
Citation: Ponsiglione, A.M.;

Angelone, F.; Amato, F.; Sansone, M.

A Statistical Approach to Assess the

Robustness of Radiomics Features in

the Discrimination of

Mammographic Lesions. J. Pers. Med.

2023, 13, 1104. https://doi.org/

10.3390/jpm13071104

Academic Editor: Serena Monti

Received: 30 May 2023

Revised: 1 July 2023

Accepted: 5 July 2023

Published: 7 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized 

Medicine

Article

A Statistical Approach to Assess the Robustness of Radiomics
Features in the Discrimination of Mammographic Lesions
Alfonso Maria Ponsiglione * , Francesca Angelone , Francesco Amato † and Mario Sansone *,†

Department of Information Technology and Electrical Engineering, University of Naples Federico II,
80125 Naples, Italy; francesca.angelone@unina.it (F.A.); framato@unina.it (F.A.)
* Correspondence: alfonsomaria.ponsiglione@unina.it (A.M.P.); msansone@unina.it (M.S.)
† These authors contributed equally to this work.

Abstract: Despite mammography (MG) being among the most widespread techniques in breast
cancer screening, tumour detection and classification remain challenging tasks due to the high
morphological variability of the lesions. The extraction of radiomics features has proved to be a
promising approach in MG. However, radiomics features can suffer from dependency on factors
such as acquisition protocol, segmentation accuracy, feature extraction and engineering methods,
which prevent the implementation of robust and clinically reliable radiomics workflow in MG. In
this study, the variability and robustness of radiomics features is investigated as a function of lesion
segmentation in MG images from a public database. A statistical analysis is carried out to assess
feature variability and a radiomics robustness score is introduced based on the significance of the
statistical tests performed. The obtained results indicate that variability is observable not only as
a function of the abnormality type (calcification and masses), but also among feature categories
(first-order and second-order), image view (craniocaudal and medial lateral oblique), and the type
of lesions (benign and malignant). Furthermore, through the proposed approach, it is possible to
identify those radiomics characteristics with a higher discriminative power between benign and
malignant lesions and a lower dependency on segmentation, thus suggesting the most appropriate
choice of robust features to be used as inputs to automated classification algorithms.

Keywords: radiomics; mammography; breast lesions; statistical analysis; robustness score

1. Introduction

Breast cancer is a multifactorial disease, characterized by the uncontrolled multipli-
cation of mammary gland cells [1]. The major risk factors associated with breast cancer
can be classified into: (i) nonmodifiable risk factors (such as age, gender, genetic factors, a
family history of breast cancer, previous breast cancer, and/or proliferative breast disease);
(ii) modifiable risk factors (such as reproductive factors, radiation exposure, hormone
replacement therapy, alcohol, and a high-fat diet); (iii) environmental factors (such as
exposure to organochlorines, electromagnetic fields, and smoke) [2–4]. Although there
is not an absolute correlation between the disease and the above-mentioned factors, they
are assessed in the anamnesis phase and can influence the diagnosis [1]. According to
national reports [5], breast cancer ranks first in terms of mortality level among the cancer
pathologies affecting the female population worldwide, particularly in the 35–55 age group,
with 6–7% of cases being metastatic at the time of the diagnosis [5]. Since the chances of
recovery strongly depend on the tumour grade at the time it is diagnosed, early detection is
of fundamental importance. Indeed, advanced-grade breast cancers could require invasive
interventions followed by heavy radiotherapy and chemotherapy treatments [6–8]. On the
other hand, early-stage tumours can often require less invasive therapeutic approaches,
with increased success rates. Therefore, screening protocols and campaigns can serve as
helpful approaches to foster the early diagnosis of breast cancer [9–11].
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In this regard, mammography (MG) is among the most widespread techniques to
perform screening exams for the detection of small nodules, potentially dangerous calcifica-
tions, and other types of suspicious lesions [12,13]. The screening exam consists of an X-ray
scan of each breast in two projections (or views), namely the craniocaudal (CC) and the
medial lateral oblique (MLO) projection, to improve anomaly visualization, thus obtaining
four images per patient. Based on the signs/symptoms or the patient’s history, a further
mammogram may be required. Therefore, MG results in an X-ray low-dose greyscale
digital image representing the structure of the breast [14].

