Brain Network Topology in Deficit and Non-Deficit Schizophrenia: Application of Graph Theory to Local and Global Indices
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Sample
2.2. Image Acquisition E Processing
2.3. Cortical Thickness Estimation
2.4. Thickness-Based Covariance Matrices and Thresholding
2.5. Global and Local Network Measures
2.6. Statistics
3. Results
3.1. Graph Matrices
3.2. Global and Local Network Measures
4. Discussion
4.1. Limitations
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chee, T.T.; Chua, L.; Morrin, H.; Lim, M.F.; Fam, J.; Ho, R. Neuroanatomy of Patients with Deficit Schizophrenia: An Exploratory Quantitative Meta-Analysis of Structural Neuroimaging Studies. Int. J. Environ. Res. Public Health 2020, 17, 6227. [Google Scholar] [CrossRef]
- Carpenter, W.T.; Heinrichs, D.W.; Wagman, A.M.I. Deficit and Nondeficit Forms of Schizophrenia: The Concept. Am. J. Psychiatry 1988, 145, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, B.; Buchanan, R.W.; Ross, D.E.; Carpenter, J. A Separate Disease within the Syndrome of Schizophrenia. Arch. Gen. Psychiatry 2001, 58, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, S.; Maj, M. Deficit Schizophrenia: An Overview of Clinical, Biological and Treatment Aspects. Eur. Psychiatry 2009, 24, 493–500. [Google Scholar] [CrossRef]
- Kirkpatrick, B.; Galderisi, S. Deficit Schizophrenia: An Update. World Psychiatry 2008, 7, 143–147. [Google Scholar] [CrossRef]
- Kirkpatrick, B.; Mucci, A.; Galderisi, S. Primary, Enduring Negative Symptoms: An Update on Research. Schizophr. Bull. 2017, 43, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, R.W.; Kirkpatrick, B.; Heinrichs, D.W.; Carpenter, W.T. Clinical Correlates of the Deficit Syndrome of Schizophrenia. Am. J. Psychiatry 1990, 147, 290–294. [Google Scholar] [CrossRef]
- Kirkpatrick, B.; Buchanan, R.W.; Breier, A.; Carpenter, W.T. Case Identification and Stability of the Deficit Syndrome of Schizophrenia. Psychiatry Res. 1993, 47, 47–56. [Google Scholar] [CrossRef]
- Kirkpatrick, B.; Buchanan, R.W.; Breier, A.; Carpenter, W.T. Depressive Symptoms and the Deficit Syndrome of Schizophrenia. J. Nerv. Ment. Dis. 1994, 182, 452–455. [Google Scholar] [CrossRef]
- Amador, X.F.; Kirkpatrick, B.; Buchanan, R.W.; Carpenter, W.T.; Marcinko, L.; Yale, S.A. Stability of the Diagnosis of Deficit Syndrome in Schizophrenia. Am. J. Psychiatry 1999, 156, 637–639. [Google Scholar] [CrossRef]
- Florence, T.; Tandon, R.; Goldman, M.; DeQuardo, J.; Jibson, M.; Taylor, S.F.; Decker, L. Clinical Correlates of the Deficit Syndrome of Schizophrenia. Biol. Psychiatry 1995, 9, 677. [Google Scholar] [CrossRef]
- Goldman, A.L.; Pezawas, L.; Doz, P.; Mattay, V.S.; Fischl, B.; Verchinski, B.A.; Chen, Q.; Weinberger, D.R.; Meyer-Lindenberg, A. Widespread Reductions of Cortical Thickness in Schizophrenia and Spectrum Disorders and Evidence of Heritability. Arch. Gen. Psychiatry 2009, 66, 467–477. [Google Scholar] [CrossRef]
- Rimol, L.M.; Hartberg, C.B.; Nesvåg, R.; Fennema-Notestine, C.; Hagler, D.J.; Pung, C.J.; Jennings, R.G.; Haukvik, U.K.; Lange, E.; Nakstad, P.H.; et al. Cortical Thickness and Subcortical Volumes in Schizophrenia and Bipolar Disorder. Biol. Psychiatry 2010, 68, 41–50. [Google Scholar] [CrossRef]
