Patients with Non-Alcoholic Fatty Liver Disease and Alcohol Dehydrogenase 1B/Aldehyde Dehydrogenase 2 Mutant Gene Have Higher Values of Serum Alanine Transaminase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fatty Liver Evaluation
2.2. ADH1B rs1229984 and ALDH2 rs671 Allele Survey
2.3. Serum Ethanol Measurement
2.4. VCTE
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, V.W.-S.; Chan, W.K.; Chitturi, S.; Chawla, Y.; Dan, Y.Y.; Duseja, A.; Fan, J.; Goh, K.-L.; Hamaguchi, M.; Hashimoto, E.; et al. Asia-Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017-Part 1: Definition, risk factors and assessment. J. Gastroenterol. Hepatol. 2018, 33, 70–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zou, B.; Yeo, Y.H.; Feng, Y.; Xie, X.; Lee, D.H.; Fujii, H.; Wu, Y.; Kam, L.Y.; Ji, F.; et al. Prevalence, incidence, and outcome of nonalcoholic fatty liver disease in Asia, 1999–2019: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2019, 4, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Engstler, A.J.; Aumiller, T.; Degen, C.; Dürr, M.; Weiss, E.; Maier, I.B.; Schattenberg, J.M.; Jin, C.J.; Sellmann, C.; Bergheim, I. Insulin resistance alters hepatic ethanol metabolism: Studies in mice and children with non-alcoholic fatty liver disease. Gut 2016, 65, 1564–1571. [Google Scholar] [CrossRef] [PubMed]
- Vilar-Gomez, E.; Sookoian, S.; Pirola, C.J.; Liang, T.; Gawrieh, S.; Cummings, O.; Liu, W.; Chalasani, N.P. ADH1B*2 Is Associated with Reduced Severity of Nonalcoholic Fatty Liver Disease in Adults, Independent of Alcohol Consumption. Gastroenterology 2020, 159, 929–943. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Baker, S.S.; A Moylan, C.; Abdelmalek, M.F.; Guy, C.D.; Zamboni, F.; Wu, D.; Lin, W.; Liu, W.; Baker, R.D.; et al. Systematic transcriptome analysis reveals elevated expression of alcohol-metabolizing genes in NAFLD livers. J. Pathol. 2016, 238, 531–542. [Google Scholar] [CrossRef]
- Li, H.; Toth, E.; Cherrington, N.J. Alcohol Metabolism in the Progression of Human Nonalcoholic Steatohepatitis. Toxicol. Sci. 2018, 164, 428–438. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Kogiso, T.; Taniai, M.; Hashimoto, E.; Tokushige, K. Differences in the genetic backgrounds of patients with alcoholic liver disease and non-alcoholic fatty liver disease. JGH Open 2018, 3, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.S.; Hsiao, J.-R.; Chen, C.-H. ALDH2 polymorphism and alcohol-related cancers in Asians: A public health perspective. J. Biomed. Sci. 2017, 24, 19. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Baker, S.S.; Gill, C.; Liu, W.; Alkhouri, R.; Baker, R.D.; Gill, S.R. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology 2013, 57, 601–609. [Google Scholar] [CrossRef]
- Wang, W.; Wang, C.; Xu, H.; Gao, Y. Aldehyde dehydrogenase, liver disease andcancer. Int. J. Biol. Sci. 2020, 16, 921–934. [Google Scholar] [CrossRef] [Green Version]
- Guillot, A.; Ren, T.; Jourdan, T.; Pawlosky, R.J.; Han, E.; Kim, S.-J.; Zhang, L.; Koob, G.F.; Gao, B. Targeting liver aldehyde dehydrogenase-2 prevents heavy but not moderate alcohol drinking. Proc. Natl. Acad. Sci. USA 2019, 116, 25974–25981. [Google Scholar] [CrossRef]