Despite its ability to detect 85–90% of breast cancers early, before a medical examina-
tion [15], several misdiagnosis cases and errors are still reported and can be attributable
to the following main reasons: (i) the nature of the abnormality, which exhibits a high
variability in its morphological characteristics; (ii) the similarity between potentially ma-
lignant masses and surrounding healthy tissues, especially occurring in young women
with dense fibrous breast tissue, which appears opaque in MG. In order to overcome these
issues, computer-aided detection and diagnosis (CAD) systems have been introduced to
assist radiologists in the interpretation of the medical images and in segmenting, extracting,
processing, and classifying imaging features within suspicious regions of interest (ROIs) to
determine the phenotypic characteristics of the abnormalities, thus helping to differentiate
malignant abnormalities from benign ones [16]. Indeed, by means of radiomics, which
consists of an advanced extraction and analysis of textural features from medical images,
quantitative parameters and measures of tumour heterogeneity can be obtained, thus
supporting the interpretation of the radiology findings [17].

Studies from the literature have shown that a double reading from two independent
radiologists can improve the diagnosis of breast lesions [18–21]; however, a double check
has a high operational cost in terms of resource utilization and time, thus preventing its
application in broader healthcare settings. In this sense, CAD systems, along with repro-
ducible and standardized radiomics workflows, could offer the opportunity to obtain a
“second opinion” from an automated tool, thus improving the diagnostic accuracy with less
operational cost and within a reduced timeframe [22,23]. The sensitivity of such automated
tools, i.e., the ability to find and properly characterize suspicious areas, is, therefore, of
fundamental importance to increase the reliability and clinical translation of CAD systems
and radiomics workflows in most radiology applications [24–32], which can be then com-
bined with artificial intelligence (AI) approaches, such as machine learning (ML) and deep
learning (DL) techniques, to further boost the automated diagnostic performance [33–41].

To ensure the reliability, robustness, and reproducibility of CAD systems to process
and classify medical images, and to facilitate and support classification tasks, an accurate
and appropriate choice of radiomics features is of utmost importance, by selecting those
that better describe and reflect the tissue properties and lesion characteristics. In this
context, the main objective of the present work is to examine radiomics features’ robustness
and variability depending on the segmented ROI of breast masses and calcification from a
public database of MG images. An automated technique is adopted to generate artificial
ROIs, namely underestimated and overestimated regions, starting from the original ROI
associated with the MG image. A statistical approach is carried out to assess the variability
of radiomics features across the original and the artificially generated ROI, and a robustness
score is provided.

2. Methods
2.1. Dataset

The study is carried out on a sample of 622 digitized mammograms from the public
database “Curated Breast Imaging Subset of Digital Database for Screening Mammogra-
phy” (CBIS-DDSM) [42,43], provided by The Cancer Imaging Archive (TCIA) [44]. The
images are DICOM images obtained through a lossless decompression of the original
Digital Database for Screening Mammography (DDSM) images, distributed in a Lossless
Joint Photographic Experts Group (LJPEG) format. The database includes instances with
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certified pathology data for normal, benign, and cancerous conditions, and is designed
to serve as a tool for testing and improving decision support and CAD systems. For the
purpose of this work, only breast projections containing abnormalities were considered.
The type of anomaly between calcifications and masses, or both, is specified in the metadata
associated with the database, and the classification of the abnormalities between malignant
and benign is also indicated. Out of the 622 images considered in this study, 268 con-
cerned abnormalities classified as calcifications (146 MLO views and 122 CC views), and
354 concerned abnormalities classified as masses (188 MLO views and 166 CC views).

2.2. Methodological Workflow

The main steps of the adopted methodological workflow are shown in Figure 1.
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Figure 1. Graphical representation of the study workflow with main methodological steps. (FO:
first order; GLCM: grey-level co-occurrence matrix; GLDM: grey-level dependence matrix; GLRLM:
grey-level run length matrix; GLSZM: grey-level size zone matrix; and NGTDM: neighbourhood grey
tone difference matrix.)