- Schultz, C.C.; Koch, K.; Wagner, G.; Roebel, M.; Schachtzabel, C.; Gaser, C.; Nenadic, I.; Reichenbach, J.R.; Sauer, H.; Schlösser, R.G.M. Reduced Cortical Thickness in First Episode Schizophrenia. Schizophr. Res. 2010, 116, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Van Erp, T.G.M.; Walton, E.; Hibar, D.P.; Schmaal, L.; Jiang, W.; Glahn, D.C.; Pearlson, G.D.; Yao, N.; Fukunaga, M.; Hashimoto, R.; et al. Cortical Brain Abnormalities in 4474 Individuals with Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol. Psychiatry 2018, 84, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Wannan, C.M.J.; Cropley, V.L.; Chakravarty, M.M.; Bousman, C.; Ganella, E.P.; Bruggemann, J.M.; Weickert, T.W.; Weickert, C.S.; Everall, I.; McGorry, P.; et al. Evidence for Network-Based Cortical Thickness Reductions in Schizophrenia. Am. J. Psychiatry 2019, 176, 552–563. [Google Scholar] [CrossRef]
- Rapoport, J.L.; Giedd, J.N.; Gogtay, N. Neurodevelopmental Model of Schizophrenia: Update 2012. Mol. Psychiatry 2012, 17, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Alexander-Bloch, A.; Giedd, J.N.; Bullmore, E. Imaging Structural Co-Variance between Human Brain Regions. Nat. Rev. Neurosci. 2013, 14, 322–336. [Google Scholar] [CrossRef]
- Evans, A.C. Networks of Anatomical Covariance. NeuroImage 2013, 80, 489–504. [Google Scholar] [CrossRef]
- Raznahan, A.; Lerch, J.P.; Lee, N.; Greenstein, D.; Wallace, G.L.; Stockman, M.; Clasen, L.; Shaw, P.W.; Giedd, J.N. Patterns of Coordinated Anatomical Change in Human Cortical Development: A Longitudinal Neuroimaging Study of Maturational Coupling. Neuron 2011, 72, 873–884. [Google Scholar] [CrossRef]
- Alexander-Bloch, A.; Raznahan, A.; Bullmore, E.; Giedd, J. The Convergence of Maturational Change and Structural Covariance in Human Cortical Networks. J. Neurosci. 2013, 33, 2889–2899. [Google Scholar] [CrossRef] [PubMed]
- Bullmore, E.; Sporns, O. Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems. Nat. Publ. Group 2009, 10, 186–198. [Google Scholar] [CrossRef]
- Barabási, A.L. Network Science. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120375. [Google Scholar] [CrossRef]
- Fornito, A.; Zalesky, A.; Pantelis, C.; Bullmore, E.T. Schizophrenia, Neuroimaging and Connectomics. NeuroImage 2012, 62, 2296–2314. [Google Scholar] [CrossRef]
- Mastrandrea, R.; Piras, F.; Gabrielli, A.; Caldarelli, G.; Spalletta, G.; Gili, T. Brain Network Topology Maps the Dysfunctional Substrate of Cognitive Processes in Schizophrenia. arXiv 2019, arXiv:1901.08521v1. [Google Scholar]
- Bassett, D.S.; Bullmore, E.; Verchinski, B.A.; Mattay, V.S.; Weinberger, D.R.; Meyer-Lindenberg, A. Hierarchical Organization of Human Cortical Networks in Health and Schizophrenia. J. Neurosci. 2008, 28, 9239–9248. [Google Scholar] [CrossRef]
- Palaniyappan, L.; Park, B.; Balain, V.; Dangi, R.; Liddle, P. Abnormalities in Structural Covariance of Cortical Gyrification in Schizophrenia. Brain Struct. Funct. 2015, 220, 2059–2071. [Google Scholar] [CrossRef] [PubMed]
- Van den Heuvel, M.P.; Sporns, O.; Collin, G.; Scheewe, T.; Mandl, R.C.W.; Cahn, W.; Goñi, J.; Hulshoff Pol, H.E.; Kahn, R.S. Abnormal Rich Club Organization and Functional Brain Dynamics in Schizophrenia. JAMA Psychiatry 2013, 70, 783. [Google Scholar] [CrossRef]
