Current Cardioprotective Strategies for the Prevention of Radiation-Induced Cardiotoxicity in Left-Sided Breast Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Relevant Sections
5.1. Natural Antioxidants
- Vitamin E: reduces nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, inhibits lipid peroxidation, and downregulates the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB).
- Silymarin: stimulates nuclear factor erythroid 2–related factor 2(Nrf2) expression and downregulates NF-κB.
- Resveratrol: reduces NADPH oxidase uncoupling and endothelial nitric oxide (eNOS) and upregulates antioxidant defense enzymes.
- Lycopene: scavenges singlet oxygen, sulfur, nitrogen dioxide, and sulfonyl-free radicals.
- Melatonin: stimulates the enzymatic antioxidant system.
- Hesperidin: passivates NADPH oxidase and inhibits Transforming growth factor beta 1 (TGF-β1) mRNA expression.
- Curcumin: (a) attenuates the IL-4 protein upregulation and its receptor, IL4Ra1, and (b) the expression of the dual oxidases (Duox1 and Duox2) responsible for extracellular matrix stabilization via oxidative cross-linking.
- Zingerone: (a) decreases malondialdehyde levels, (b) increases glutathione/catalase activity, (c) reduces inflammatory markers, i.e., tumor necrosis factor-alpha, cardiac myeloperoxidase activity, and cyclooxygenase-2 protein, and (d) reduces caspase-3 gene expression and nuclear DNA fragmentation.
5.2. Pharmacological Drugs
5.3. Modern Radiotherapy Techniques
5.3.1. Prone Positioning
5.3.2. Respiratory Gating Techniques
5.3.3. Proton Beam Therapy
5.3.4. Intensity Modulated Radiotherapy
5.3.5. Volumetric Modulated Arc Therapy
5.3.6. Helical Tomotherapy
5.3.7. Surface-Guided Radiation Therapy
6. Conclusions
7. Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.; World Health Organisation. Breast Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 26 March 2021).
- Fahad Ullah, M. Breast Cancer: Current Perspectives on the Disease Status. In Breast Cancer Metastasis and Drug Resistance; Ahmad, A., Ed.; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2019; Volume 1152. [Google Scholar] [CrossRef]
- Barbara, R.-C.; Piotr, R.; Kornel, B.; Elżbieta, Z.; Danuta, R.; Eduardo, N. Divergent Impact of Breast Cancer Laterality on Clinicopathological, Angiogenic, and Hemostatic Profiles: A Potential Role of Tumor Localization in Future Outcomes. J. Clin. Med. 2020, 9, 1708. [Google Scholar] [CrossRef]
- Mokone-Fatunla, D.H.; Koto, M.Z.; Becker, J.H.R.; Bondo, M.; Mundawarara, S. Laterality of breast cancer at Dr George Mukhari Academic Hospital. S. Afr. J. Surg. 2019, 57, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Amer, M.H. Genetic factors and breast cancer laterality. Cancer Manag. Res. 2014, 6, 191–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennequin, C.; Barillot, I.; Azria, D.; Belkacémi, Y.; Bollet, M.; Chauvet, B.; Cowen, D.; Cutuli, B.; Fourquet, A.; Hannoun-Lévi, J.; et al. Radiothérapie du cancer du sein [Radiotherapy of breast cancer]. Cancer Radiother. 2016, 20, S139–S146. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.; Pahl, R.; Huber, K.; Eilf, K.; Dunst, J. Cardiac Toxicity after Radiotherapy for Breast Cancer: Myths and Facts. Breast Care 2015, 10, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, R.M. Radiotherapy for Breast Cancer: Curing the Cancer While Protecting the Heart. Isr. Med. Assoc. J. 2018, 20, 582–583. [Google Scholar]
- Henson, K.E.; McGale, P.; Darby, S.C.; Parkin, M.; Wang, Y.; Taylor, C.W. Cardiac mortality after radiotherapy, chemotherapy and endocrine therapy for breast cancer: Cohort study of 2 million women from 57 cancer registries in 22 countries. Int. J. Cancer 2020, 147, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Rygiel, K. Cardiotoxic effects of radiotherapy and strategies to reduce them in patients with breast cancer: An overview. J. Cancer Res. Ther. 2017, 13, 186–192. [Google Scholar] [CrossRef]