A preprocessing phase was followed by the generation of two artificial ROI based
on the original segmentation provided with the input image. Both overestimated and
underestimated segmentations were produced and given as inputs to a radiomics feature
extraction process based on PyRadiomics [45]. Six groups of features were extracted
from each segmentation and a statistical analysis phase was then performed to assess the
variability in the features across the different ROIs and to derive a robustness score based
on the results of the statistical analysis.

In the following subsections, a detailed explanation of each phase of the methodologi-
cal workflow displayed in Figure 1 is provided.

2.3. Preprocessing

The examination of mammograms for breast cancer screening and diagnosis requires
a preprocessing step, which has been shown to be of utmost importance to reduce the
incidence of false-positive results [46]. In this work, image preprocessing was carried out
by means of contrast limited adaptive histogram equalization (CLAHE), as presented and
suggested by Tripathya and Swarnkarb in [46] and by Zuiderveld Karel [47].

Figure 2 shows a comparison between the original and preprocessed images.
The adopted preprocessing algorithm enhances the contrast in rectangular discrete

sections in which the original image is divided and implements a bilinear interpolation
to join the adjacent sections. The algorithm is implemented in MatLab (R2021b, The
Mathworks, Inc., Natick, MA, USA). Subsequently, the preprocessed image, along with
the associated ROI binary mask representing the original segmentation, is passed to an
automated algorithm for the generation of synthetic ROI binary masks based on the original
one, as detailed in the following subsection.
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Figure 2. Illustration of original and preprocessed MG images in CC view.

2.4. Generation of Artificial ROI

An automated algorithm for the generation of artificial ROI binary masks based on
the overestimation and underestimation of the original segmentation was proposed and
carried out in MatLab (R2021b, The Mathworks, Inc., Natick, MA, USA). The algorithm
takes the original image and associated original segmentation as inputs and automatically
applies both a binary morphological dilation and an erosion operation on the input ROI,
taking advantage of the decomposition of a structuring element as described in [48,49],
in order to generate both an overestimated and an underestimated ROI binary mask. An
octagonal structuring element is chosen for both dilation and erosion operations. The
extent or the scale factor of the morphological operation, i.e., the distance between the
structuring element origin and its sides, is proportional to the original ROI main dimension,
taken as the length (expressed in pixels) of the major axis of the ellipse that has the same
normalized second central moments as the original ROI. The scale factor of the dilation and
erosion was chosen to be proportional to the original ROI main dimension. The constant of
proportionality between the scale factor of the morphological operation and the major axis
of the original ROI was empirically set to 0.06 (i.e., the original ROI was dilated/eroded
to an extent equal to 6% of its major axis). This allowed us to achieve perceptible changes
with respect to the original ROI while avoiding excessive dilation or erosion.

Figure 3 provides a graphical representation of the contours of the artificial segmenta-
tions compared with the original one.
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In Figure 4, original and artificially generated ROI masks and contours are reported
for mammograms in both MLO and CC views.
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Both original, overestimated, and underestimated segmentations were given as inputs
to a radiomics feature extraction process based on PyRadiomics [45], as detailed in the
following subsection.

2.5. Radiomics Feature Extraction

Once artificial ROIs are generated, a feature extraction process using PyRadiomics
version 3.0.1 was carried out. PyRadiomics is an open-source Python library [45] for the ex-
traction of radiomics data from medical images in compliance with the Imaging Biomarker
Standardisation Initiative (IBSI). Values of different statistical and textural features are
calculated on the preprocessed MG image within each ROI, both corresponding to the
original and artificial segmentations. Radiomics features are usually divided according
to the characteristic to which they refer: those related to the morphology of the lesion
and those related to the texture. In the former case, the size and shape of the lesion are
studied, while the latter, being linked to the image texture, are based on the histogram of
the grey levels and the corresponding matrix of the pixels forming the image. Here, six
groups of radiomics features are computed. These consist of first-order (FO) features, and
the following second-order features: grey-level co-occurrence matrix (GLCM), grey-level
dependence matrix (GLDM), grey-level run length matrix (GLRLM), grey-level size zone
matrix (GLSZM), and neighbourhood grey tone difference matrix (NGTDM).