- Seo, W.; Gao, Y.; He, Y.; Sun, J.; Xu, H.; Feng, D.; Park, S.H.; Cho, Y.-E.; Guillot, A.; Ren, T.; et al. ALDH2 deficiency promotes alcohol-associated liver cancer by activating oncogenic pathways via oxidized DNA-enriched extracellular vesicles. J. Hepatol. 2019, 71, 1000–1011. [Google Scholar] [CrossRef]
- Zakhari, S.; Li, T.-K. Determinants of alcohol use and abuse: Impact of quantity and frequency patterns on liver disease. Hepatology 2007, 46, 2032–2039. [Google Scholar] [CrossRef]
- Matsumura, Y.; Stiles, K.M.; Reid, J.; Frenk, E.Z.; Cronin, S.; Pagovich, O.E.; Crystal, R.G. Gene therapy correction of aldehyde dehydrogenase 2 deficiency. Mol. Ther. Methods Clin. Dev. 2019, 15, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Hyun, J.; Han, J.; Lee, C.; Yoon, M.; Jung, Y. Pathophysiological Aspects of Alcohol Metabolism in the Liver. Int. J. Mol. Sci. 2021, 22, 5717. [Google Scholar] [CrossRef]
- Vasiliou, V.; Pappa, A.; Estey, T. Role of Human Aldehyde Dehydrogenases in Endobiotic and Xenobiotic Metabolism. Drug Metab. Rev. 2004, 36, 279–299. [Google Scholar] [CrossRef]
- Jin, S.; Chen, J.; Chen, L.; Histen, G.; Lin, Z.; Gross, S.; Hixon, J.; Chen, Y.; Kung, C.; Chen, Y.; et al. ALDH2(E487K) mutation increases protein turnover and promotes murine hepatocarcinogenesis. Proc. Natl. Acad. Sci. USA 2015, 112, 9088–9093. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zhao, Z.; Sun, M.; Luo, J.; Xiao, Y. ALDH2 gene polymorphism in different types of cancers and its clinical significance. Life Sci. 2016, 147, 59–66. [Google Scholar] [CrossRef]
- Edenberg, H.J. The Genetics of Alcohol Metabolism: Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants. Alcohol. Res. Health J. Natl. Inst. Alcohol Abus. Alcohol. 2007, 30, 5–13. [Google Scholar]
- Yoshida, A.; Huang, I.Y.; Ikawa, M. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc. Natl. Acad. Sci. USA 1984, 81, 258–261. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Chang, B.; Li, X.; Zou, Z. Role of ALDH2 in Hepatic Disorders: Gene Polymorphism and Disease Pathogenesis. J. Clin. Transl. Hepatol. 2021, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Kogiso, T.; Sagawa, T.; Kodama, K.; Taniai, M.; Hashimoto, E.; Tokushige, K. Outcomes of Japanese patients with non-alcoholic fatty liver disease according to genetic background and lifestyle-related diseases. Ann. Hepatol. 2021, 21, 100260. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.; Yen, T.; Wei, C.; Hsiao, T.; Chen, I. Impacts of ADH1B rs1229984 and ALDH2 rs671 polymorphisms on risks of alcohol-related disorder and cancer. Cancer Med. 2022, 12, 747–759. [Google Scholar] [CrossRef] [PubMed]
- Suo, C.; Yang, Y.; Yuan, Z.; Zhang, T.; Yang, X.; Qing, T.; Gao, P.; Shi, L.; Fan, M.; Cheng, H.; et al. Alcohol Intake Interacts with Functional Genetic Polymorphisms of Aldehyde Dehydrogenase (ALDH2) and Alcohol Dehydrogenase (ADH) to Increase Esophageal Squamous Cell Cancer Risk. J. Thorac. Oncol. 2019, 14, 712–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saverymuttu, S.H.; Joseph, A.E.; Maxwell, J.D. Ultrasound scanning in the detection of hepatic fibrosis and steatosis. Br. Med. J. (Clin. Res. Ed.) 1986, 292, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Sinn, D.H.; Gwak, G.-Y.; Na Park, H.; Kim, J.E.; Min, Y.W.; Kim, K.M.; Kim, Y.J.; Choi, M.S.; Lee, J.H.; Koh, K.C.; et al. Ultrasonographically Detected Non-Alcoholic Fatty Liver Disease Is an Independent Predictor for Identifying Patients with Insulin Resistance in Non-Obese, Non-Diabetic Middle-Aged Asian Adults. Am. J. Gastroenterol. 2012, 107, 561–567. [Google Scholar] [CrossRef]