- Lee, M.S.; Finch, W.; Mahmud, E. Cardiovascular Complications of Radiotherapy. Am. J. Cardiol. 2013, 112, 1688–1696. [Google Scholar] [CrossRef]
- Darby, S.C.; Ewertz, M.; McGale, P.; Bennet, A.M.; Blom-Goldman, U.; Brønnum, D.; Correa, C.; Cutter, D.; Gagliardi, G.; Gigante, B.; et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 2013, 368, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Piroth, M.D.; Baumann, R.; Budach, W.; Dunst, J.; Feyer, P.; Fietkau, R.; Haase, W.; Harms, W.; Hehr, T.; Krug, D.; et al. Heart toxicity from breast cancer radiotherapy: Current findings, assessment, and prevention. Strahlenther. und Onkol. 2018, 195, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Abdou, Y.; Gupta, M.; Asaoka, M.; Attwood, K.; Mateusz, O.; Gandhi, S.; Takabe, K. Left sided breast cancer is associated with aggressive biology and worse outcomes than right sided breast cancer. Sci. Rep. 2022, 12, 13377. [Google Scholar] [CrossRef]
- Sakyanun, P.; Saksornchai, K.; Nantavithya, C.; Chakkabat, C.; Shotelersuk, K. The effect of deep inspiration breath-hold technique on left anterior descending coronary artery and heart dose in left breast irradiation. Radiat. Oncol. J. 2020, 38, 181–188. [Google Scholar] [CrossRef]
- Gaasch, A.; Schönecker, S.; Simonetto, C.; Eidemüller, M.; Pazos, M.; Reitz, D.; Rottler, M.; Freislederer, P.; Braun, M.; Würstlein, R.; et al. Heart sparing radiotherapy in breast cancer: The importance of baseline cardiac risks. Radiat. Oncol. 2020, 15, 117. [Google Scholar] [CrossRef] [PubMed]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef]
- Budny, A.; Starosławska, E.; Budny, B.; Wójcik, R.; Hys, M.; Kozłowski, P.; Budny, W.; Brodzik, A.; Burdan, F. Epidemiologiaorazdi-agnostykarakapiersi [Epidemiology and diagnosis of breast cancer]. Pol. Merkur Lek. 2019, 46, 195–204. [Google Scholar]
- Kruk, J.; Aboul-Enein, H.Y. Psychological stress and the risk of breast cancer: A case–control study. Cancer Detect. Prev. 2004, 28, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Haussmann, J.; Budach, W.; Nestle-Krämling, C.; Wollandt, S.; Tamaskovics, B.; Corradini, S.; Bölke, E.; Krug, D.; Fehm, T.; Ruckhäberle, E.; et al. Predictive Factors of Long-Term Survival after Neoadjuvant Radiotherapy and Chemotherapy in High-Risk Breast Cancer. Cancers 2022, 14, 4031. [Google Scholar] [CrossRef] [PubMed]
- Padegimas, A.; Clasen, S.; Ky, B. Cardioprotective strategies to prevent breast cancer therapy-induced cardiotoxicity. Trends Cardiovasc. Med. 2020, 30, 22–28. [Google Scholar] [CrossRef]
- Demirci, S.; Nam, J.; Hubbs, J.L.; Nguyen, T.; Marks, L.B. Radiation-Induced Cardiac Toxicity After Therapy for Breast Cancer: Interaction Between Treatment Era and Follow-Up Duration. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Ferdinand, S.; Mondal, M.; Mallik, S.; Goswami, J.; Das, S.; Manir, K.S.; Sen, A.; Palit, S.; Sarkar, P.; Mondal, S.; et al. Dosimetric analysis of Deep Inspiratory Breath-hold technique (DIBH) in left-sided breast cancer radiotherapy and evaluation of pre-treatment predictors of cardiac doses for guiding patient selection for DIBH. Tech. Innov. Patient Support Radiat. Oncol. 2021, 17, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Edvardsson, A.; Nilsson, M.P.; Amptoulach, S.; Ceberg, S. Comparison of doses and NTCP to risk organs with enhanced inspiration gating and free breathing for left-sided breast cancer radiotherapy using the AAA algorithm. Radiat. Oncol. 2015, 10, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varga, Z.; Cserháti, A.; Rárosi, F.; Boda, K.; Gulyás, G.; Együd, Z.; Kahán, Z. Individualized positioning for maximum heart protection during breast irradiation. Acta Oncol. 2014, 53, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Ishikawa, Y.; Ito, K.; Yamamoto, T.; Umezawa, R.; Jingu, K. Evaluation of DIBH and VMAT in Hypofractionated Radiotherapy for Left-Sided Breast Cancers After Breast-Conserving Surgery: A Planning Study. Technol. Cancer Res. Treat. 2021, 20, 15330338211048706. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Ding, S.; Yuan, X.; Shu, Y.; Liang, J.; Mao, Q.; Jiang, C.; Li, J. A dosimetric and radiobiological evaluation of VMAT following mastectomy for patients with left-sided breast cancer. Radiat. Oncol. 2021, 16, 171. [Google Scholar] [CrossRef]