The FO operators are statistical operators based on the image brightness histogram
and, thus, describe the distribution of values related to individual pixels. Although not
providing any information on a morphological level, they allow obtaining a first estimate
of the brightness and homogeneity of the image. Indeed, based on the histogram, statistical
parameters can be considered to estimate the radiomics features, such as the mean (repre-
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senting the average intensity that the grey levels can assume), the variance (representing
a measure of the spread of the distribution with respect to the mean, in other words, an
indirect measure of the image contrast), the skewness (i.e., the symmetry of a distribution
with respect to the mean), the kurtosis (representing the peak shape of the ROI values’
distribution, with higher kurtosis), and the entropy (representing the randomness in the
pixel values). Unlike the FO features, the second-order ones were calculated using second-
order statistics and provided an evaluation of the spatial dependence between the values
associated with individual pixels. The descriptors were calculated on the co-occurrence
matrix, or GLCM, which was calculated starting from an image I of dimensions n × m by
determining how many times a pixel with intensity i was spatially related with a pixel of
value j. Each element (i, j) in the resulting matrix was equal to the sum of the occurrences
in which the i-th pixel was related to j-th pixel of the image. Concerning the GLDM, it
represents the grey-level dependencies in an image, i.e., the number of pixels connected to
and dependent on the centre pixel of the image within a given distance, δ. As far as the
GLRLM is concerned, it records the occurrence of all various combinations of grey-level
values and grey-level runs in an ROI for a given direction, typically along four principal
directions (i.e., horizontal, antidiagonal, vertical, and diagonal). Regarding the GLSZM, it
is a matrix representation of a 2D histogram of the total number of zones of size j and of
intensity value i. Finally, the NGTDM stores the sum of absolute differences for a given
grey-level i by quantifying the difference between the reference grey value and the average
grey value of its neighbours within a given distance δ.

The feature values obtained for all the groups were collected in a CSV file before
undergoing a statistical analysis, as discussed in the following section.

2.6. Statistical Analysis and Radiomics Robustness Score

The data obtained from the feature extractor were then collected in an CSV file, with
the first columns reporting the metadata associated with each processed record and patient,
and the subsequent columns including the values for each calculated radiomics feature.
A statistical analysis was carried out on both abnormality type (masses or calcifications)
and pathology type (benign or malignant) separately. The data were grouped according to
the following segmentation classes: original ROI, overestimated ROI, and underestimated
ROI, in order to assess the robustness of the radiomics features across the three examined
ROI. A first analysis was performed on the whole sample, i.e., considering both MLO and
CC views. Then, the same analysis was reiterated, taking into account each image view
(MLO and CC) separately in order to investigate the robustness and variability of radiomics
features at each specific projection.

A Shapiro–Wilk test (α = 0.05) was carried out to assess the normality of the distribu-
tion of the radiomics features across the groups to be compared. Based on the results of
the normality checks, a parametric (or nonparametric) test, namely ANOVA (or Kruskal–
Wallis), was performed (α = 0.05) to compare the radiomics features distributions across the
three segmentation classes according to pathology type (benign and malignant), abnormal-
ity type (masses and calcifications), and view type (MLO or CC). Based on the p-value of the
statistical test, an “overall robustness score”, ranging from 0 to 1, was defined as equal to
the significance of the test. In this way, the closer to 1 the overall score is, the less statistically
significant the test (high p-value) is, thereby reflecting a higher robustness in the examined
radiomics feature, whose distribution did not show significant variations across the ROI
segmentations. For example, if the Kruskal–Wallis statistical test carried out on a specific
radiomics feature returned a p-value equal to 0.02 (i.e., less than the significance level α),
it could be concluded that a statistically significant difference existed among the median
values assumed by the examined radiomics features in the three segmentations (original
vs. underestimated vs. overestimated). As a consequence, we could hypothesize that the
examined radiomics feature varied significantly across the different segmentations of the
same ROI and, therefore, it lacked robustness. With the aim of quantifying the robustness,
the “overall robustness score” attributed to the examined radiomics feature was chosen to
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be equal to 0.02, i.e., equal to the probability value (p-value) of the employed statistical test.
Conversely, if the p-value was equal to 0.80, it could be concluded that the median values
of the examined radiomics feature did not significantly differ across the three explored
segmentations, leading us to the hypothesis that the examined feature is robust, with an
“overall robustness score” of 0.80.

