. Ärzteblatt Int. 2016, 113, 470–476. [Google Scholar] [CrossRef]
- Padala, S.A.; Barsouk, A.; Barsouk, A.; Rawla, P.; Vakiti, A.; Kolhe, R.; Kota, V.; Ajebo, G.H. Epidemiology, Staging, and Management of Multiple Myeloma. Med. Sci. 2021, 9, 3. [Google Scholar] [CrossRef]
- Barwick, B.G.; Gupta, V.A.; Vertino, P.M.; Boise, L.H. Cell of Origin and Genetic Alterations in the Pathogenesis of Multiple Myeloma. Front. Immunol. 2019, 10, 1121. [Google Scholar] [CrossRef]
- Soekojo, C.Y.; Chng, W.J. Treatment Horizon in Multiple Myeloma. Eur. J. Haematol. 2022, 109, 425–440. [Google Scholar] [CrossRef]
- Lev, D.; Carvalho, M.C.M.; Maloisel, F. Clinical Pharmacokinetics of Bortezomib. In Vivo 2007, 21, 273–278. [Google Scholar]
- Cengiz Seval, G.; Beksac, M. The Safety of Bortezomib for the Treatment of Multiple Myeloma. Expert Opin. Drug Saf. 2018, 17, 953–962. [Google Scholar] [CrossRef]
- Gandolfi, S.; Laubach, J.P.; Hideshima, T.; Chauhan, D.; Anderson, K.C.; Richardson, P.G. The Proteasome and Proteasome Inhibitors in Multiple Myeloma. Cancer Metastasis Rev. 2017, 36, 561–584. [Google Scholar] [CrossRef] [PubMed]
- Meregalli, C. An Overview of Bortezomib-Induced Neurotoxicity. Toxics 2015, 3, 294–303. [Google Scholar] [CrossRef]
- Tan, C.R.C.; Abdul-Majeed, S.; Cael, B.; Barta, S.K. Clinical Pharmacokinetics and Pharmacodynamics of Bortezomib. Clin. Pharm. 2019, 58, 157–168. [Google Scholar] [CrossRef]
- Cánovas Fernández, A.; Alonso Alonso, J.J.; Barreiro García, J.G.; Aguirre Errasti, C. Bortezomib en mieloma múltiple en recidiva o refractario: Resultados en una cohorte de 39 pacientes. Rev. Clin. Esp. 2008, 208, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef]
- Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [Google Scholar] [CrossRef]
- Lee, S.-E.; Choi, K.; Han, S.; Lee, J.; Hong, T.; Park, G.-J.; Yim, D.-S.; Min, C.-K. Bortezomib Pharmacokinetics in Tumor Response and Peripheral Neuropathy in Multiple Myeloma Patients Receiving Bortezomib-Containing Therapy. Anti Cancer Drugs 2017, 28, 660–668. [Google Scholar] [CrossRef]
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS) Label Information for Bortezomib. Available online: https://cima.aemps.es/cima/pdfs/es/ft/82911/ft_82911.pdf (accessed on 13 March 2023).