- Alexander-Bloch, A.F.; Gogtay, N.; Meunier, D.; Birn, R.; Clasen, L.; Lalonde, F.; Lenroot, R.; Giedd, J.; Bullmore, E.T. Disrupted Modularity and Local Connectivity of Brain Functional Networks in Childhood-Onset Schizophrenia. Front. Syst. Neurosci. 2010, 4, 147. [Google Scholar] [CrossRef]
- Bleuler, E. Dementia Praecox, oder Gruppe der Schizophrenien; Deuticke: Leipzig, Germany, 1911. [Google Scholar]
- Andreasen, N.C. Symptoms, Signs, and Diagnosis of Schizophrenia. Lancet 1995, 346, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Tandon, N.; Tandon, R. Using Machine Learning to Explain the Heterogeneity of Schizophrenia. Realiz. Promise Avoid. Hype. Schizophr. Res. 2019, 214, 70–75. [Google Scholar] [CrossRef]
- Picardi, A.; Viroli, C.; Tarsitani, L.; Miglio, R.; de Girolamo, G.; Dell’Acqua, G.; Biondi, M. Heterogeneity and Symptom Structure of Schizophrenia. Psychiatry Res. 2012, 198, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, M.; Wentz, J.; Takayanagi, Y.; Schretlen, D.J.; Ceyhan, E.; Wang, L.; Suzuki, M.; Sawa, A.; Barta, P.E.; Ratnanather, J.T.; et al. Reduced Anterior Cingulate Gray Matter Volume and Thickness in Subjects with Deficit Schizophrenia. Schizophr. Res. 2013, 150, 484–490. [Google Scholar] [CrossRef]
- Voineskos, A.N.; Foussias, G.; Lerch, J.; Felsky, D.; Remington, G.; Rajji, T.K.; Lobaugh, N.; Pollock, B.G.; Mulsant, B.H. Neuroimaging Evidence for the Deficit Subtype of Schizophrenia. JAMA Psychiatry 2013, 70, 472–480. [Google Scholar] [CrossRef] [PubMed]
- First, M.B.; Williams, J.B.W.; Karg, R.S.; Spitzer, R.L. Structured Clinical Interview for DSM-5 Research Version; American Psychiatric Association: Washington, DC, USA, 2015. [Google Scholar]
- Andreasen, N.C. Scale for the Assessment of Positive Symptoms (SAPS). Br. J. Psychiatry Suppl. 1984. [Google Scholar] [CrossRef]
- Andreasen, N.C. Scale for the Assessment of Negative Symptoms (SANS). Br. J. Psychiatry 1989, 155, 49–52. [Google Scholar] [CrossRef]
- Kirkpatrick, B.; Buchanan, R.W.; McKenny, P.D.; Alphs, L.D.; Carpenter, W.T. The Schedule for the Deficit Syndrome: An Instrument for Research in Schizophrenia. Psychiatry Res. 1989, 30, 119–123. [Google Scholar] [CrossRef]
- First, M.B.; Williams, J.B.; Benjamin, L.S.; Spitzer, R.L. Structured Clinical Interview for DSM-5 Personality Disorders: SCID-5-PD; American Psychiatric Association: Washington, DC, USA, 2016. [Google Scholar]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Measso, G.; Cavarzeran, F.; Zappalà, G.; Lebowitz, B.D.; Crook, T.H.; Pirozzolo, F.J.; Amaducci, L.A.; Massari, D.; Grigoletto, F. The Mini-mental State Examination: Normative Study of an Italian Random Sample. Dev. Neuropsychol. 1993, 9, 77–85. [Google Scholar] [CrossRef]
- Iorio, M.; Spalletta, G.; Chiapponi, C.; Luccichenti, G.; Cacciari, C.; Orfei, M.D.; Caltagirone, C.; Piras, F. White Matter Hyperintensities Segmentation: A New Semi-Automated Method. Front. Aging Neurosci. 2013, 5, 76. [Google Scholar] [CrossRef] [PubMed]