Since the above-mentioned test indicated that at least one difference existed among
the classes, but did not identify where the stochastic difference occurred, a parametric (or
nonparametric) test, namely Student’s t-test (or the Mann–Whitney U-test), was performed
to make a pairwise comparison of the radiomics feature distributions between the original
ROI and the overestimated ROI as well as between the original ROI and the underestimated
ROI, in order to assess the feature robustness at both dilation and erosion transformation of
the segmented area. Like the overall robustness score, a “segmentation-specific robustness
score” (hereafter referred to as the “robustness score”) is defined as equal to the p-value of
the test. For example, as for the overall robustness score, if the p-value of 0.02 (i.e., less than
the significance level α) is obtained for the Mann–Whitney U-test to compare the median
values of certain radiomics features between the original ROI and the overestimated ROI,
then we can conclude that a statistically significant difference exists between the feature
median values in the two classes (original vs. overestimated ROI). Therefore, we could
hypothesize that the examined radiomics feature lacks robustness and, thereby, we could
attribute a low robustness score (0.02) equal to the p-value of the test. Conversely, if a
p-value of 0.80 is obtained with the same test, it can be concluded that the median values of
the feature measured on the original ROI do not significantly vary on the overestimated ROI,
leading us to the hypothesis that the examined feature is robust against ROI overestimation,
with an “overall robustness score” of 0.80. The definition of a more specific score is
necessary to achieve a better and wiser assessment of the robustness by considering the
effects of ROI dilation and erosion separately.

Finally, boxplots were used to visually represent the obtained results in terms of
robustness scores. In particular, the variability of the scores calculated for the six different
feature classes (FO, GLCM, GLDM, GLRLM, GLSZM, and NGTDM) was shown through
boxplots by grouping the data according to the abnormality type (calcifications or masses),
pathology type (benign or malignant), and view type (MLO or CC). Boxplots were also used
to carry out a visual analysis on a representative set of radiomics features to illustrate the
variability at different robustness levels (high vs. low, qualitatively defined according to the
robustness score) and at different levels of discriminative power (high vs. low, qualitatively
defined according to the ability to discriminate between benign and malignant lesions).

All the feature elaborations and statistical tests were carried out in R language within
the RStudio environment.

3. Results

In Figure 5, the distributions of the overall robustness scores calculated for both masses
and calcifications are represented. The results are differentiated according to the pathology
type (benign or malignant) and according to the image view (MLO and CC).

It can be observed that the radiomics features calculated for calcifications showed
higher overall robustness scores, especially for the FO, GLCM, GLRLM, and GLSZM cate-
gories (Figure 5a), compared to the corresponding ones computed for masses (Figure 5b).
This is far more evident when comparing the scores obtained for CC and MLO views in the
calcification subset (Figure 5c,e) with those in the mass subset (Figure 5d,f).
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Figure 6 displays the distributions of the robustness scores in the different radiomics
feature classes calculated for masses and calcifications. From this figure, it is possible to
investigate the segmentation-specific robustness by separately and independently observ-
ing the behaviour of the robustness score after ROI dilation (overestimated ROI) and ROI
erosion (underestimated ROI). The results are differentiated according to the pathology
type (benign or malignant) and according to the image view (MLO or CC).

It can be observed that the radiomics features calculated on the underestimated ROI in
for calcifications (Figure 6a) and masses (Figure 6b) were far more robust than the respective
features calculated on the overestimated ROI, thus confirming a nondesirable impact of
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the dilation operation on the consistency of the radiomics feature distributions. This
consideration appears to be applicable to all feature categories in the calcification subset
(Figure 6a), while only to GLCM, GLDM, GLRLM, and GLSZM classes in the mass subset
(Figure 6b). Similar behaviour was also observable when grouping the data according to
image view type (MLO and CC), with higher robustness scores in the calcification dataset
(Figure 6c,e) compared to the corresponding ones computed for masses (Figure 6d,f).
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tone difference matrix).