- Yamamoto, S.; Egashira, N. Pathological Mechanisms of Bortezomib-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2021, 22, 888. [Google Scholar] [CrossRef] [PubMed]
- Emery, E.C.; Wood, J.N. Gaining on Pain. N. Engl. J. Med. 2018, 379, 485–487. [Google Scholar] [CrossRef]
- Meregalli, C.; Chiorazzi, A.; Carozzi, V.A.; Canta, A.; Sala, B.; Colombo, M.; Oggioni, N.; Ceresa, C.; Foudah, D.; La Russa, F.; et al. Evaluation of Tubulin Polymerization and Chronic Inhibition of Proteasome as Citotoxicity Mechanisms in Bortezomib-Induced Peripheral Neuropathy. Cell Cycle 2014, 13, 612–621. [Google Scholar] [CrossRef]
- Zhou, W.; An, G.; Jian, Y.; Guo, H.; Chen, W. Effect of CYP2C19 and CYP3A4 Gene Polymorphisms on the Efficacy of Bortezomib-Based Regimens in Patients with Multiple Myeloma. Oncol. Lett. 2015, 10, 1171–1175. [Google Scholar] [CrossRef]
- Manikandan, P.; Nagini, S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr. Drug Targets 2018, 19, 38–54. [Google Scholar] [CrossRef]
- Eichelbaum, M.; Ingelman-Sundberg, M.; Evans, W.E. Pharmacogenomics and Individualized Drug Therapy. Annu. Rev. Med. 2006, 57, 119–137. [Google Scholar] [CrossRef]
- Zanger, U.M.; Klein, K.; Thomas, M.; Rieger, J.K.; Tremmel, R.; Kandel, B.A.; Klein, M.; Magdy, T. Genetics, Epigenetics, and Regulation of Drug-Metabolizing Cytochrome P450 Enzymes. Clin. Pharmacol. Ther. 2014, 95, 258–261. [Google Scholar] [CrossRef]
- Uttamsingh, V.; Lu, C.; Miwa, G.; Gan, L.-S. Relative Contributions of the Five Major Human Cytochromes P450, 1a2, 2c9, 2c19, 2d6, and 3a4, to the Hepatic Metabolism of the Proteasome Inhibitor Bortezomib. Drug Metab. Dispos. 2005, 33, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Fatunde, O.A.; Brown, S.-A. The Role of CYP450 Drug Metabolism in Precision Cardio-Oncology. Int. J. Mol. Sci. 2020, 21, 604. [Google Scholar] [CrossRef]
- Williams, J.A.; Ring, B.J.; Cantrell, V.E.; Jones, D.R.; Eckstein, J.; Ruterbories, K.; Hamman, M.A.; Hall, S.D.; Wrighton, S.A. Comparative Metabolic Capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab. Dispos. 2002, 30, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Lin, Y.S.; McConn, D.J.; Calamia, J.C.; Totah, R.A.; Isoherranen, N.; Glodowski, M.; Thummel, K.E. Evidence of Significant Contribution from CYP3A5 to Hepatic Drug Metabolism. Drug Metab. Dispos. 2004, 32, 1434–1445. [Google Scholar] [CrossRef] [PubMed]
- Kivistö, K.T.; Bookjans, G.; Fromm, M.F.; Griese, E.-U.; Münzel, P.; Kroemer, H.K. Expression of CYP3A4, CYP3A5 and CYP3A7 in Human Duodenal Tissue. Br. J. Clin. Pharmacol. 1996, 42, 387–389. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Dunbar, D.; Ostrowska, A.; Zeisloft, S.; Yang, J.; Kaminsky, L.S. Characterization of Human Small Intestinal Cytochromes P-450. Drug Metab. Dispos. 1999, 27, 804–809. [Google Scholar]
- Saiz-Rodríguez, M.; Almenara, S.; Navares-Gómez, M.; Ochoa, D.; Román, M.; Zubiaur, P.; Koller, D.; Santos, M.; Mejía, G.; Borobia, A.M.; et al. Effect of the Most Relevant CYP3A4 and CYP3A5 Polymorphisms on the Pharmacokinetic Parameters of 10 CYP3A Substrates. Biomedicines 2020, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- The Pharmacogene Variation (PharmVar) Consortium. CYP2C8 Allele Nomenclature. Available online: https://www.pharmvar.org/gene/CYP2C8 (accessed on 14 April 2023).
