Unlocking the Diagnostic Potential of Saliva: A Comprehensive Review of Infrared Spectroscopy and Its Applications in Salivary Analysis
Abstract
:1. Introduction
2. Methodology
- Inclusion criteria:
- o
- Publication year: 2008–2023
- o
- Language: English
- o
- Study design: cross-sectional, case-control, and cohort studies
- o
- Participants: humans and animals
- o
- Sample: saliva
- o
- Technique: all types of infrared spectroscopy
- Exclusion criteria:
- o
- Publication year: older than 2008
- o
- Language: Non English
- o
- Study design: no restriction
- o
- Participants: no restriction
- o
- Sample: blood, serum, urine (except in combination with saliva)
- o
- Technique: other spectroscopic techniques (Raman spectroscopy and mass spectroscopy)
3. Unlocking the Secrets of Saliva: A Comprehensive Analysis of its Complex Composition
4. Illuminating the Chemical Makeup of Saliva: Exploring the Relationship between Infrared Spectroscopy Techniques and Salivary Composition
5. Shining a Light on Saliva-Based Diagnosis: Exploring the Applications of Infrared Spectroscopy
5.1. Seeing beyond the Surface: Unraveling the Molecular Changes in Oral Fluid for Enhanced Diagnosis of Dental Caries and Periodontitis Using IR Spectroscopy
5.2. Saliva Analysis by Infrared Spectroscopy: A Non-Invasive and Accurate Approach for Cancer Diagnosis
5.3. Advances in Saliva Analysis: Infrared Spectroscopy as a Promising Technique for Infectious Disease Diagnosis
5.3.1. Catching COVID-19 with Infrared Eyes: How Spectroscopy Is Revolutionizing Diagnosis
5.3.2. Beyond the Naked Eye: Unveiling the Hidden Clues of Neonatal Sepsis with Infrared Spectroscopy
5.4. Diabetes Mellitus Diagnosis via Infrared Spectroscopy of Saliva: A Non-Invasive and Reliable Approach
5.5. Real-time Drug Monitoring Using Infrared Spectroscopy of Saliva: A Promising Approach for Personalized Medicine
5.6. Early Detection of Chronic Kidney Disease using Infrared Spectroscopy Analysis of Saliva
Pathology | Most Important Wavenumber Regions | Compound Class | Band Assignment | Suggested Pathophysiological Biomarker/Function | References |
---|---|---|---|---|---|
Dental caries | 2150–1950 cm−1 | Thiocyanate | N=C=S stretching | Antibacterial properties | [28,29,30,31] |
1765–1725 cm−1 | Esters, lipids, and carbohydrates | C=O stretching | [28,29,30,31] | ||
1700–1590 cm−1 | Protein | C=O stretching (Amide I) C-N stretching (Amide I) | Pathological microflora | [28,29,30,31] | |
1590–1505 cm−1 | Protein | N-H in-plane bending (Amide II) | Pathological microflora | [28,29,30,31] | |
1430–1360 cm−1 | Carbon-phosphate | C=O and CH2/CH3 bonds | [28,29,30,31] | ||
1078–900 cm−1 | Phosphate | PO2−-stretching | [28,29,30,31] | ||
Periodontitis | 2800–3000 cm−1 | Lipids | CH2 and CH3 stretching | Lipid oxidation | [34,35] |
1713 cm−1 | Lipids | C=O stretching | [34] | ||
1652 cm−1 | Protein | C=O stretching (Amide I) | [34] | ||
1230 to 1180 cm−1 | Phosphate | PO2-stretching | Base-pared DNA strand | [33] | |
950–1080 cm−1 | Carbohydrates | CO-O-C- stretching | Glycosylated proteins (α-amylase) | [36] | |
Oral cancer | 2924 and 2854 cm−1 | Membranous lipids | Asymmetric and symmetric C-H stretching of CH2 and CH3 methylene groups | Fatty acids within cellular membranes | [37] |
1543 cm−1 | Transmembrane proteins | Amide II | α-helix | [37] | |
1072 cm−1 | Nucleic acids | Phosphate bonds | DNA | [37] | |
Salivary gland tumors | 1664–1641 cm−1 | Protein | C=O stretching (Amide I) | α-helix | [53] |
1648 cm−1 | Protein | C=O stretching (Amide I) C-N stretching (Amide I) N-H bending (Amide I) | α-helix | [16,42,46,48,49,50,51,52] | |