- Nichols, G.P.; Fontenot, J.D.; Gibbons, J.P.; Sanders, M. Evaluation of volumetric modulated Arc therapy for postmastectomy treatment. Radiat. Oncol. 2014, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Cuaron, J.; Braunstein, L.; Gillespie, E.; Kahn, A.; McCormick, B.; Mah, D.; Chon, B.; Tsai, H.; Powell, S.; et al. Early outcomes of breast cancer patients treated with post-mastectomy uniform scanning proton therapy. Radiother. Oncol. 2019, 132, 250–256. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Lavilla, M.; Kim, J.N.; Fang, L.C. Cardiac sparing characteristics of internal mammary chain radiotherapy using deep inspiration breath hold for left-sided breast cancer. Radiat. Oncol. 2018, 13, 103. [Google Scholar] [CrossRef]
- Díaz-Gavela, A.A.; Figueiras-Graillet, L.; Luis, M.; Segura, J.S.; Ciérvide, R.; Peñalver, E.d.C.; Couñago, F.; Arenas, M.; López-Fernández, T. Breast Radiotherapy-Related Cardiotoxicity. When, How, Why. Risk Prevention and Control Strategies. Cancers 2021, 13, 1712. [Google Scholar] [CrossRef]
- Gkantaifi, A.; Papadopoulos, C.; Spyropoulou, D.; Toumpourleka, M.; Iliadis, G.; Kardamakis, D.; Nikolaou, M.; Tsoukalas, N.; Kyrgias, G.; Tolia, M. Breast Radiotherapy and Early Adverse Cardiac Effects. The Role of Serum Biomarkers and Strain Echocardiography. Anticancer Res. 2019, 39, 1667–1673. [Google Scholar] [CrossRef] [Green Version]
- Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Tan, T.C.; Cohen, V.; Banchs, J.; Carver, J.R.; Wiegers, S.E.; et al. Assessment of Echocardiography and Biomarkers for the Extended Prediction of Cardiotoxicity in Patients Treated With Anthracyclines, Taxanes, and Trastuzumab. Circ. Cardiovasc. Imaging 2012, 5, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Bottinor, W.J.; Migliore, C.K.; Lenneman, C.A.; Stoddard, M.F. Echocardiographic Assessment of Cardiotoxic Effects of Cancer Therapy. Curr. Cardiol. Rep. 2016, 18, 99. [Google Scholar] [CrossRef]
- Kato, T.S.; Noda, A.; Izawa, H.; Yamada, A.; Obata, K.; Nagata, K.; Iwase, M.; Murohara, T.; Yokota, M. Discrimination of Nonobstructive Hypertrophic Cardiomyopathy From Hypertensive Left Ventricular Hypertrophy on the Basis of Strain Rate Imaging by Tissue Doppler Ultrasonography. Circulation 2004, 110, 3808–3814. [Google Scholar] [CrossRef] [Green Version]
- Minoshima, M.; Noda, A.; Nishizawa, T.; Hara, Y.; Sugiura, M.; Iino, S.; Nagata, K.; Koike, Y.; Murohara, T. Endomyocardial Radial Strain Imaging and Left Ventricular Relaxation Abnormalities in Patients With Hypertrophic Cardiomyopathy or Hypertensive Left Ventricular Hypertrophy. Circ. J. 2009, 73, 2294–2299. [Google Scholar] [CrossRef] [Green Version]
- Heggemann, F.; Grotz, H.; Welzel, G.; Dösch, C.; Hansmann, J.; Kraus-Tiefenbacher, U.; Attenberger, U.; Schönberg, S.O.; Borggrefe, M.; Wenz, F.; et al. Cardiac Function After Multimodal Breast Cancer Therapy Assessed With Functional Magnetic Resonance Imaging and Echocardiography Imaging. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Lo, Q.; Hee, L.; Batumalai, V.; Allman, C.; MacDonald, P.; Delaney, G.P.; Lonergan, D.; Thomas, L. Subclinical Cardiac Dysfunction Detected by Strain Imaging During Breast Irradiation With Persistent Changes 6 Weeks After Treatment. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Pudil, R.; Mueller, C.; Čelutkienė, J.; Henriksen, P.A.; Lenihan, D.; Dent, S.; Barac, A.; Stanway, S.; Moslehi, J.; Suter, T.M.; et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: A position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 1966–1983. [Google Scholar] [CrossRef]