A binary qualitative robustness level (low or high) is defined by ranking the calcu-
lated radiomics features based on their robustness score. Similarly, a binary qualitative
discriminative power level (low or high) is defined through a visual observation of the
feature values’ distribution across benign and malignant abnormalities. In Figure 7, some
representative examples of radiomics features in the FO category with different robustness
levels and different discriminative power are shown for both calcifications and masses.

Among the FO radiomics features, the kurtosis showed to be the one with the high-
est robustness score in both the calcification (Figure 7a) and mass (Figure 7e) subsets.
Indeed, especially for calcification (Figure 7a), it can be observed that the distributions
were consistent across the segmentations for both benign and malignant groups. Despite
its robustness, the kurtosis showed a rather low discriminative power in distinguishing
between benign and malignant abnormalities, as can be visually deduced from the boxplots
in Figure 7a,e, with both showing almost overlapping median values between the benign
and malignant groups in each segmentation. Similarly, the variance showed to be the one
with the lowest discriminative power score in both the calcification (Figure 7c) and mass
(Figure 7g) subsets. However, differently from the kurtosis, it also showed low robustness
as the distribution values showed significant changes across the different segmentations in
both benign and malignant cases. Moreover, further differences can be observed between
the calcification and mass subsets. Indeed, the features showing both high robustness and
high discriminative power were the energy in the calcification dataset (Figure 7b) and the
maximum in the mass dataset (Figure 7f), while the features showing both low robustness
and high discriminative power were the mean absolute deviation in the calcification dataset
(Figure 7d) and the root mean square in the mass dataset (Figure 7h).
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4. Discussion

Breast cancer accounts for the highest mortality rate among cancer pathologies affect-
ing female population globally. In recent years, the mortality rate has decreased thanks
to early diagnosis, especially through mammography (MG) screening campaigns for the
detection of tumour lesions in the early stages to avoid invasive interventions and unnec-
essary therapies. However, despite MG being the most widespread technique to perform
breast cancer screening, lesion detection and classification between benign and malignant
tissues remains a complicated issue due to the great variability in the shape and size of
lesions and their similarity to healthy tissues. The automated extraction of morphological,
statistical, and textural features of medical images within a radiomics workflow proved to
be helpful in aiding the early diagnosis of diseases.

Although several studies have investigated the repeatability of radiomics features,
most of them focused on the following: a comparison across different manufacturers [50,51]
and different image storage formats (raw vs. processed) [52] in full-field digital mammogra-
phy (FFDM); a comparison between various AI-based feature extraction and segmentation
approaches, e.g., radiomics and DL in magnetic resonance imaging (MRI) [53], manual
and DL segmentation in in MRI [54,55], and computed tomography (CT) [56]; and the
study of the impact of both clinical and radiomics features in contrast-enhanced spectral
mammography (CESM) [57,58], in MG [59], and in FFDM [60]. Despite these valuable
research efforts, and although the IBSI initiative addresses the issue of the reproducibility
of radiomics characteristics, it is still difficult to interpret radiomics signatures and most
studies have concentrated on repeatability using various imaging devices or reconstruction
methods but employing one segmentation, which might not be accessible in clinical practice.
Instead, from a clinical perspective, it is of utmost importance to assess the robustness of
radiomics features regarding segmentation variability in order to identify those features to
be included in the clinical evaluation.

In this study, the variability and robustness of radiomics features was investigated as
a function of the lesion segmentation in MG images from a public database. A statistical



J. Pers. Med. 2023, 13, 1104 12 of 16

analysis was carried out to assess feature variability and a radiomics robustness score
was introduced based on the significance of the statistical tests performed. The major
contributions of this work are three-fold: (i) the proposal of an approach to investigate
and evaluate the variability in radiomics features as a function of the ROI size; (ii) the
quantification of an overall robustness score based on the p-value of the statistical analysis
of the radiomics features; (iii) the investigation of robustness across different radiomics
categories, namely FO, GLCM, GLDM, GLRLM, GLSZM, and NGTDM.