1631 cm−1 | Protein | C=O stretching (Amide I) C=C stretching (Amide I) | β-sheet structure | [53] | |
1543 cm−1 | Protein | N-H bending (Amide II) C-N stretching (Amide II) | [16,42,46,48,49,50,51,52] | ||
1515 cm−1 | Protein | Tyrosine ring | α-amylase, albumin, cystatins, mucins, proline-rich proteins, sIgA | [38] | |
1315 cm−1 | Protein | C-N stretching (Amide III) N-H bending (Amide III) | α-amylase, albumin, cystatins, mucins, proline-rich proteins, sIgA | [38] | |
1000 to 1200 cm−1 | Carbohydrates | C-O stretching | Glycosylated α-amylase, mucins or other sugar residues | [21,39,42] | |
1119 cm−1 | Carbohydrates | C-O stretching C–O–C-stretching | Glycosylated α-amylase, mucins or other sugar residues | [45,46,47] | |
1078 cm−1 | Phosphate | PO2−-stretching | Inorganic phosphates and phospholipids | [39,40] | |
Breast cancer | 1433–1302.9 cm−1 | Proteins and lipids | COO− stretching | [55] | |
1041 cm−1 | Nucleic acids and glycogen | Symmetric PO2−stretching | [55] | ||
COVID-19 | 1785–1729 cm−1 | Lipids | C=O stretching C=C stretching | [57] | |
1718–1705 cm−1 | Protein | C=O stretching C-N stretching | [57] | ||
1680 cm−1 | Protein | C=O stretching C-N stretching | [57] | ||
1600–1200 cm−1 | Protein | Amide I, II and III | [57] | ||
1612–1606 cm−1 | Nucleic acid | Adenine vibration in DNA | [57] | ||
1560–1464 cm−1 | Protein | C=O stretching C-N stretching | IgG | [63] | |
1429 cm−1 | Nucleic acid | CH2-bending | RNA virus | [61] | |
1220 cm−1 | Nucleic acid | PO2-stretching | Host organism’s response to viral infection | [61] | |
1084 cm−1 | Nucleic acid | Symmetric PO2-stretching in nucleic acids | Host organism’s response to viral infection | [61] | |
1069 cm−1 | Nucleic acid | C-O stretching in ribose | Host organism’s response to viral infection | [61] | |
1041 cm−1 | Nucleic acid | Symmetric PO2-stretching in nucleic acids | Host organism’s response to viral infection | [61] | |
1025–1021 cm−1 | Carbohydrates | C-O stretching | [57] | ||
961 cm−1 | Nucleic acid | Desoxyribose | [57] | ||
930–909 cm−1 | Nucleic acid | PO2-stretching | [57] | ||
Neonatal sepsis | 1640 cm−1 | Protein | C=O stretching (Amide I) N-H bending (Amide I) | Changes in protein linked to inflammatory process | [67] |
1545 cm−1 | Protein | C-N stretching (Amide II) N-H bending (Amide II) | Changes in protein linked to inflammatory process | [67] | |
1301 cm−1 | Protein | C-H stretching (Amide III) N-H bending (Amide III) | Changes in protein linked to inflammatory process | [67] | |
1240 cm−1 | Protein | C-N stretching (Amide III) N-H bending (Amide III) | Changes in protein linked to inflammatory process | [67] | |
1051 cm−1 | Nucleic acid | C-O stretching | Changes in DNA linked to inflammatory process | [67] | |
1037 cm−1 | Nucleic acid | C-O stretching | Changes in DNA linked to inflammatory process | [67] | |
970 cm−1 | Nucleic acid | C-O stretching | Changes in DNA linked to inflammatory process | [67] | |
Diabetes mellitus | 1452 cm−1 | Protein | Asymmetric CH3 bending | High correlation with glycemia | [77] |
1451 cm−1 | Protein | Asymmetric CH3 bending | [76] | ||
1403 cm−1 | Protein | Symmetric CH3 bending Symmetric CH3 bending | [76] | ||
1076 cm−1 | Nucleic acid | Skeletal cis conformation of DNA | [76] | ||
836 cm−1 | Carbohydrates | C2 endo/anti-B-form helix conformation of sugar | High correlation with glycemia | [77] | |
Chronic kidney disease | 2052 cm−1 | Thiocyanate | C-N stretching | Increased SCN− concentration in plasma transported to the saliva via acinar cells by active transcellular transport | [85] |