- Podlesnikar, T.; Berlot, B.; Dolenc, J.; Goričar, K.; Marinko, T. Radiotherapy-Induced Cardiotoxicity: The Role of Multimodality Cardiovascular Imaging. Front. Cardiovasc. Med. 2022, 9, 887705. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, D.; Yang, P. BNP as a potential biomarker for cardiac damage of breast cancer after radiotherapy: A meta-analysis. Medicine 2019, 98, e16507. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Ping, Z.; Peng, Y.; Lang, H.; Xinyong, C.; Zhiyi, Z.; Xiaocheng, W.; Hong, Z.; Liang, S. Oxidative Stress in Radiation-Induced Cardiotoxicity. Oxidative Med. Cell. Longev. 2020, 2020, 3579143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musa, A.E.; Shabeeb, D. Radiation-Induced Heart Diseases: Protective Effects of Natural Products. Medicina 2019, 55, 126. [Google Scholar] [CrossRef] [Green Version]
- De, A.; Kuppusamy, G. Metformin in breast cancer: Preclinical and clinical evidence. Curr. Probl. Cancer 2020, 44, 100488. [Google Scholar] [CrossRef]
- Ding, Y.; Zhou, Y.; Ling, P.; Feng, X.; Luo, S.; Zheng, X.; Little, P.J.; Xu, S.; Weng, J. Metformin in cardiovascular diabetology: A focused review of its impact on endothelial function. Theranostics 2021, 11, 9376–9396. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-W.; Park, J.-E.; Kim, S.-R.; Sim, M.-K.; Kang, C.-M.; Kim, K.S. Metformin alleviates ionizing radiation-induced senescence by restoring BARD1-mediated DNA repair in human aortic endothelial cells. Exp. Gerontol. 2022, 160, 111706. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.-M.; Hsieh, M.-C.; Qin, L.; Zhang, J.; Wu, S.-Y. Metformin reduces radiation-induced cardiac toxicity risk in patients having breast cancer. Am. J. Cancer Res. 2019, 9, 1017–1026. [Google Scholar]
- Joo, J.H.; Kim, S.S.; Ahn, S.D.; Kwak, J.; Jeong, C.; Ahn, S.-H.; Son, B.-H.; Lee, J.W. Cardiac dose reduction during tangential breast irradiation using deep inspiration breath hold: A dose comparison study based on deformable image registration. Radiat. Oncol. 2015, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Saini, A.S.; Hwang, C.S.; Biagioli, M.C.; Das, I.J. Evaluation of sparing organs at risk (OARs) in left-breast irradiation in the supine and prone positions and with deep inspiration breath-hold. J. Appl. Clin. Med. Phys. 2018, 19, 195–204. [Google Scholar] [CrossRef]
- Koutroumpakis, E.; Palaskas, N.L.; Lin, S.H.; Abe, J.-I.; Liao, Z.; Banchs, J.; Deswal, A.; Yusuf, S.W. Modern Radiotherapy and Risk of Cardiotoxicity. Chemotherapy 2020, 65, 65–76. [Google Scholar] [CrossRef]
- Schönecker, S.; Walter, F.; Freislederer, P.; Marisch, C.; Scheithauer, H.; Harbeck, N.; Corradini, S.; Belka, C. Treatment planning and evaluation of gated radiotherapy in left-sided breast cancer patients using the CatalystTM/SentinelTM system for deep inspiration breath-hold (DIBH). Radiat. Oncol. 2016, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Bergom, C.; Currey, A.; Desai, N.; Tai, A.; Strauss, J. Deep Inspiration Breath Hold: Techniques and Advantages for Cardiac Sparing During Breast Cancer Irradiation. Front. Oncol. 2018, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Berg, M.; Lorenzen, E.L.; Jensen, I.; Thomsen, M.S.; Lutz, C.M.; Refsgaard, L.; Nissen, H.D.; Offersen, B.V. The potential benefits from respiratory gating for breast cancer patients regarding target coverage and dose to organs at risk when applying strict dose limits to the heart: Results from the DBCG HYPO trial. Acta Oncol. 2018, 57, 113–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trivedi, S.J.; Tang, S.; Byth, K.; Stefani, L.; Lo, Q.; Otton, J.; Jameson, M.; Tran, D.; Batumalai, V.; Holloway, L.; et al. Segmental Cardiac Radiation Dose Determines Magnitude of Regional Cardiac Dysfunction. J. Am. Heart Assoc. 2021, 10, e019476. [Google Scholar] [CrossRef]