- Deichmann, R.; Schwarzbauer, C.; Turner, R. Optimisation of the 3D MDEFT Sequence for Anatomical Brain Imaging: Technical Implications at 1.5 and 3 T. NeuroImage 2004, 21, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Fischl, B.; Van Der Kouwe, A.; Destrieux, C.; Halgren, E.; Ségonne, F.; Salat, D.H.; Busa, E.; Seidman, L.J.; Goldstein, J.; Kennedy, D.; et al. Automatically Parcellating the Human Cerebral Cortex. Cereb. Cortex 2004, 14, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans into Gyral Based Regions of Interest. NeuroImage 2006, 31, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, B.C.; Worsley, K.J.; Besson, P.; Concha, L.; Lerch, J.P.; Evans, A.C.; Bernasconi, N. Mapping Limbic Network Organization in Temporal Lobe Epilepsy Using Morphometric Correlations: Insights on the Relation between Mesiotemporal Connectivity and Cortical Atrophy. NeuroImage 2008, 42, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Fornito, A.; Zalesky, A.; Breakspear, M. Graph Analysis of the Human Connectome: Promise, Progress, and Pitfalls. NeuroImage 2013, 80, 426–444. [Google Scholar] [CrossRef]
- Van Wijk, B.C.M.; Stam, C.J.; Daffertshofer, A. Comparing Brain Networks of Different Size and Connectivity Density Using Graph Theory. PLoS ONE 2010, 5, e13701. [Google Scholar] [CrossRef]
- Stam, C.J.; Reijneveld, J.C. Graph Theoretical Analysis of Complex Networks in the Brain. Nonlinear Biomed. Phys. 2007, 1, 1–19. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex Network Measures of Brain Connectivity: Uses and Interpretations. NeuroImage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- He, Y.; Chen, Z.J.; Evans, A.C. Small-World Anatomical Networks in the Human Brain Revealed by Cortical Thickness from MRI. Cereb. Cortex 2007, 17, 2407–2419. [Google Scholar] [CrossRef]
- Lerch, J.P.; Worsley, K.; Shaw, W.P.; Greenstein, D.K.; Lenroot, R.K.; Giedd, J.; Evans, A.C. Mapping Anatomical Correlations across Cerebral Cortex (MACACC) Using Cortical Thickness from MRI. NeuroImage 2006, 31, 993–1003. [Google Scholar] [CrossRef]
- Sanabria-Diaz, G.; Melie-García, L.; Iturria-Medina, Y.; Alemán-Gómez, Y.; Hernández-González, G.; Valdés-Urrutia, L.; Galán, L.; Valdés-Sosa, P. Surface Area and Cortical Thickness Descriptors Reveal Different Attributes of the Structural Human Brain Networks. NeuroImage 2010, 50, 1497–1510. [Google Scholar] [CrossRef]
- Hosseini, S.M.H.; Hoeft, F.; Kesler, S.R. Gat: A Graph-Theoretical Analysis Toolbox for Analyzing between-Group Differences in Large-Scale Structural and Functional Brain Networks. PLoS ONE 2012, 7, e40709. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, J.O.; Silverman, B.W. Functional Data Analysis. In International Encyclopedia of the Social & Behavioral Sciences; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Ramsay, J.O.; Dalzell, C.J. Some Tools for Functional Data Analysis. J. R. Stat. Soc. Ser. B Methodol. 1991, 53, 539–561. [Google Scholar] [CrossRef]
- Singh, M.K.; Kesler, S.R.; Hadi Hosseini, S.M.; Kelley, R.G.; Amatya, D.; Hamilton, J.P.; Chen, M.C.; Gotlib, I.H. Anomalous Gray Matter Structural Networks in Major Depressive Disorder. Biol. Psychiatry 2013, 74, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.S.; Nelson, B.G.; Mueller, B.A.; Camchong, J.; Lim, K.O. Altered Resting State Complexity in Schizophrenia. NeuroImage 2012, 59, 2196–2207. [Google Scholar] [CrossRef] [PubMed]
- Rubinov, M.; Knock, S.A.; Stam, C.J.; Micheloyannis, S.; Harris, A.W.F.; Williams, L.M.; Breakspear, M. Small-World Properties of Nonlinear Brain Activity in Schizophrenia. Hum. Brain Mapp. 2009, 30, 403–416. [Google Scholar] [CrossRef]