- Macgregor, S.; Lind, P.A.; Bucholz, K.K.; Hansell, N.K.; Madden, P.A.; Richter, M.M.; Montgomery, G.W.; Martin, N.G.; Heath, A.C.; Whitfield, J.B. Associations of ADH and ALDH2 gene variation with self report alcohol reactions, consumption and dependence: An integrated analysis. Hum. Mol. Genet. 2009, 18, 580–593. [Google Scholar] [CrossRef] [Green Version]
- E Luczak, S.; Elvine-Kreis, B.; Shea, S.H.; Carr, L.G.; Wall, T.L. Genetic risk for alcoholism relates to level of response to alcohol in Asian-American men and women. J. Stud. Alcohol 2002, 63, 74–82. [Google Scholar] [CrossRef]
- Tietz, N.W. (Ed.) Clinical Guide to Laboratory Tests, 4th ed.; WB Saunders Company: Philadelphia, PA, USA, 2006; pp. 1344–1346. [Google Scholar]
- Boursier, J.; Zarski, J.; de Ledinghen, V.; Rousselet, M.; Sturm, N.; Lebail, B.; Fouchard-Hubert, I.; Gallois, Y.; Oberti, F.; Bertrais, S.; et al. Determination of reliability criteria for liver stiffness evaluation by transient elastography. Hepatology 2013, 57, 1182–1191. [Google Scholar] [CrossRef] [Green Version]
- Oniki, K.; Morita, K.; Watanabe, T.; Kajiwara, A.; Otake, K.; Nakagawa, K.; Sasaki, Y.; Ogata, Y.; Saruwatari, J. The longitudinal effect of the aldehyde dehydrogenase 2*2 allele on the risk for nonalcoholic fatty liver disease. Nutr. Diabetes 2016, 6, e210. [Google Scholar] [CrossRef] [Green Version]
- Murata, C.; Watanabe, T.; Furuya, H.; Sugioka, Y.; Mikurube, H.; Yokoyama, A.; Atsumi, Y.; Matsuoka, K.; Okazaki, I. Aldehyde dehydrogenase 2 and β3-adrenergic receptor gene polymorphisms: Their association with elevated liver enzymes and metabolic syndrome. Metabolism 2003, 52, 1096–1101. [Google Scholar] [CrossRef]
- Sookoian, S.; Flichman, D.; Castaño, G.O.; Pirola, C.J. Mendelian randomisation suggests no beneficial effect of moderate alcohol consumption on the severity of nonalcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2016, 44, 1224–1234. [Google Scholar] [CrossRef]
- Moreb, J.S.; Ucar-Bilyeu, D.A.; Khan, A. Use of retinoic acid/aldehyde dehydrogenase pathway as potential targeted therapy against cancer stem cells. Cancer Chemother. Pharmacol. 2017, 79, 295–301. [Google Scholar] [CrossRef]
- Dalleau, S.; Baradat, M.; Guéraud, F.; Huc, L. Cell death and diseases related to oxidative stress:4-hydroxynonenal (HNE) in the balance. Cell Death Differ. 2013, 20, 1615–1630. [Google Scholar] [CrossRef] [Green Version]
- Boleda, M.; Saubi, N.; Farrés, J.; Parés, X. Physiological Substrates for Rat Alcohol Dehydrogenase Classes: Aldehydes of Lipid Peroxidation, ω-Hydroxyfatty Acids, and Retinoids. Arch. Biochem. Biophys. 1993, 307, 85–90. [Google Scholar] [CrossRef]
- Breitzig, M.; Bhimineni, C.; Lockey, R.; Kolliputi, N. 4-Hydroxy-2-nonenal: A critical target in oxidative stress? Am. J. Physiol. Cell Physiol. 2016, 311, C537–C543. [Google Scholar] [CrossRef] [Green Version]