- Walker, V.; Lairez, O.; Fondard, O.; Jimenez, G.; Camilleri, J.; Panh, L.; Broggio, D.; Bernier, M.-O.; Laurier, D.; Ferrières, J.; et al. Myocardial deformation after radiotherapy: A layer-specific and territorial longitudinal strain analysis in a cohort of left-sided breast cancer patients (BACCARAT study). Radiat. Oncol. 2020, 15, 201. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fargier-Bochaton, O.; Dipasquale, G.; Laouiti, M.; Kountouri, M.; Gorobets, O.; Nguyen, N.P.; Miralbell, R.; Vinh-Hung, V. Is prone free breathing better than supine deep inspiration breath-hold for left whole-breast radiotherapy? A dosimetric analysis. Strahlenther. Onkol. 2021, 197, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Bergom, C.; Bradley, J.A.; Ng, A.K.; Samson, P.; Robinson, C.; Lopez-Mattei, J.; Mitchell, J.D. Past, Present, and Future of Radiation-Induced Cardiotoxicity: Refinements in Targeting, Surveillance, and Risk Stratification. JACC CardioOncology 2021, 3, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Skyttä, T.; Tuohinen, S.; Boman, E.; Virtanen, V.; Raatikainen, P.; Kellokumpu-Lehtinen, P.-L. Troponin T-release associates with cardiac radiation doses during adjuvant left-sided breast cancer radiotherapy. Radiat. Oncol. 2015, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Gkantaifi, A.; Papadopoulos, C.; Spyropoulou, D.; Toumpourleka, M.; Iliadis, G.; Tsoukalas, N.; Kyrgias, G.; Tolia, M. Evaluation of the Irradiated Volume of the Heart and Cardiac Substructures After Left Breast Radiotherapy. Anticancer Res. 2020, 40, 3003–3009. [Google Scholar] [CrossRef]
- Falco, M.; Masojć, B.; Macała, A.; Łukowiak, M.; Woźniak, P.; Malicki, J. Deep inspiration breath hold reduces the mean heart dose in left breast cancer radiotherapy. Radiol. Oncol. 2021, 55, 212–220. [Google Scholar] [CrossRef]
- Lai, J.M.; Zhong, F.M.; Deng, J.M.; Hu, S.B.; Shen, R.B.; Luo, H.; Luo, Y.B. Prone position versus supine position in postoperative radiotherapy for breast cancer. Medicine 2021, 100, e26000. [Google Scholar] [CrossRef]
- Kirby, A.M.; Evans, P.; Donovan, E.; Convery, H.M.; Haviland, J.; Yarnold, J.R. Prone versus supine positioning for whole and partial-breast radiotherapy: A comparison of non-target tissue dosimetry. Radiother. Oncol. 2010, 96, 178–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varga, Z.; Hideghéty, K.; Mező, T.; Nikolényi, A.; Thurzó, L.; Kahán, Z. Individual Positioning: A Comparative Study of Adjuvant Breast Radiotherapy in the Prone Versus Supine Position. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griem, K.L.; Fetherston, P.; Kuznetsova, M.; Foster, G.S.; Shott, S.; Chu, J. Three-dimensional photon dosimetry: A comparison of treatment of the intact breast in the supine and prone position. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Yu, J.I.; Park, W.; Choi, D.H. Korean First Prospective Phase II Study, Feasibility of Prone Position in Postoperative Whole Breast Radiotherapy: A Dosimetric Comparison. Cancer Res. Treat. 2019, 51, 1370–1379. [Google Scholar] [CrossRef] [Green Version]
- Kahán, Z.; Rárosi, F.; Gaál, S.; Cserháti, A.; Boda, K.; Darázs, B.; Kószó, R.; Lakosi, F.; Gulybán, Á.; Coucke, P.A.; et al. A simple clinical method for predicting the benefit of prone vs. supine positioning in reducing heart exposure during left breast radiotherapy. Radiother. Oncol. 2018, 126, 487–492. [Google Scholar] [CrossRef]
- Stowe, H.B.; Andruska, N.D.; Reynoso, F.; Thomas, M.; Bergom, C. Heart Sparing Radiotherapy Techniques in Breast Cancer: A Focus on Deep Inspiration Breath Hold. Breast Cancer Targets Ther. 2022, 14, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yang, D.; Zhang, X.; Teng, Y.; Yuan, W.; Zhang, Y.; He, R.; Tang, F.; Pang, J.; Han, B.; et al. Comparison of Deep Inspiration Breath Hold Versus Free Breathing in Radiotherapy for Left Sided Breast Cancer. Front. Oncol. 2022, 12, 845037. [Google Scholar] [CrossRef]