- Hu, M.L.; Zong, X.F.; Mann, J.J.; Zheng, J.J.; Liao, Y.H.; Li, Z.C.; He, Y.; Chen, X.G.; Tang, J.S. A Review of the Functional and Anatomical Default Mode Network in Schizophrenia. Neurosci. Bull. 2017, 33, 73–84. [Google Scholar] [CrossRef]
- Wang, K.; Fan, J.; Dong, Y.; Wang, C.Q.; Lee, T.M.C.; Posner, M.I. Selective Impairment of Attentional Networks of Orienting and Executive Control in Schizophrenia. Schizophr. Res. 2005, 78, 235–241. [Google Scholar] [CrossRef]
- Tu, P.C.; Lee, Y.C.; Chen, Y.S.; Li, C.T.; Su, T.P. Schizophrenia and the Brain’s Control Network: Aberrant within- and between-Network Connectivity of the Frontoparietal Network in Schizophrenia. Schizophr. Res. 2013, 147, 339–347. [Google Scholar] [CrossRef]
- Shenton, M.E.; Dickey, C.C.; Frumin, M.; McCarley, R.W. A Review of MRI Findings in Schizophrenia. Schizophr. Res. 2001, 49, 1–52. [Google Scholar] [CrossRef]
- Chen, Q.; Garcea, F.E.; Jacobs, R.A.; Mahon, B.Z. Abstract Representations of Object-Directed Action in the Left Inferior Parietal Lobule. Cereb. Cortex 2018, 28, 2162–2174. [Google Scholar] [CrossRef] [PubMed]
- Ciullo, V.; Vecchio, D.; Gili, T.; Spalletta, G.; Piras, F. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing. Front. Hum. Neurosci. 2018, 24, 212. [Google Scholar] [CrossRef] [PubMed]
- Desmurget, M.; Sirigu, A. Conscious Motor Intention Emerges in the Inferior Parietal Lobule. Curr. Opin. Neurobiol. 2012, 22, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Gould, R.L.; Arroyo, B.; Brown, R.G.; Owen, A.M.; Bullmore, E.T.; Howard, R.J. Brain Mechanisms of Successful Compensation during Learning in Alzheimer Disease. Neurology 2006, 67, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Torrey, E.F. Schizophrenia and the Inferior Parietal Lobule. Schizophr. Res. 2007, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Lahti, A.C.; Holcomb, H.H.; Medoff, D.R.; Weiler, M.A.; Tamminga, C.A.; Carpenter, J. Abnormal Patterns of Regional Cerebral Blood Flow in Schizophrenia with Primary Negative Symptoms during an Effortful Auditory Recognition Task. Am. J. Psychiatry 2001, 158, 1797–1808. [Google Scholar] [CrossRef]
- McKechanie, A.G.; Moorhead, T.W.J.; Stanfield, A.C.; Whalley, H.C.; Johnstone, E.C.; Lawrie, S.M.; Owens, D.G.C. Negative Symptoms and Longitudinal Grey Matter Tissue Loss in Adolescents at Risk of Psychosis: Preliminary Findings from a 6-Year Follow-up Study. Br. J. Psychiatry 2016, 208, 565–570. [Google Scholar] [CrossRef]
- Cascella, N.G.; Fieldstone, S.C.; Rao, V.A.; Pearlson, G.D.; Sawa, A.; Schretlen, D.J. Gray-Matter Abnormalities in Deficit Schizophrenia. Schizophr. Res. 2010, 120, 63–70. [Google Scholar] [CrossRef]
- Rajmohan, V.; Mohandas, E. The Limbic System. Indian J. Psychiatry 2007, 49, 132. [Google Scholar] [CrossRef]
- Keefe, R.S.E.; Fenton, W.S. How Should DSM-V Criteria for Schizophrenia Include Cognitive Impairment? Schizophr Bull 2007, 33, 912–920. [Google Scholar] [CrossRef]
HC (21) | SZND (21) | SZD (21) | Chi, t or F | df | p | |
---|---|---|---|---|---|---|
Gender, male (%) | 17 (81) | 17 (81) | 17 (81) | 0 | 2 | 1 |
Age, mean (sd) | 40 (11.5) | 39.95 (11.4) | 39.86 (11.6) | 0.001 | (2;60) | 0.999 |
Educational level, mean (sd) | 15.1 (2.5) | 11.48 (3.4) | 11.86 (2.8) | 9.739 | (2;60) | 0.0002 * |