924 cm−1 | Phospholipids carbohydrates | C-O stretching C-C stretching C-O-H deformation C-O-C deformation | Unknown | [85] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, S.; Sandhu, S.V.; Bansal, H.; Sharma, D. Comparison of Salivary and Serum Glucose Levels in Diabetic Patients. J. Diabetes Sci. Technol. 2015, 9, 91–96. [Google Scholar] [CrossRef]
- Ojeda, J.J.; Dittrich, M. Fourier Transform Infrared Spectroscopy for Molecular Analysis of Microbial Cells. Methods Mol. Biol. 2012, 881, 187–211. [Google Scholar] [CrossRef]
- Zhang, C.-Z.; Cheng, X.-Q.; Li, J.-Y.; Zhang, P.; Yi, P.; Xu, X.; Zhou, X.-D. Saliva in the Diagnosis of Diseases. Int. J. Oral. Sci. 2016, 8, 133–137. [Google Scholar] [CrossRef]
- Pfaffe, T.; Cooper-White, J.; Beyerlein, P.; Kostner, K.; Punyadeera, C. Diagnostic Potential of Saliva: Current State and Future Applications. Clin. Chem. 2011, 57, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Pink, R.; Simek, J.; Vondrakova, J.; Faber, E.; Michl, P.; Pazdera, J.; Indrak, K. Saliva as a Diagnostic Medium. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2009, 153, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Wang, C.; Tu, M.; Wong, D. Oral Biofluid Biomarker Research: Current Status and Emerging Frontiers. Diagnostics 2016, 6, 45. [Google Scholar] [CrossRef]
- Abrão, A.L.P.; Falcao, D.P.; de Amorim, R.F.B.; Bezerra, A.C.B.; Pombeiro, G.A.N.M.; Guimarães, L.J.; Fregni, F.; Silva, L.P.; da Mota, L.M.H. Salivary Proteomics: A New Adjuvant Approach to the Early Diagnosis of Familial Juvenile Systemic Lupus Erythematosus. Med. Hypotheses 2016, 89, 97–100. [Google Scholar] [CrossRef]
- Malamud, D. Saliva as a Diagnostic Fluid. Dent. Clin. N. Am. 2011, 55, 159–178. [Google Scholar] [CrossRef] [PubMed]
- Agha-Hosseini, F.; Mirzaii-Dizgah, I.; Rahimi, A. Correlation of Serum and Salivary CA15-3 Levels in Patients with Breast Cancer. Med. Oral. 2009, 14, e521–e524. [Google Scholar] [CrossRef]
- Bigler, L.R.; Streckfus, C.F.; Dubinsky, W.P. Salivary Biomarkers for the Detection of Malignant Tumors That Are Remote from the Oral Cavity. Clin. Lab. Med. 2009, 29, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Beale, D.J.; Jones, O.A.H.; Karpe, A.V.; Dayalan, S.; Oh, D.Y.; Kouremenos, K.A.; Ahmed, W.; Palombo, E.A. A Review of Analytical Techniques and Their Application in Disease Diagnosis in Breathomics and Salivaomics Research. Int. J. Mol. Sci. 2016, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.A.; Renaud, D.E.; Krishnasamy, S.; Meriç, P.; Buduneli, N.; Cetinkalp, S.; Liu, K.-Z. Diabetes-Related Molecular Signatures in Infrared Spectra of Human Saliva. Diabetol. Metab. Syndr. 2010, 2, 48. [Google Scholar] [CrossRef]
- De Bruyne, S.; Speeckaert, M.M.; Delanghe, J.R. Applications of Mid-Infrared Spectroscopy in the Clinical Laboratory Setting. Crit. Rev. Clin. Lab. Sci. 2018, 55, 1–20. [Google Scholar] [CrossRef]
- Huck, C.W.; Ozaki, Y.; Huck-Pezzei, V.A. Critical Review Upon the Role and Potential of Fluorescence and Near-Infrared Imaging and Absorption Spectroscopy in Cancer Related Cells, Serum, Saliva, Urine and Tissue Analysis. Curr. Med. Chem. 2016, 23, 3052–3077. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Brito, M.; Vazquez-Zapien, G.J.; Luna-Rosas, F.J.; Mendoza-Gonzalez, R.; Martinez-Romo, J.C.; Mata-Miranda, M.M. Attenuated Total Reflection FTIR Dataset for Identification of Type 2 Diabetes Using Saliva. Comput. Struct. Biotechnol. J. 2022, 20, 4542–4548. [Google Scholar] [CrossRef] [PubMed]