- Desai, N.; Currey, A.; Kelly, T.; Bergom, C. Nationwide Trends in Heart-Sparing Techniques Utilized in Radiation Therapy for Breast Cancer. Adv. Radiat. Oncol. 2019, 4, 246–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferini, G.; Molino, L.; Tripoli, A.; Valenti, V.; Illari, S.I.; Marchese, V.A.; Cravagno, I.R.; Borzi, G.R. Anatomical Predictors of Dosimetric Advantages for Deep-inspiration-breath-hold 3D-conformal Radiotherapy Among Women With Left Breast Cancer. Anticancer Res. 2021, 41, 1529–1538. [Google Scholar] [CrossRef]
- Taylor, C.; Correa, C.; Duane, F.K.; Aznar, M.C.; Anderson, S.J.; Bergh, J.; Dodwell, D.; Ewertz, M.; Gray, R.; Jagsi, R.; et al. Estimating the Risks of Breast Cancer Radiotherapy: Evidence From Modern Radiation Doses to the Lungs and Heart and From Previous Randomized Trials. J. Clin. Oncol. 2017, 35, 1641–1649. [Google Scholar] [CrossRef]
- Ferini, G.; Valenti, V.; Viola, A.; Umana, G.E.; Martorana, E. A Critical Overview of Predictors of Heart Sparing by Deep-Inspiration-Breath-Hold Irradiation in Left-Sided Breast Cancer Patients. Cancers 2022, 14, 3477. [Google Scholar] [CrossRef]
- Ferini, G.; Molino, L. Hypothesis of a decision-making algorithm for adjuvant radiotherapy in left-sided breast cancer patients. Tech. Innov. Patient Support Radiat. Oncol. 2021, 20, 64–65. [Google Scholar] [CrossRef]
- Marc, L.; Fabiano, S.; Wahl, N.; Linsenmeier, C.; Lomax, A.J.; Unkelbach, J. Combined proton–photon treatment for breast cancer. Phys. Med. Biol. 2021, 66, 235002. [Google Scholar] [CrossRef] [PubMed]
- Hug, E.B. Proton Therapy for Primary Breast Cancer. Breast Care 2018, 13, 168–172. [Google Scholar] [CrossRef]
- Musielak, M.; Suchorska, W.M.; Fundowicz, M.; Milecki, P.; Malicki, J. Future Perspectives of Proton Therapy in Minimizing the Toxicity of Breast Cancer Radiotherapy. J. Pers. Med. 2021, 11, 410. [Google Scholar] [CrossRef]
- Adeneye, S.; Akpochafor, M.; Adegboyega, B.; Alabi, A.; Adedewe, N.; Joseph, A.; Fatiregun, O.; Omojola, A.; Adebayo, A.; Oluwadara, E. Evaluation of Three-Dimensional Conformal Radiotherapy and Intensity Modulated Radiotherapy Techniques for Left Breast Post-Mastectomy Patients: Our Experience in Nigerian Sovereign Investment Authority-Lagos University Teaching Hospital Cancer Center, South-West Nigeria. Eur. J. Breast Health 2021, 17, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Shanei, A.; Amouheidari, A.; Abedi, I.; Kazemzadeh, A.; Jaafari, A. Radiobiological comparison of 3D conformal and intensity modulated radiation therapy in the treatment of left-sided breast cancer. Int. J. Radiat. Res. 2020, 18, 315–322. [Google Scholar]
- Figlia, V.; Simonetto, C.; Eidemüller, M.; Naccarato, S.; Sicignano, G.; De Simone, A.; Ruggieri, R.; Mazzola, R.; Matuschek, C.; Bölke, E.; et al. Mammary Chain Irradiation in Left-Sided Breast Cancer: Can We Reduce the Risk of Secondary Cancer and Ischaemic Heart Disease with Modern Intensity-Modulated Radiotherapy Techniques? Breast Care 2021, 16, 358–367. [Google Scholar] [CrossRef]
- Teoh, M.; Clark, C.H.; Wood, K.; Whitaker, S.; Nisbet, A. Volumetric modulated arc therapy: A review of current literature and clinical use in practice. Br. J. Radiol. 2011, 84, 967–996. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.-P.; Huang, Y.-C.; Wang, L.-Y.; Shueng, P.-W.; Tien, H.-J.; Chang, C.-H.; Chou, S.-F.; Hsieh, C.-H. Helical tomotherapy with a complete-directional-complete block technique effectively reduces cardiac and lung dose for left-sided breast cancer. Br. J. Radiol. 2020, 93, 20190792. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, D.; Bedwani, S.; Mascolo-Fortin, J.; Côté, N.; Bernard, A.-A.; Roberge, D.; Yassa, M.; Bahig, H.; Vu, T. Cardiac Sparing with Personalized Treatment Planning for Early-stage Left Breast Cancer. Cureus 2020, 12, e7247. [Google Scholar] [CrossRef] [Green Version]
- Laaksomaa, M.; Ahlroth, J.; Pynnönen, K.; Murtola, A.; Rossi, M.E. AlignRT®, Catalyst™ and RPM™ in locoregional radiotherapy of breast cancer with DIBH. Is IGRT still needed? Rep. Pr. Oncol. Radiother. 2022, 27, 797–808. [Google Scholar] [CrossRef]