- Apellániz-Ruiz, M.; Inglada-Pérez, L.; Naranjo, M.E.G.; Sánchez, L.; Mancikova, V.; Currás-Freixes, M.; de Cubas, A.A.; Comino-Méndez, I.; Triki, S.; Rebai, A.; et al. High Frequency and Founder Effect of the CYP3A4*20 Loss-of-Function Allele in the Spanish Population Classifies CYP3A4 as a Polymorphic Enzyme. Pharm. J. 2015, 15, 288–292. [Google Scholar] [CrossRef]
- Hsieh, K.P.; Lin, Y.Y.; Cheng, C.L.; Lai, M.L.; Lin, M.S.; Siest, J.P.; Huang, J.D. Novel Mutations of CYP3A4 in Chinese. Drug Metab. Dispos. 2001, 29, 268–273. [Google Scholar]
- Dai, D.; Tang, J.; Rose, R.; Hodgson, E.; Bienstock, R.J.; Mohrenweiser, H.W.; Goldstein, J.A. Identification of Variants of CYP3A4 and Characterization of Their Abilities to Metabolize Testosterone and Chlorpyrifos. J. Pharmacol. Exp. Ther. 2001, 299, 825–831. [Google Scholar]
- The Pharmacogene Variation (PharmVar) Consortium. CYP3A5 Allele Nomenclature. Available online: https://www.pharmvar.org/gene/cyp3a5 (accessed on 24 January 2023).
- Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D. Sequence Diversity in CYP3A Promoters and Characterization of the Genetic Basis of Polymorphic CYP3A5 Expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Antona, C.; Savieo, J.L.; Lauschke, V.M.; Sangkuhl, K.; Drögemöller, B.I.; Wang, D.; van Schaik, R.H.N.; Gilep, A.A.; Peter, A.P.; Boone, E.C.; et al. PharmVar GeneFocus: CYP3A5. Clin. Pharmacol. Ther. 2022, 112, 1159–1171. [Google Scholar] [CrossRef]
- Lamba, J.K.; Lin, Y.S.; Schuetz, E.G.; Thummel, K.E. Genetic Contribution to Variable Human CYP3A-Mediated Metabolism. Adv. Drug Deliv. Rev. 2002, 54, 1271–1294. [Google Scholar] [CrossRef] [PubMed]
- PharmVar. Available online: https://www.pharmvar.org/ (accessed on 25 January 2023).
- El Rouby, N.; Lima, J.J.; Johnson, J.A. Proton Pump Inhibitors: From CYP2C19 Pharmacogenetics to Precision Medicine. Expert Opin. Drug Metab. Toxicol. 2018, 14, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Luzum, J.A.; Sangkuhl, K.; Gammal, R.S.; Sabatine, M.S.; Stein, C.M.; Kisor, D.F.; Limdi, N.A.; Lee, Y.M.; Scott, S.A.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2C19 Genotype and Clopidogrel Therapy: 2022 Update. Clin. Pharmacol. Ther. 2022, 112, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Botton, M.R.; Whirl-Carrillo, M.; Del Tredici, A.L.; Sangkuhl, K.; Cavallari, L.H.; Agúndez, J.A.G.; Duconge, J.; Lee, M.T.M.; Woodahl, E.L.; Claudio-Campos, K.; et al. PharmVar GeneFocus: CYP2C19. Clin. Pharmacol. Ther. 2021, 109, 352–366. [Google Scholar] [CrossRef]
- Stojanović Marković, A.; Zajc Petranović, M.; Tomas, Ž.; Puljko, B.; Šetinc, M.; Škarić-Jurić, T.; Peričić Salihović, M. Untangling SNP Variations within CYP2D6 Gene in Croatian Roma. J. Pers. Med. 2022, 12, 374. [Google Scholar] [CrossRef] [PubMed]
- Kane, M. CYP2D6 Overview: Allele and Phenotype Frequencies; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2021.
- Sistonen, J.; Sajantila, A.; Lao, O.; Corander, J.; Barbujani, G.; Fuselli, S. CYP2D6 Worldwide Genetic Variation Shows High Frequency of Altered Activity Variants and No Continental Structure. Pharm. Genom. 2007, 17, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Oscarson, M.; Hidestrand, M.; Johansson, I.; Ingelman-Sundberg, M. A Combination of Mutations in the CYP2D6*17 (CYP2D6Z) Allele Causes Alterations in Enzyme Function. Mol. Pharmacol. 1997, 52, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- PharmGKB. Very Important Pharmacogene: CYP2D6. Available online: https://www.pharmgkb.org/vip/PA166170264 (accessed on 15 March 2023).