- Caetano Júnior, P.C.; Strixino, J.F.; Raniero, L. Analysis of Saliva by Fourier Transform Infrared Spectroscopy for Diagnosis of Physiological Stress in Athletes. Res. Biomed. Eng. 2015, 31, 116–124. [Google Scholar] [CrossRef]
- Severcan, F.; Bozkurt, O.; Gurbanov, R.; Gorgulu, G. FT-IR Spectroscopy in Diagnosis of Diabetes in Rat Animal Model. J. Biophotonics 2010, 3, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Simsek Ozek, N.; Zeller, I.; Renaud, D.E.; Gümüş, P.; Nizam, N.; Severcan, F.; Buduneli, N.; Scott, D.A. Differentiation of Chronic and Aggressive Periodontitis by FTIR Spectroscopy. J. Dent. Res. 2016, 95, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Turker, S.; Ilbay, G.; Severcan, M.; Severcan, F. Investigation of Compositional, Structural, and Dynamical Changes of Pentylenetetrazol-Induced Seizures on a Rat Brain by FT-IR Spectroscopy. Anal. Chem. 2014, 86, 1395–1403. [Google Scholar] [CrossRef]
- Khaustova, S.; Shkurnikov, M.; Tonevitsky, E.; Artyushenko, V.; Tonevitsky, A. Noninvasive Biochemical Monitoring of Physiological Stress by Fourier Transform Infrared Saliva Spectroscopy. Analyst 2010, 135, 3183–3192. [Google Scholar] [CrossRef]
- Bel’skaya, L.V.; Sarf, E.A.; Makarova, N.A. Use of Fourier Transform IR Spectroscopy for the Study of Saliva Composition. J. Appl. Spectrosc. 2018, 85, 445–451. [Google Scholar] [CrossRef]
- Derruau, S.; Gobinet, C.; Mateu, A.; Untereiner, V.; Lorimier, S.; Piot, O. Shedding Light on Confounding Factors Likely to Affect Salivary Infrared Biosignatures. Anal. Bioanal. Chem. 2019, 411, 2283–2290. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Keluskar, V.; Goyal, R.; Dahiya, P. Salivary Thiocyanate: A Biochemical Indicator of Cigarette Smoking in Adolescents. Oral. Health Prev. Dent. 2013, 11, 221–227. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Magrini, T.D.; Lima, C.F.; Scholz, J.; da Silva Martinho, H.; Almeida, J.D. Effect of Smoking Cessation in Saliva Compounds by FTIR Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 174, 124–129. [Google Scholar] [CrossRef]
- Steiner, G.; Bartels, T.; Stelling, A.; Krautwald-Junghanns, M.-E.; Fuhrmann, H.; Sablinskas, V.; Koch, E. Gender Determination of Fertilized Unincubated Chicken Eggs by Infrared Spectroscopic Imaging. Anal. Bioanal. Chem. 2011, 400, 2775–2782. [Google Scholar] [CrossRef]
- Ni, D.; Smyth, H.E.; Gidley, M.J.; Cozzolino, D. Exploring the Relationships between Oral Sensory Physiology and Oral Processing with Mid Infrared Spectra of Saliva. Food Hydrocoll. 2021, 120, 106896. [Google Scholar] [CrossRef]
- Golubnitschaja, O.; Costigliola, V.; EPMA. General Report & Recommendations in Predictive, Preventive and Personalised Medicine 2012: White Paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2012, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Jiang, S.; Koh, D.; Hsu, C.-Y.S. Salivary Biomarkers for Dental Caries. Periodontol 2000 2016, 70, 128–141. [Google Scholar] [CrossRef]
- Seredin, P.; Goloshchapov, D.; Ippolitov, Y.; Vongsvivut, P. Pathology-Specific Molecular Profiles of Saliva in Patients with Multiple Dental Caries—Potential Application for Predictive, Preventive and Personalised Medical Services. EPMA J. 2018, 9, 195–203. [Google Scholar] [CrossRef]
- Guo, L.; Shi, W. Salivary Biomarkers for Caries Risk Assessment. J. Calif. Dent. Assoc. 2013, 41, 107–118. [Google Scholar] [CrossRef]
- Belstrøm, D.; Jersie-Christensen, R.R.; Lyon, D.; Damgaard, C.; Jensen, L.J.; Holmstrup, P.; Olsen, J.V. Metaproteomics of Saliva Identifies Human Protein Markers Specific for Individuals with Periodontitis and Dental Caries Compared to Orally Healthy Controls. PeerJ 2016, 4, e2433. [Google Scholar] [CrossRef]