- Albhaisi, S.; Chowdhury, A.; Sanyal, A.J. Non-alcoholic fatty liver disease in lean individuals. JHEP Rep. 2019, 1, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.-G.; Kim, S.-U.; Wong, V.W.-S. New trends on obesity and NAFLD in Asia. J. Hepatol. 2017, 67, 862–873. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zhang, D.; Zhou, D.; Li, Z.; Li, Z.; Fang, L.; Yang, M.; Shan, Z.; Li, H.; Chen, J.; et al. Susceptibility loci for metabolic syndrome and metabolic components identified in Han Chinese: A multi-stage genome-wide association study. J. Cell. Mol. Med. 2017, 21, 1106–1116. [Google Scholar] [CrossRef]
- Yokoyama, A.; Taniki, N.; Nakamoto, N.; Tomita, K.; Hara, S.; Mizukami, T.; Maruyama, K.; Yokoyama, T. Associations among liver disease, serum lipid profile, body mass index, ketonuria, meal skipping, and the alcohol dehydrogenase-1B and aldehyde dehydrogenase-2 genotypes in Japanese men with alcohol dependence. Hepatol. Res. 2020, 50, 565–577. [Google Scholar] [CrossRef]
- Yokoyama, A.; Yokoyama, T.; Matsui, T.; Mizukami, T.; Matsushita, S.; Higuchi, S.; Maruyama, K. Alcohol Dehydrogenase-1B Genotype (rs1229984) is a Strong Determinant of the Relationship between Body Weight and Alcohol Intake in Japanese Alcoholic Men. Alcohol. Clin. Exp. Res. 2013, 37, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Watanabe-Suzuki, K.; Seno, H.; Ishii, A.; Kumazawa, T.; Suzuki, O. Ultra-sensitive method for determination of ethanol in whole blood by headspace capillary gas chromatography with cryogenic oven trapping. J. Chromatogr. B Biomed. Sci. Appl. 1999, 727, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Bayoumy, A.B.; Mulder, C.J.J.; Mol, J.J.; Tushuizen, M.E. Gut fermentation syndrome: A systematic review of case reports. United Eur. Gastroenterol. J. 2021, 9, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.S.; Baker, R.D.; Liu, W.; Nowak, N.J.; Zhu, L. Role of Alcohol Metabolism in Non-Alcoholic Steatohepatitis. PLoS ONE 2010, 5, e9570. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Zeng, Q. The Association and Interaction of Aldehyde Dehydrogenase 2 Polymorphisms with Food Group Intake and Probability of Having Non-Alcoholic Fatty Liver Disease. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 5049–5057. [Google Scholar] [CrossRef]
Total | ADH1B | p-Value | ALDH2 | p-Value | |||
---|---|---|---|---|---|---|---|
Mutant | Wild | Mutant | Wild | ||||
Number | 66 | 58 | 8 | 30 | 36 | ||
Age † | 54.5 (±12.4) | 54.3 (±12.7) | 56.2 (±10.5) | 0.692 | 52.9 (±12.2) | 56.0 (±12.6) | 0.319 |
Gender | |||||||
Male | 26 (39.4%) | 24 (36.4%) | 2 (3.0%) | 0.376 | 16 (24.2%) | 10 (15.2%) | 0.037 * |
Female | 40 (60.6%) | 34 (51.5%) | 6 (9.1%) | 14 (21.2%) | 26 (39.4%) | ||
BMI † | 25.1 (±4.4) | 25.2 (±4.5) | 24.2 (±3.4) | 0.563 | 25.4 (±4.4) | 24.9 (±4.4) | 0.649 |
Fibroscan | |||||||
kPa ‡ | 6.3 (±4.8) | 6.5 (±5.1) | 4.6 (±1.2) | 0.307 | 6.6 (±4.5) | 6.0 (±5.1) | 0.603 |
CAP & | 279.1 (±56.3) | 280.0 (±57.7) | 272.3 (±48.2) | 0.721 | 286.3 (±62.5) | 273.0 (±50.9) | 0.352 |
Blood Sugar | |||||||
Glucose | 108.3 (±30.3) | 107.7 (±31.1) | 112.8 (±24.6) | 0.657 | 106.8 (±37.5) | 109.5 (±23.7) | 0.727 |
HbA1c | 6.0 (±0.9) | 5.9 (±0.9) | 6.3 (±0.9) | 0.282 | 5.9 (±1.0) | 6.0 (±0.8) | 0.562 |
Lipid profile | |||||||
TCHOL $ | 180.6 (±35.5) | 184.3 (±34.6) | 155.1 (±32.3) | 0.028 * | 182.8 (±31.1) | 178.9 (±38.9) | 0.665 |
TG # | 133.3 (±69.8) | 133.6 (±71.3) | 131.3 (±62.7) | 0.932 | 129.5 (±56.4) | 136.3 (±79.4) | 0.704 |
HDL-C ₤ | 54.9 (±14.5) | 55.1 (±15.0) | 52.6 (±10.2) | 0.692 | 52.9 (±13.3) | 56.6 (±15.6) | 0.346 |