As can be observed from the obtained results (Figures 5 and 6), variability was ob-
servable not only as a function of the abnormality type (calcification and masses), but also
among the feature categories (first-order and second-order), image view (craniocaudal and
medial lateral oblique), and pathology (benign and malignant). The representative case
of a FO radiomics feature (Figure 7) highlights that the energy was able to provide both
an adequate robustness level and a good degree of discrimination between benign and
malignant calcifications. The energy reflects the magnitude of pixel values in an image. A
larger value, which is observed in malignant calcifications, could imply a higher intensity in
the abnormality region. Similarly, the maximum was identified among the most robust and
with higher discriminative power among the FO radiomics features calculated on breast
masses. As in the case of the energy, the maximum reflects the intensity of the lesion area,
and it showed larger values in malignant abnormalities compared to benign ones. The wise
selection of most robust and predictive features along with their biological interpretation
could serve as a basis to build resilient radiomics workflows in medical imaging and could
provide novel insights in the definition of reliable indicators and biomarkers to detect
malignancies and support in-depth analysis and diagnosis.

As far as the limitations of the present study are concerned, it is worth underlining
that the statistical analysis carried out was univariate, as each variable was analysed
individually without considering the interplay among the different extracted features. In
future works, in order to improve the evidence provided by the present study, a multivariate
analysis will be carried out by considering all the radiomics features simultaneously and
performing a robustness assessment based on the obtained results. Furthermore, as the
size of the dataset adopted in this study was limited to images from a public database
referring to the same institution and image acquisition protocol, further studies could be
focused on assessing the robustness at a multicentre level, including MG images acquired
with different protocols and instruments, potentially providing additional insights into the
variability and robustness of the radiomics features. Last but not least, future studies will
also address the robustness of ML models across different segmentations by exploiting the
workflow proposed here.

5. Conclusions

Radiomics is a promising method for identifying image-based indicators to support
personalized diagnosis and treatment. The aim of this work was to investigate the ro-
bustness of radiomics features in MG as a function of the lesion segmentation to provide
an automatic tool for designing a resilient and robust radiomics workflow based on the
selection of segmentation-independent features with higher discriminative power to be
used in abnormality characterization and classification tasks. In order to investigate and
understand which radiomics characteristics can be considered most robust in MG, an
algorithm was implemented to generate artificial segmentations based on an originally
defined ROI, statistical analysis was carried out to assess the feature variability across
different abnormality segmentations, and a radiomics robustness score was introduced
based on the significance of the statistical tests performed. The results show that variability
was observable not only as a function of the abnormality type (calcification and masses) but
also among feature categories (first-order and second-order), image view (craniocaudal and
medial lateral oblique), and pathology (benign and malignant). In particular, radiomics
features were shown to be more robust while classifying breast calcifications rather than
breast masses (as shown in Figures 5a,b and 6a,b). Considering craniocaudal (CC) and
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mediolateral oblique (MLO) views separately, this difference between feature robustness
across calcification and masses was even more evident (as shown in Figures 5c–f and 6c–f).
In order to investigate the predictive power of the features and their relative robustness,
a representative example of the results obtained for the radiomics features of the first
order is provided in Figure 7 of the manuscript. Indeed, in the case of breast calcifications,
Figure 7a–d show how the energy turned out to be the most robust radiomics feature and
the one with the highest discriminative power between benign and malignant lesions;
conversely, in the case of breast masses, Figure 7e–h show how the maximum turned out to
be the most robust radiomics feature and the one with the highest discriminative power
between benign and malignant lesions. These results show that a preliminary selection
of segmentation-independent and predictive features in MG images can be achieved and
could suggest links between either statistical or textural image patterns and the biologi-
cal/anatomical characteristics of the abnormalities, thus building a route for the definition
of reliable descriptors to be adopted in CAD systems and to be used to test automated
classification algorithms.
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