- Mikkonen, J.J.W.; Raittila, J.; Rieppo, L.; Lappalainen, R.; Kullaa, A.M.; Myllymaa, S. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis. Appl. Spectrosc. 2016, 70, 1502–1510. [Google Scholar] [CrossRef] [PubMed]
- Beyer-Hans, K.M.-C.; Sigrist, M.W.; Silbereisen, A.; Ozturk, V.O.; Emingil, G.; Bostanci, N. Salivary Fingerprinting of Periodontal Disease by Infrared-ATR Spectroscopy. Proteom. Clin. Appl. 2020, 14, e1900092. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.M.; Liu, K.Z.; Man, A.; Ghiabi, E.; Cholakis, A.; Scott, D.A. Periodontitis-Specific Molecular Signatures in Gingival Crevicular Fluid. J. Periodontal Res. 2010, 45, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Panjamurthy, K.; Manoharan, S.; Ramachandran, C.R. Lipid Peroxidation and Antioxidant Status in Patients with Periodontitis. Cell Mol. Biol. Lett. 2005, 10, 255–264. [Google Scholar] [PubMed]
- Takamura, A.; Watanabe, K.; Akutsu, T.; Ozawa, T. Soft and Robust Identification of Body Fluid Using Fourier Transform Infrared Spectroscopy and Chemometric Strategies for Forensic Analysis. Sci. Rep. 2018, 8, 8459. [Google Scholar] [CrossRef] [PubMed]
- Zlotogorski-Hurvitz, A.; Dekel, B.Z.; Malonek, D.; Yahalom, R.; Vered, M. FTIR-Based Spectrum of Salivary Exosomes Coupled with Computational-Aided Discriminating Analysis in the Diagnosis of Oral Cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 685–694. [Google Scholar] [CrossRef]
- Paluszkiewicz, C.; Pięta, E.; Woźniak, M.; Piergies, N.; Koniewska, A.; Ścierski, W.; Misiołek, M.; Kwiatek, W.M. Saliva as a First-Line Diagnostic Tool: A Spectral Challenge for Identification of Cancer Biomarkers. J. Mol. Liq. 2020, 307, 112961. [Google Scholar] [CrossRef]
- Heise, H.M.; Cocchieri, L.; Vahlsing, T.; Ihrig, D.; Elm, J. Monitoring of Interstitial Buffer Systems Using Micro-Dialysis and Infrared Spectrometry; Coté, G.L., Ed.; SPIE BiOS: San Francisco, CA, USA, 2017; p. 100720E. [Google Scholar]
- Heise, H.M.; Marbach, R. Human Oral Mucosa Studies with Varying Blood Glucose Concentration by Non-Invasive ATR-FT-IR-Spectroscopy. Cell Mol. Biol. 1998, 44, 899–912. [Google Scholar]
- Argov, S.; Sahu, R.K.; Bernshtain, E.; Salman, A.; Shohat, G.; Zelig, U.; Mordechai, S. Inflamatory Bowel Diseases as an Intermediate Stage between Normal and Cancer: A FTIR-Microspectroscopy Approach. Biopolymers 2004, 75, 384–392. [Google Scholar] [CrossRef]
- Orphanou, C.-M. The Detection and Discrimination of Human Body Fluids Using ATR FT-IR Spectroscopy. Forensic Sci. Int. 2015, 252, e10–e16. [Google Scholar] [CrossRef]
- Borg, A.; Birkhed, D. Secretion of Glucose in Human Parotid Saliva after Carbohydrate Intake. Eur. J. Oral. Sci. 1988, 96, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Khajehpour, M.; Dashnau, J.L.; Vanderkooi, J.M. Infrared Spectroscopy Used to Evaluate Glycosylation of Proteins. Anal. Biochem. 2006, 348, 40–48. [Google Scholar] [CrossRef]
- Baker, M.J.; Hussain, S.R.; Lovergne, L.; Untereiner, V.; Hughes, C.; Lukaszewski, R.A.; Thiéfin, G.; Sockalingum, G.D. Developing and Understanding Biofluid Vibrational Spectroscopy: A Critical Review. Chem. Soc. Rev. 2016, 45, 1803–1818. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; ur Rehman, D.I. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Petibois, C.; Déléris, G. Chemical Mapping of Tumor Progression by FT-IR Imaging: Towards Molecular Histopathology. Trends Biotechnol. 2006, 24, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Barth, A. Infrared Spectroscopy of Proteins. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef]