LDL-C € | 111.5 (±35.5) | 115.1 (±35.4) | 81.6 (±19.5) | 0.028 * | 112.0 (±27.1) | 111.0 (±41.9) | 0.914 |
Liver Tests | |||||||
AST ∫ | 27.3 (±11.8) | 27.5 (±11.9) | 25.5 (±11.8) | 0.645 | 30.1 (±11.9) | 24.9 (±11.4) | 0.077 |
ALT ∆ | 35.6 (±28.8) | 36.6 (±29.6) | 28.6 (±22.4) | 0.464 | 44.3 (±36.7) | 28.5 (±17.4) | 0.037 * |
Alkp □ | 74.8 (±19.1) | 74.2 (±18.8) | 80.6 (±21.9) | 0.438 | 71.4 (±13.6) | 77.5 (±22.3) | 0.228 |
BilT ◊ | 0.6 (±0.3) | 0.6 (±0.3) | 0.5 (±0.1) | 0.183 | 0.7 (±0.4) | 0.6 (±0.2) | 0.320 |
GGT ● | 40.0 (±58.6) | 42.2 (±62.2) | 24.5 (±8.5) | 0.428 | 36.3 (±29.2) | 43.1 (±75.2) | 0.643 |
Model | Unstandardized Coefficients | Standardized Coefficients | T | Sig. | ||
---|---|---|---|---|---|---|
B | Std. Error | β | ||||
ALT | (Constant) | 72.447 | 15.838 | 4.574 | 0.000 | |
3 groups | 18.721 | 8.888 | 0.273 | 2.106 | 0.040 |
Model | Unstandardized Coefficients | Standardized Coefficients | Sig | |||
---|---|---|---|---|---|---|
B | Std. Error | β | T | |||
CAP | (Constant) | 138.768 | 51.770 | 2.680 | 0.010 | |
3 groups | −2.520 | 9.677 | −0.029 | −0.260 | 0.795 | |
Age | −0.038 | 0.537 | −0.008 | −0.072 | 0.943 | |
Gender | −12.693 | 13.530 | −0.111 | −0.938 | 0.352 | |
BMI | 6.646 | 1.426 | 0.523 | 4.661 | 0.000 | |
kPa | (Constant) | −9.954 | 4.852 | −2.052 | 0.045 | |
3 groups | −1.012 | 0.907 | −0.134 | −1.116 | 0.269 | |
Age | 0.107 | 0.050 | 0.254 | 2.122 | 0.038 | |
Gender | 0.829 | 1.268 | 0.083 | 0.653 | 0.516 | |
BMI | 0.425 | 0.134 | 0.382 | 3.183 | 0.002 |
Unstandardized | Standardized Coefficients | ||||
---|---|---|---|---|---|
BMI | B | Std. Error | β | T | Sig |
Constant | 29.944 | 3.135 | 9.551 | 0.000 | |
ADH1B allele | −0.598 | 1.655 | −0.044 | −0.361 | 0.719 |
Age | 0.004 | 0.046 | 0.010 | 0.081 | 0.936 |
Gender | −2.670 | 1.170 | −0.294 | −2.282 | 0.026 |
Constant | 29.269 | 2.925 | 10.0 | 0.000 | |
ALDH2 allele | 0.084 | 1.125 | 0.009 | 0.075 | 0.941 |
Age | 0.003 | 0.046 | 0.009 | 0.068 | 0.946 |
Gender | −2.728 | 1.194 | −0.300 | −2.284 | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chien, T.-H.; Lin, C.-L.; Chen, L.-W.; Chien, C.-H.; Hu, C.-C. Patients with Non-Alcoholic Fatty Liver Disease and Alcohol Dehydrogenase 1B/Aldehyde Dehydrogenase 2 Mutant Gene Have Higher Values of Serum Alanine Transaminase. J. Pers. Med. 2023, 13, 758. https://doi.org/10.3390/jpm13050758
Chien T-H, Lin C-L, Chen L-W, Chien C-H, Hu C-C. Patients with Non-Alcoholic Fatty Liver Disease and Alcohol Dehydrogenase 1B/Aldehyde Dehydrogenase 2 Mutant Gene Have Higher Values of Serum Alanine Transaminase. Journal of Personalized Medicine. 2023; 13(5):758. https://doi.org/10.3390/jpm13050758
Chicago/Turabian StyleChien, Tsuo-Hsuan, Chih-Lang Lin, Li-Wei Chen, Cheng-Hung Chien, and Ching-Chih Hu. 2023. "Patients with Non-Alcoholic Fatty Liver Disease and Alcohol Dehydrogenase 1B/Aldehyde Dehydrogenase 2 Mutant Gene Have Higher Values of Serum Alanine Transaminase" Journal of Personalized Medicine 13, no. 5: 758. https://doi.org/10.3390/jpm13050758
APA StyleChien, T. -H., Lin, C. -L., Chen, L. -W., Chien, C. -H., & Hu, C. -C. (2023). Patients with Non-Alcoholic Fatty Liver Disease and Alcohol Dehydrogenase 1B/Aldehyde Dehydrogenase 2 Mutant Gene Have Higher Values of Serum Alanine Transaminase. Journal of Personalized Medicine, 13(5), 758. https://doi.org/10.3390/jpm13050758