- Sangkuhl, K.; Claudio-Campos, K.; Cavallari, L.; Agundez, J.; Whirl-Carrillo, M.; Duconge, J.; Del Tredici, A.; Wadelius, M.; Botton, M.; Woodahl, E.; et al. PharmVar GeneFocus: CYP2C9. Clin. Pharmacol. Ther. 2021, 110, 662–676. [Google Scholar] [CrossRef]
- DeVore, N.M.; Scott, E.E. Cytochrome P450 17A1 structures with prostate cancer drugs abiraterone and TOK-001. Nature 2012, 482, 116–119. [Google Scholar] [CrossRef]
- Porubek, D. CYP17A1: A Biochemistry, Chemistry, and Clinical Review. Curr. Top. Med. Chem. 2013, 13, 1364–1384. [Google Scholar] [CrossRef] [PubMed]
- Schinkel, A.H. The Physiological Function of Drug-Transporting P-Glycoproteins. Semin. Cancer Biol. 1997, 8, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Besse, A.; Stolze, S.C.; Rasche, L.; Weinhold, N.; Morgan, G.J.; Kraus, M.; Bader, J.; Overkleeft, H.S.; Besse, L.; Driessen, C. Carfilzomib Resistance Due to ABCB1/MDR1 Overexpression Is Overcome by Nelfinavir and Lopinavir in Multiple Myeloma. Leukemia 2018, 32, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Foran, E.; Kwon, D.Y.; Nofziger, J.H.; Arnold, E.S.; Hall, M.D.; Fischbeck, K.H.; Burnett, B.G. CNS Uptake of Bortezomib Is Enhanced by P-Glycoprotein Inhibition: Implications for Spinal Muscular Atrophy. Neurobiol. Dis. 2016, 88, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Van Hoppe, S.; Rood, J.J.M.; Buil, L.; Wagenaar, E.; Sparidans, R.W.; Beijnen, J.H.; Schinkel, A.H. P-Glycoprotein (MDR1/ABCB1) Restricts Brain Penetration of the Bruton’s Tyrosine Kinase Inhibitor Ibrutinib, While Cytochrome P450-3A (CYP3A) Limits Its Oral Bioavailability. Mol. Pharm. 2018, 15, 5124–5134. [Google Scholar] [CrossRef] [PubMed]
- Tulsyan, S.; Mittal, R.D.; Mittal, B. The Effect of ABCB1 Polymorphisms on the Outcome of Breast Cancer Treatment. Pharm. Pers. Med. 2016, 9, 47–58. [Google Scholar] [CrossRef]
- CIP2A Cellular Inhibitor of PP2A [Homo Sapiens (Human)]—Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/57650 (accessed on 13 March 2023).
- Tang, G.; Li, M.; Sanchez, E.; Wang, C.; Vardanyan, S.; Lee, T.; Nosrati, J.; Cao, J.; Zahab, M.; Mehta, P.; et al. SNP Rs34172460 (S258A)Â in Gene CIP2A Correlates with Bortezomib Resistance in Multiple Myeloma Patients. Blood 2015, 126, 5333. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Drug Development and Drug Interactions|Table of Substrates, Inhibitors and Inducers. 2022. Available online: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers (accessed on 14 April 2023).