- Kost, S.; Guo, B.; Xia, P.; Shah, C. Assessment of Setup Accuracy Using Anatomical Landmarks for Breast and Chest Wall Irradiation With Surface Guided Radiation Therapy. Pr. Radiat. Oncol. 2019, 9, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Svestad, J.G.; Heydari, M.; Mikalsen, S.G.; Flote, V.G.; Nordby, F.; Hellebust, T.P. Surface-guided positioning eliminates the need for skin markers in radiotherapy of right sided breast cancer: A single center randomized crossover trial. Radiother. Oncol. 2022, 177, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Li, G.; Hong, L.; Yorke, E.; Tang, X.; Mechalakos, J.G.; Zhang, P.; Cerviño, L.I.; Powell, S.; Berry, S.L. Reproducibility of chestwall and heart position using surface-guided versus RPM-guided DIBH radiotherapy for left breast cancer. J. Appl. Clin. Med. Phys. 2023, 24, e13755. [Google Scholar] [CrossRef] [PubMed]
First Author | Number of Treated Patients | Target | Delivery Technique | Dmean/heart (Gy) | Dmax/heart (Gy) | Dmean/LADCA (Gy) | Dmax/LADCA (Gy) | pvalue | ||
---|---|---|---|---|---|---|---|---|---|---|
Ferdinand S et al. [24] | 31 (Comparison of both techniques in the same patients, before treatment) | Breast or CW in left-sided BC patients after BCS and in those with high RFs after MRM | FB/DIBH | 4 | 39.4 | 12.6 | 31.9 | 39.15%reduction in mean heart dose in DIBH compared to FB(2.4 Gy vs. 4.01Gy) p < 0.001 | ||
2.4 | 31.5 | 8.7 | 25.8 | 19% reduction in maximum LAD dose and a 9.9% reduction in ipsilateral lung mean dose p = 0.036 | ||||||
Edvardsson A et al. [25] | 32 (Comparison of both techniques in the same patients, before treatment) | 16 patients: tangential breast irradiation to the WB after lumpectomy, 9 patients: locoregional RT after lumpectomy, 7 patients: locoregional RT after mastectomy | FB/EIG | 3.1 | - | 25.4 | - | Median V25Gy for heart, LAD decreased for EIG (2.2 to 0.2% and 40.2 to 0.1%, respectively) (p < 0.001) | ||
1.5 | - | 8.0 | - | MedianV25heart and LAD decreased for EIG (3.3 to 0.2% and 51.4 to 5.1%, respectively(p < 0.001) | ||||||
Varga Z et al. [26] | 83 (Comparison of both positions in the same patients, before treatment) | 3D-Conformal RT in left-sided BC patients. | Prone/Supine | Prone 2.18 ± 0.15 /Supine 2.89 ± 0.19 | - | Prone 11.06 ± 0.79/ Supine 13.7 ± 0.79 | - | Mean Heart Dose: Prone 2.18 ± 0.15 Supine 2.89 ± 0.19 <0.001 LAD Mean dose: 11.06 ± 0.79/ Supine 13.7 ± 0.79 p value = 0.014 | ||
Tang L et al. [27] | 11 | Left-sided BC patients after BCS | DIBH-3DCRT/FB-3DCRT | 0.88/1.52 | 13.80/29.33 | 2.21/3.04 | 5.94/12.29 | DIBH-3DCRT, dose reductions in all evaluation parameters of the heart and LADCA compared with those in the FB (p < 0.05). | ||
All patients were compared in FB and DIBH positions and in 3DCRT and VMAT techniques | Whole Breast | |||||||||
DB-VMAT | 0.47 | 5.32 | 1.43 | 3.76 | DIBH–VMAT dose reductions in heart and LADCA compared to 3DCRT plans (p < 0.05). | |||||
Zhang Y et al. [28] | 30 (Both IMRT and VMAT plans were created for each patient) | CW and IMN in left-sided BC patients after radical mastectomy | IMRT/ VMAT | 12.6 ± 0.7/11.5 ± 0.7 | - | - | - | ≤0.002 | ||
Nichols GP [29] | 15 (Both HT and VMAT plans were created for each patient) | CW and RLN after mastectomy and previously treated with HT (7 patients: bilateral CW and 8 patients: left CW) | HT/VMAT | 14.4 ± 0.6/12.9 ± 0.5 | - | - | 42.2 ± 1.6/38.3 ± 1.3 | <0.05 | ||
Luo L. et al. [30] | 36 All patients received proton therapy | Postmastectomy WB in left-sided BC | 3DCPT FB/DIBH | 0.84 Gy (RBE) (range 0–3.2 Gy) | 3.2 Gy (RBE) | - | - | - | ||
Nguyen MH et al. [31] | 49 (All patients were compared with both FB and DIBH treatment plans) | Left-sided BC patients after mastectomy or BCS 49 of whom received RNI | FB/DIBH | IMN treated | 6.73 | - | - | - | DIBH reduced the average mean heart dose from 6.73 Gy to 2.79 Gy in the IMN treated group and from 4.77 Gy to 1.55 Gy in the IMN untreated group compared to FB technique (both p < 0.001). | |