- Abbas, S.; Simsek Ozek, N.; Emri, S.; Koksal, D.; Severcan, M.; Severcan, F. Diagnosis of Malignant Pleural Mesothelioma from Pleural Fluid by Fourier Transform-Infrared Spectroscopy Coupled with Chemometrics. J. Biomed. Opt. 2018, 23, 1. [Google Scholar] [CrossRef]
- Bellisola, G.; Sorio, C. Infrared Spectroscopy and Microscopy in Cancer Research and Diagnosis. Am. J. Cancer Res. 2012, 2, 1–21. [Google Scholar]
- Rodrigues, L.M.; Magrini Alva, T.D.; da Silva Martinho, H.; Almeida, J.D. Analysis of Saliva Composition in Patients with Burning Mouth Syndrome (BMS) by FTIR Spectroscopy. Vib. Spectrosc. 2019, 100, 195–201. [Google Scholar] [CrossRef]
- Eckel, R.; Huo, H.; Guan, H.-W.; Hu, X.; Che, X.; Huang, W.-D. Characteristic Infrared Spectroscopic Patterns in the Protein Bands of Human Breast Cancer Tissue. Vib. Spectrosc. 2001, 27, 165–173. [Google Scholar] [CrossRef]
- Kim, Y.; Rose, C.A.; Liu, Y.; Ozaki, Y.; Datta, G.; Tu, A.T. FT-IR and Near-Infared FT-Raman Studies of the Secondary Structure of Insulinotropin in the Solid State: α-Helix to β-Sheet Conversion Induced by Phenol and/or by High Shear Force. J. Pharm. Sci. 1994, 83, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.W.; Wild, C.P. (Eds.) World Cancer Report 2014; IARC Publications: Lyon, France, 2014. [Google Scholar]
- Ferreira, I.C.C.; Aguiar, E.M.G.; Silva, A.T.F.; Santos, L.L.D.; Cardoso-Sousa, L.; Araújo, T.G.; Santos, D.W.; Goulart, L.R.; Sabino-Silva, R.; Maia, Y.C.P. Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Analysis of Saliva for Breast Cancer Diagnosis. J. Oncol. 2020, 2020, 4343590. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. Early Diagnosis of Breast Cancer. Sensors 2017, 17, 1572. [Google Scholar] [CrossRef]
- Nascimento, M.H.C.; Marcarini, W.D.; Folli, G.S.; da Silva Filho, W.G.; Barbosa, L.L.; de Paulo, E.H.; Vassallo, P.F.; Mill, J.G.; Barauna, V.G.; Martin, F.L.; et al. Noninvasive Diagnostic for COVID-19 from Saliva Biofluid via FTIR Spectroscopy and Multivariate Analysis. Anal. Chem. 2022, 94, 2425–2433. [Google Scholar] [CrossRef]
- Martinez-Cuazitl, A.; Vazquez-Zapien, G.J.; Sanchez-Brito, M.; Limon-Pacheco, J.H.; Guerrero-Ruiz, M.; Garibay-Gonzalez, F.; Delgado-Macuil, R.J.; de Jesus, M.G.G.; Corona-Perezgrovas, M.A.; Pereyra-Talamantes, A.; et al. ATR-FTIR Spectrum Analysis of Saliva Samples from COVID-19 Positive Patients. Sci. Rep. 2021, 11, 19980. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Aboul-Enein, H.Y. Determination of COVID-19 Viruses in Saliva Using Fourier Transform Infrared Spectroscopy. Chin. J. Anal. Chem. 2022, 50, 100178. [Google Scholar] [CrossRef]
- Pokhrel, P.; Hu, C.; Mao, H. Detecting the Coronavirus (COVID-19). ACS Sens. 2020, 5, 2283–2296. [Google Scholar] [CrossRef]
- Barauna, V.G.; Singh, M.N.; Barbosa, L.L.; Marcarini, W.D.; Vassallo, P.F.; Mill, J.G.; Ribeiro-Rodrigues, R.; Campos, L.C.G.; Warnke, P.H.; Martin, F.L. Ultrarapid On-Site Detection of SARS-CoV-2 Infection Using Simple ATR-FTIR Spectroscopy and an Analysis Algorithm: High Sensitivity and Specificity. Anal. Chem. 2021, 93, 2950–2958. [Google Scholar] [CrossRef]
- Amarilla, A.A.; Sng, J.D.J.; Parry, R.; Deerain, J.M.; Potter, J.R.; Setoh, Y.X.; Rawle, D.J.; Le, T.T.; Modhiran, N.; Wang, X.; et al. A Versatile Reverse Genetics Platform for SARS-CoV-2 and Other Positive-Strand RNA Viruses. Nat. Commun. 2021, 12, 3431. [Google Scholar] [CrossRef]