- Venkatakrishnan, K.; Rader, M.; Ramanathan, R.K.; Ramalingam, S.; Chen, E.; Riordan, W.; Trepicchio, W.; Cooper, M.; Karol, M.; von Moltke, L.; et al. Effect of the CYP3A Inhibitor Ketoconazole on the Pharmacokinetics and Pharmacodynamics of Bortezomib in Patients with Advanced Solid Tumors: A Prospective, Multicenter, Open-Label, Randomized, Two-Way Crossover Drug—Drug Interaction Study. Clin. Ther. 2009, 31, 2444–2458. [Google Scholar] [CrossRef]
- Hellmann, A.; Rule, S.; Walewski, J.; Shpilberg, O.; Feng, H.; van de Velde, H.; Patel, H.; Skee, D.M.; Girgis, S.; Louw, V.J. Effect of Cytochrome P450 3A4 Inducers on the Pharmacokinetic, Pharmacodynamic and Safety Profiles of Bortezomib in Patients with Multiple Myeloma or Non-Hodgkin’s Lymphoma. Clin. Pharmacokinet. 2011, 50, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Quinn, D.I.; Nemunaitis, J.; Fuloria, J.; Britten, C.D.; Gabrail, N.; Yee, L.; Acharya, M.; Chan, K.; Cohen, N.; Dudov, A. Effect of the Cytochrome P450 2C19 Inhibitor Omeprazole on the Pharmacokinetics and Safety Profile of Bortezomib in Patients with Advanced Solid Tumours, Non-Hodgkin’s Lymphoma or Multiple Myeloma. Clin. Pharmacokinet. 2009, 48, 199–209. [Google Scholar] [CrossRef]
- Fogli, S.; Galimberti, S.; Gori, V.; Del Re, M.; Danesi, R. Pharmacology Differences among Proteasome Inhibitors: Implications for Their Use in Clinical Practice. Pharmacol. Res. 2021, 167, 105537. [Google Scholar] [CrossRef]
- Infante, J.R.; Mendelson, D.S.; Burris, H.A.; Bendell, J.C.; Tolcher, A.W.; Gordon, M.S.; Gillenwater, H.H.; Arastu-Kapur, S.; Wong, H.L.; Papadopoulos, K.P. A First-in-Human Dose-Escalation Study of the Oral Proteasome Inhibitor Oprozomib in Patients with Advanced Solid Tumors. Investig. New Drugs 2016, 34, 216–224. [Google Scholar] [CrossRef]
- Waxman, A.J.; Clasen, S.; Hwang, W.-T.; Garfall, A.; Vogl, D.T.; Carver, J.; O’Quinn, R.; Cohen, A.D.; Stadtmauer, E.A.; Ky, B.; et al. Carfilzomib-Associated Cardiovascular Adverse Events: A Systematic Review and Meta-Analysis. JAMA Oncol. 2018, 4, e174519. [Google Scholar] [CrossRef]
- Gupta, N.; Hanley, M.J.; Venkatakrishnan, K.; Bessudo, A.; Rasco, D.W.; Sharma, S.; O’Neil, B.H.; Wang, B.; Liu, G.; Ke, A.; et al. Effects of Strong CYP3A Inhibition and Induction on the Pharmacokinetics of Ixazomib, an Oral Proteasome Inhibitor: Results of Drug-Drug Interaction Studies in Patients with Advanced Solid Tumors or Lymphoma and a Physiologically Based Pharmacokinetic Analysis. J. Clin. Pharmacol. 2018, 58, 180–192. [Google Scholar] [CrossRef] [PubMed]
Gene | Polymorphism | Reference Allele | Alternative Allele | European MAF |
---|---|---|---|---|
CYP3A4 | *3 rs4986910 | A | G | 0.007 |
CYP3A4 | *2 rs55785340 | A | G/T | 0.002 |
CYP3A4 | *6 rs4646438 | T | TT | 0 |
CYP3A4 | *18 rs28371759 | A | G | 0 |
CYP3A4 | *20 rs67666821 | T | DEL | <0.1 |
CYP3A4 | *22 rs35599367 | G | A | 0.05 |