Mean Thick, mean (sd) | 2.36 (0.1) | 2.32 (0.12) | 2.29 (0.1) | 1.914 | (2;60) | 0.156 |
Chlorp. Eq, mean (sd) | - | 338.5 (302.5) | 484.3 (900.5) | −0.703 | 40 | 0.486 |
Illness Duration, mean (sd) | - | 18.62 (12.1) | 17.45 (9.5) | 0.348 | 40 | 0.73 |
SAPS Tot, mean (sd) | - | 30 (14.2) | 35.2 (18.2) | −0.992 | 37 | 0.327 |
SANS Tot, mean (sd) | - | 26.37 (12.8) | 44.6 (17) | −3.772 | 37 | 0.001 * |
HC vs. SZD | HC vs. SZND | SZD vs. SZND | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cortical Node | Avg across Densities | p FDA | Cortical Node | Avg across Densities | p FDA | Cortical Node | Avg across Densities | p FDA | |||
HC | SZD | HC | SZND | SZD | SZND | ||||||
Centrality (Degree) | |||||||||||
L fusiform | 16 | 25 | 0.021 | L inferior parietal | 17 | 26 | 0.022 | ||||
L inferior parietal | 30 | 20 | 0.020 | L middle temporal | 23 | 14 | 0.018 | ||||
L isthmus cingulate | 26 | 16 | 0.044 | ||||||||
L middle temporal | 16 | 27 | 0.046 | ||||||||
L superior frontal | 30 | 24 | 0.040 | ||||||||
R lateral occipital | 28 | 18 | 0.024 | ||||||||
R middle temporal | 16 | 23 | 0.044 | ||||||||
R precuneus | 29 | 20 | 0.036 | ||||||||
Segregation (Clustering) | |||||||||||
L inferior parietal | 0.60 | 0.38 | 0.045 | L transverse temporal | 0.6 | 0.35 | 0.04 | ||||
L frontal pole | 0.35 | 0.48 | 0.034 | R supramarginal | 0.56 | 0.75 | 0.04 | ||||
R cuneus | 0.70 | 0.46 | 0.038 | ||||||||
R lateral orbito frontal | 0.43 | 0.50 | 0.034 | ||||||||
R lingual | 0.65 | 0.38 | 0.025 | ||||||||
R pericalcarine | 0.64 | 0.36 | 0.013 | ||||||||
Integration (Local Efficiency) | |||||||||||
L inferior parietal | 0.79 | 0.61 | 0.015 | L transverse temporal | 0.77 | 0.53 | 0.03 | L para hippocampal | 0.43 | 0.70 | 0.02 |
L frontal pole | 0.59 | 0.73 | 0.028 | R rostral anterior cingulate | 0.76 | 0.50 | 0.045 | ||||
R banks | 0.63 | 0.74 | 0.025 | ||||||||
R cuneus | 0.85 | 0.70 | 0.045 | ||||||||
R pericalcarine | 0.82 | 0.57 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vecchio, D.; Piras, F.; Ciullo, V.; Piras, F.; Natalizi, F.; Ducci, G.; Ambrogi, S.; Spalletta, G.; Banaj, N. Brain Network Topology in Deficit and Non-Deficit Schizophrenia: Application of Graph Theory to Local and Global Indices. J. Pers. Med. 2023, 13, 799. https://doi.org/10.3390/jpm13050799
Vecchio D, Piras F, Ciullo V, Piras F, Natalizi F, Ducci G, Ambrogi S, Spalletta G, Banaj N. Brain Network Topology in Deficit and Non-Deficit Schizophrenia: Application of Graph Theory to Local and Global Indices. Journal of Personalized Medicine. 2023; 13(5):799. https://doi.org/10.3390/jpm13050799
Chicago/Turabian StyleVecchio, Daniela, Fabrizio Piras, Valentina Ciullo, Federica Piras, Federica Natalizi, Giuseppe Ducci, Sonia Ambrogi, Gianfranco Spalletta, and Nerisa Banaj. 2023. "Brain Network Topology in Deficit and Non-Deficit Schizophrenia: Application of Graph Theory to Local and Global Indices" Journal of Personalized Medicine 13, no. 5: 799. https://doi.org/10.3390/jpm13050799
APA StyleVecchio, D., Piras, F., Ciullo, V., Piras, F., Natalizi, F., Ducci, G., Ambrogi, S., Spalletta, G., & Banaj, N. (2023). Brain Network Topology in Deficit and Non-Deficit Schizophrenia: Application of Graph Theory to Local and Global Indices. Journal of Personalized Medicine, 13(5), 799. https://doi.org/10.3390/jpm13050799