- Kazmer, S.T.; Hartel, G.; Robinson, H.; Richards, R.S.; Yan, K.; van Hal, S.J.; Chan, R.; Hind, A.; Bradley, D.; Zieschang, F.; et al. Pathophysiological Response to SARS-CoV-2 Infection Detected by Infrared Spectroscopy Enables Rapid and Robust Saliva Screening for COVID-19. Biomedicines 2022, 10, 351. [Google Scholar] [CrossRef] [PubMed]
- Wood, B.R.; Kochan, K.; Bedolla, D.E.; Salazar-Quiroz, N.; Grimley, S.L.; Perez-Guaita, D.; Baker, M.J.; Vongsvivut, J.; Tobin, M.J.; Bambery, K.R.; et al. Infrared Based Saliva Screening Test for COVID-19. Angew. Chem. Int. Ed. 2021, 60, 17102–17107. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Berwal, P.; Nagaraj, N.; Swami, S.; Jivaji, P.; Narayan, S. Neonatal Sepsis: Epidemiology, Clinical Spectrum, Recent Antimicrobial Agents and Their Antibiotic Susceptibility Pattern. Int. J. Contemp. Pediatr. 2015, 2, 176–180. [Google Scholar] [CrossRef]
- Zea-Vera, A.; Ochoa, T.J. Challenges in the Diagnosis and Management of Neonatal Sepsis. J. Trop. Pediatr. 2015, 61, 1–13. [Google Scholar] [CrossRef]
- Yunanto, A.; Iskandar; Utama, A.A.; Muthmainnah, N.; Suhartono, E. Early Detection of Neonatal Sepsis Using Fourier Transformation Infrared Spectroscopy (FTIR). In Proceedings of the International Conference on Bioinformatics and Nano-Medicine from Natrual Resources for Biomedical Research, 3rd Annual Scientific Meeting for Biomedical Sciences, Malang, Indonesia, 21–23 November; 2019; p. 020026. [Google Scholar]
- Biworo, A.; Azizi, N.; Padelia, R.; Raharjo, M.; Azima, O.; Suhartono, E. Anti-Metalotoxic Properties of Kelakai (Stenochlaena Palustris) Leaves against Cadmium-Induced Liver Tissue Damage. Asian J. Pharm. Clin. Res. 2018, 11, 43–46. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/Health-Topics/Diabetes#tab=tab_1 (accessed on 28 March 2023).
- Srinivasan, M.; Blackburn, C.; Mohamed, M.; Sivagami, A.V.; Blum, J. Literature-Based Discovery of Salivary Biomarkers for Type 2 Diabetes Mellitus. Biomark Insights 2015, 10, 39–45. [Google Scholar] [CrossRef]
- Bajaj, S.; Prasad, S.; Gupta, A.; Singh, V.B. Oral Manifestations in Type-2 Diabetes and Related Complications. Indian J. Endocrinol. Metab. 2012, 16, 777–779. [Google Scholar] [CrossRef]
- Rao, P.V.; Laurie, A.; Bean, E.S.; Roberts, C.T.; Nagalla, S.R. Salivary Protein Glycosylation as a Noninvasive Biomarker for Assessment of Glycemia. J. Diabetes Sci. Technol. 2015, 9, 97–104. [Google Scholar] [CrossRef]
- Rao, P.V.; Reddy, A.P.; Lu, X.; Dasari, S.; Krishnaprasad, A.; Biggs, E.; Roberts, C.T.; Nagalla, S.R. Proteomic Identification of Salivary Biomarkers of Type-2 Diabetes. J. Proteome Res. 2009, 8, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Border, M.B.; Schwartz, S.; Carlson, J.; Dibble, C.F.; Kohltfarber, H.; Offenbacher, S.; Buse, J.B.; Bencharit, S. Exploring Salivary Proteomes in Edentulous Patients with Type 2 Diabetes. Mol. Biosyst. 2012, 8, 1304–1310. [Google Scholar] [CrossRef]
- Zloczower, M.; Reznick, A.Z.; Zouby, R.O.; Nagler, R.M. Relationship of Flow Rate, Uric Acid, Peroxidase, and Superoxide Dismutase Activity Levels with Complications in Diabetic Patients: Can Saliva Be Used to Diagnose Diabetes? Antioxid. Redox Signal. 2007, 9, 765–773. [Google Scholar] [CrossRef]
- Nogueira, M.S.; Barreto, A.L.; Furukawa, M.; Rovai, E.S.; Bastos, A.; Bertoncello, G.; e Silva, L.F.D.C. FTIR Spectroscopy as a Point of Care Diagnostic Tool for Diabetes and Periodontitis: A Saliva Analysis Approach. Photodiagnosis Photodyn. Ther. 2022, 40, 103036. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Howard, M.S.; Dussan, K.; Dooley, S. Mechanism and Theory of D-Glucopyranose Homogeneous Acid Catalysis in the Aqueous Solution Phase. Phys. Chem. Chem. Phys. 2019, 21, 17993–18011. [Google Scholar] [CrossRef] [PubMed]