IMN untreated | 4.77 | - | - | - | ||||||
IMN treated | 2.79 | - | - | - | ||||||
IMN untreated | 1.55 | - | - | - | ||||||
Sakyanun P et al. [16] | 25 (All plans were created with FB and DIBH techniques and four radiation treatment plans) | WB, WB, and IMN in left-sided BC patients after BCS | FB/ DIBH | IMN treated | 10.24 | - | 31.98 | - | <0.0001 | |
IMN untreated | 5.38 | - | 19.84 | - | <0.0001 | |||||
IMN treated | 6.43 | - | 23.88 | - | <0.0001 | |||||
IMN untreated | 2.95 | - | 11.48 | - | <0.0001 |
First Author | Delivery Technique | Heart V5 (%) | Heart V10 (%) | Heart V20 (%) | Heart V25 (%) | Heart V40 (%) | LAD V20 (%) | LAD V25 (%) | |
---|---|---|---|---|---|---|---|---|---|
Ferdinand S et al. [24] | FB | 14.2 | 8.9 | - | - | - | - | - | |
DIBH | 7.6 | 3.4 | - | - | - | - | - | ||
pvalue | 0.00 | 0.00 | - | - | - | - | - | ||
Edvardsson A et al. [25] | FB | - | - | - | 3.3 | - | - | 51.4 | |
EIG | - | - | - | 0.2 | - | - | 5.1 | ||
pvalue | - | - | - | <0.001 | - | - | <0.001 | ||
Varga Z et al. [26] | Prone | - | - | - | 2.01 | - | 21.91 | - | |
Supine | - | - | - | 3.54 | - | 29.26 | - | ||
pvalue | - | - | - | 0.010 | - | <0.001 | - | ||
Tang L et al. [27] | FB-3DCRT | 2.68 | - | - | - | - | - | - | |
DB-3DCRT | 0.23 | - | - | - | - | - | - | ||
DB-VMAT | 0.04 | - | - | - | - | - | - | ||
pvalue | <0.01 | - | - | - | - | - | - | ||
Zhang Y et al. [28] | IMRT/VMAT | 27.9/20.9 | 12.2/9.1 | 7.4/4.6 | - | 2.0/0.7 | - | - | |
pvalue | <0.001 | <0.001 | <0.001 | - | <0.001 | - | - | ||
Luo L et al. [30] | 3DCPT | 4.3 | - | 0.5 | - | - | - | - | |
Nguyen MH et al. [31] | FB | IMN treated | 34.5 | 19.9 | 8.9 | 6.4 | - | - | - |
IMN untreated | 19.4 | 11.6 | 6.3 | 5.0 | - | - | - | ||
DIBH | IMN treated | 12.7 | 4.1 | 1.0 | 0.4 | - | - | - | |
IMN untreated | 2.8 | 0.8 | 0.2 | 0.1 | - | - | - | ||
pvalue | <0.001 | <0.001 | <0.001 | <0.001 | - | - | - | ||
Sakyanun P et al. [16] | FB | IMN treated | - | - | - | 16.96 | - | 13.96 | - |
IMN untreated | - | - | - | 8.20 | - | 6.22 | - | ||
DIBH | IMN treated | - | - | - | 10.37 | - | 7.50 | - | |
IMN untreated | - | - | - | 3.48 | - | 2.48 | - | ||
pvalue | - | - | - | <0.0001 | - | <0.0001 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikovia, V.; Chinis, E.; Gkantaifi, A.; Marketou, M.; Mazonakis, M.; Charalampakis, N.; Mavroudis, D.; Orfanidou, K.V.; Varveris, A.; Antoniadis, C.; et al. Current Cardioprotective Strategies for the Prevention of Radiation-Induced Cardiotoxicity in Left-Sided Breast Cancer Patients. J. Pers. Med. 2023, 13, 1038. https://doi.org/10.3390/jpm13071038
Nikovia V, Chinis E, Gkantaifi A, Marketou M, Mazonakis M, Charalampakis N, Mavroudis D, Orfanidou KV, Varveris A, Antoniadis C, et al. Current Cardioprotective Strategies for the Prevention of Radiation-Induced Cardiotoxicity in Left-Sided Breast Cancer Patients. Journal of Personalized Medicine. 2023; 13(7):1038. https://doi.org/10.3390/jpm13071038
Chicago/Turabian StyleNikovia, Vasiliki, Evangelos Chinis, Areti Gkantaifi, Maria Marketou, Michalis Mazonakis, Nikolaos Charalampakis, Dimitrios Mavroudis, Kornilia Vasiliki Orfanidou, Antonios Varveris, Chrysostomos Antoniadis, and et al. 2023. "Current Cardioprotective Strategies for the Prevention of Radiation-Induced Cardiotoxicity in Left-Sided Breast Cancer Patients" Journal of Personalized Medicine 13, no. 7: 1038. https://doi.org/10.3390/jpm13071038
APA StyleNikovia, V., Chinis, E., Gkantaifi, A., Marketou, M., Mazonakis, M., Charalampakis, N., Mavroudis, D., Orfanidou, K. V., Varveris, A., Antoniadis, C., & Tolia, M. (2023). Current Cardioprotective Strategies for the Prevention of Radiation-Induced Cardiotoxicity in Left-Sided Breast Cancer Patients. Journal of Personalized Medicine, 13(7), 1038. https://doi.org/10.3390/jpm13071038