CYP3A5 | *3 rs776746 | T | C | 0.943 |
CYP3A5 | *6 rs10264272 | C | T | 0.003 |
CYP3A5 | *7 rs41303343 | A | AA | 0 |
CYP2C19 | *2 rs4244285 | G | A/C | 0.145 |
CYP2C19 | *3 rs4986893 | G | A | 0 |
CYP2C19 | *4 rs28399504 | A | G/T | 0.001 |
CYP2C19 | *17 rs12248560 | C | A/T | 0.224 |
CYP1A2 | *1C rs2069514 | G | A | 0.02 |
CYP1A2 | *1F rs762551 | C | A/G | 0.68 |
CYP1A2 | *1B rs2470890 | T | C | 0.404 |
CYP2D6 | *3 rs35742686 | T | DEL | 0.019 |
CYP2D6 | *4 rs3892097 | C | T | 0.186 |
CYP2D6 | *6 rs5030655 | UN | DEL | 0.02 |
CYP2D6 | *7 rs5030867 | T | G | 0 |
CYP2D6 | *8 rs5030865 | C | A/G/T | 0 |
CYP2D6 | *9 rs5030656 | CTTCT | CT (INDEL) | 0.026 |
CYP2D6 | *10 rs1065852 | G | A/C | 0.202 |
CYP2D6 | *10 rs1135840 | C | G | 0.546 |
CYP2D6 | *12 rs5030862 | C | T | 0 |
CYP2D6 | *14 rs5030865 | C | A/G/T | 0 |
CYP2D6 | *15 rs774671100 | A | AA | 0.000385 |
CYP2D6 | *17 rs28371706 | G | C/T | 0.002 |
CYP2D6 | *19 rs72549353 | AGTTAG | AG | 0.00015 |
CYP2D6 | *29 rs59421388 | C | T | 0 |
CYP2D6 | *41 rs28371725 | C | T | 0.093 |
CYP2D6 | *56B rs72549347 | G | A | 0 |
CYP2D6 | *59 rs79292917 | C | T | 0.002 |
CYP2D6 | CNV (*5—deletion, duplication) | |||
CYP2C9 | *2 rs1799853 | C | T | 0.124 |
CYP2C9 | *3 rs1057910 | A | C/G | 0.073 |
CYP2C9 | *5 rs28371686 | C | A/G | 0 |
CYP2C9 | *8 rs9332094 | T | C | 0.001 |
CYP2C9 | *8 rs7900194 | G | A/C/T | 0.002 |
CYP2C9 | *11 rs28371685 | C | T | 0.002 |
ABCB1 | C3435T rs1045642 | A | C/G/T | 0.482 |
ABCB1 | C1236T rs1128503 | A | G | 0.584 |
ABCB1 | G2677T/A rs2032582 | A | CT | 0.573 |
CIP2A | SNP rs34172460(S258A) | A | C | 0 |
CYP17A1 | rs619824 | A | C | 0.576 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz-Solas, A.; Labrador, J.; Alcaraz, R.; Cuevas, B.; Vinuesa, R.; Cuevas, M.V.; Saiz-Rodríguez, M. Bortezomib Pharmacogenetic Biomarkers for the Treatment of Multiple Myeloma: Review and Future Perspectives. J. Pers. Med. 2023, 13, 695. https://doi.org/10.3390/jpm13040695
Sanz-Solas A, Labrador J, Alcaraz R, Cuevas B, Vinuesa R, Cuevas MV, Saiz-Rodríguez M. Bortezomib Pharmacogenetic Biomarkers for the Treatment of Multiple Myeloma: Review and Future Perspectives. Journal of Personalized Medicine. 2023; 13(4):695. https://doi.org/10.3390/jpm13040695
Chicago/Turabian StyleSanz-Solas, Antonio, Jorge Labrador, Raquel Alcaraz, Beatriz Cuevas, Raquel Vinuesa, María Victoria Cuevas, and Miriam Saiz-Rodríguez. 2023. "Bortezomib Pharmacogenetic Biomarkers for the Treatment of Multiple Myeloma: Review and Future Perspectives" Journal of Personalized Medicine 13, no. 4: 695. https://doi.org/10.3390/jpm13040695
APA StyleSanz-Solas, A., Labrador, J., Alcaraz, R., Cuevas, B., Vinuesa, R., Cuevas, M. V., & Saiz-Rodríguez, M. (2023). Bortezomib Pharmacogenetic Biomarkers for the Treatment of Multiple Myeloma: Review and Future Perspectives. Journal of Personalized Medicine, 13(4), 695. https://doi.org/10.3390/jpm13040695