- Barsberg, S. Prediction of Vibrational Spectra of Polysaccharides-Simulated IR Spectrum of Cellulose Based on Density Functional Theory (DFT). J. Phys. Chem. B 2010, 114, 11703–11708. [Google Scholar] [CrossRef]
- Caixeta, D.C.; Aguiar, E.M.G.; Cardoso-Sousa, L.; Coelho, L.M.D.; Oliveira, S.W.; Espindola, F.S.; Raniero, L.; Crosara, K.T.B.; Baker, M.J.; Siqueira, W.L.; et al. Salivary Molecular Spectroscopy: A Sustainable, Rapid and Non-Invasive Monitoring Tool for Diabetes Mellitus during Insulin Treatment. PLoS ONE 2020, 15, e0223461. [Google Scholar] [CrossRef]
- Sabino-Silva, R.; Okamoto, M.M.; David-Silva, A.; Mori, R.C.; Freitas, H.S.; Machado, U.F. Increased SGLT1 Expression in Salivary Gland Ductal Cells Correlates with Hyposalivation in Diabetic and Hypertensive Rats. Diabetol. Metab. Syndr. 2013, 5, 64. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A.J.; Oyler, J.M.; Cone, E.J. Comparison of Heroin and Cocaine Concentrations in Saliva with Concentrations in Blood and Plasma. J. Anal. Toxicol. 1995, 19, 359–374. [Google Scholar] [CrossRef]
- NIST National Institute of Standards and Technology. Available online: https://www.nist.gov/ (accessed on 25 March 2023).
- Sigma-Aldrich. The Aldrich Library of FT-IR Spectra, 2nd ed.; Aldrich: Milwaukee, WI, USA, 1997; Volume 3. [Google Scholar]
- Hans, K.M.-C.; Müller, S.; Sigrist, M.W. Infrared Attenuated Total Reflection (IR-ATR) Spectroscopy for Detecting Drugs in Human Saliva. Drug Test Anal. 2012, 4, 420–429. [Google Scholar] [CrossRef]
- Rodrigues, R.P.; Aguiar, E.M.; Cardoso-Sousa, L.; Caixeta, D.C.; Guedes, C.C.; Siqueira, W.L.; Maia, Y.C.P.; Cardoso, S.V.; Sabino-Silva, R. Differential Molecular Signature of Human Saliva Using ATR-FTIR Spectroscopy for Chronic Kidney Disease Diagnosis. Braz. Dent. J. 2019, 30, 437–445. [Google Scholar] [CrossRef]
- Krueger, K.; Koch, K.; Jühling, A.; Tepel, M.; Scholze, A. Low Expression of Thiosulfate Sulfurtransferase (Rhodanese) Predicts Mortality in Hemodialysis Patients. Clin. Biochem. 2010, 43, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Hasuike, Y.; Nakanishi, T.; Moriguchi, R.; Otaki, Y.; Nanami, M.; Hama, Y.; Naka, M.; Miyagawa, K.; Izumi, M.; Takamitsu, Y. Accumulation of Cyanide and Thiocyanate in Haemodialysis Patients. Nephrol. Dial. Transplant. 2004, 19, 1474–1479. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delrue, C.; De Bruyne, S.; Speeckaert, M.M. Unlocking the Diagnostic Potential of Saliva: A Comprehensive Review of Infrared Spectroscopy and Its Applications in Salivary Analysis. J. Pers. Med. 2023, 13, 907. https://doi.org/10.3390/jpm13060907
Delrue C, De Bruyne S, Speeckaert MM. Unlocking the Diagnostic Potential of Saliva: A Comprehensive Review of Infrared Spectroscopy and Its Applications in Salivary Analysis. Journal of Personalized Medicine. 2023; 13(6):907. https://doi.org/10.3390/jpm13060907
Chicago/Turabian StyleDelrue, Charlotte, Sander De Bruyne, and Marijn M. Speeckaert. 2023. "Unlocking the Diagnostic Potential of Saliva: A Comprehensive Review of Infrared Spectroscopy and Its Applications in Salivary Analysis" Journal of Personalized Medicine 13, no. 6: 907. https://doi.org/10.3390/jpm13060907
APA StyleDelrue, C., De Bruyne, S., & Speeckaert, M. M. (2023). Unlocking the Diagnostic Potential of Saliva: A Comprehensive Review of Infrared Spectroscopy and Its Applications in Salivary Analysis. Journal of Personalized Medicine, 13(6), 907. https://doi.org/10.3390/jpm13060907