Biomarker-Based Assessment Model for Detecting Sepsis: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Variables and Definitions
2.3. Data Collection and Clinical Outcomes
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Development of the New Sepsis Prediction Model
3.3. Predictive Performance for Mortality in Sepsis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geroulanos, S.; Douka, E.T. Historical perspective of the word “sepsis”. Intensive Care Med. 2006, 32, 2077. [Google Scholar] [CrossRef]
- American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit. Care Med. 1992, 20, 864–874. [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonca, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Lemeshow, S.; Teres, D.; Klar, J.; Avrunin, J.S.; Gehlbach, S.H.; Rapoport, J. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. JAMA 1993, 270, 2478–2486. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993, 270, 2957–2963. [Google Scholar] [CrossRef]
- Askim, A.; Moser, F.; Gustad, L.T.; Stene, H.; Gundersen, M.; Asvold, B.O.; Dale, J.; Bjornsen, L.P.; Damas, J.K.; Solligard, E. Poor performance of quick-SOFA (qSOFA) score in predicting severe sepsis and mortality—A prospective study of patients admitted with infection to the emergency department. Scand. J. Trauma. Resusc. Emerg. Med. 2017, 25, 56. [Google Scholar] [CrossRef] [Green Version]
- Churpek, M.M.; Snyder, A.; Han, X.; Sokol, S.; Pettit, N.; Howell, M.D.; Edelson, D.P. Quick Sepsis-related Organ Failure Assessment, Systemic Inflammatory Response Syndrome, and Early Warning Scores for Detecting Clinical Deterioration in Infected Patients outside the Intensive Care Unit. Am. J. Respir. Crit. Care Med. 2017, 195, 906–911. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Zhou, J.; Weng, L.; Hu, X.; Peng, J.; Wang, C.; Jiang, W.; Du, X.; Xi, X.; An, Y.; et al. Accuracy of qSOFA for the diagnosis of sepsis-3: A secondary analysis of a population-based cohort study. J. Thorac. Dis. 2019, 11, 2034–2042. [Google Scholar] [CrossRef]
- Desautels, T.; Calvert, J.; Hoffman, J.; Jay, M.; Kerem, Y.; Shieh, L.; Shimabukuro, D.; Chettipally, U.; Feldman, M.D.; Barton, C.; et al. Prediction of Sepsis in the Intensive Care Unit with Minimal Electronic Health Record Data: A Machine Learning Approach. JMIR Med. Inform. 2016, 4, e28. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Ozdas, A.; Aliferis, C.; Varol, H.A.; Chen, Q.; Carnevale, R.; Chen, Y.; Romano-Keeler, J.; Nian, H.; Weitkamp, J.H. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J. Am. Med. Inform. Assoc. 2014, 21, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Goh, K.H.; Wang, L.; Yeow, A.Y.K.; Poh, H.; Li, K.; Yeow, J.J.L.; Tan, G.Y.H. Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare. Nat. Commun. 2021, 12, 711. [Google Scholar] [CrossRef]
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003, 348, 1546–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutler, N.S. Diagnosing Sepsis: qSOFA is Not the Tool We’re Looking For. Am. J. Med. 2020, 133, 265–266. [Google Scholar] [CrossRef] [Green Version]
- Cretikos, M.A.; Bellomo, R.; Hillman, K.; Chen, J.; Finfer, S.; Flabouris, A. Respiratory rate: The neglected vital sign. Med. J. Aust. 2008, 188, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Churpek, M.M.; Adhikari, R.; Edelson, D.P. The value of vital sign trends for detecting clinical deterioration on the wards. Resuscitation 2016, 102, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Daw, W.; Kaur, R.; Delaney, M.; Elphick, H. Respiratory rate is an early predictor of clinical deterioration in children. Pediatr. Pulmonol. 2020, 55, 2041–2049. [Google Scholar] [CrossRef]
- Semler, M.W.; Stover, D.G.; Copland, A.P.; Hong, G.; Johnson, M.J.; Kriss, M.S.; Otepka, H.; Wang, L.; Christman, B.W.; Rice, T.W. Flash mob research: A single-day, multicenter, resident-directed study of respiratory rate. Chest 2013, 143, 1740–1744. [Google Scholar] [CrossRef] [Green Version]
- Loughlin, P.C.; Sebat, F.; Kellett, J.G. Respiratory Rate: The Forgotten Vital Sign-Make It Count! Jt. Comm. J. Qual. Patient Saf. 2018, 44, 494–499. [Google Scholar] [CrossRef]
- Badawy, J.; Nguyen, O.K.; Clark, C.; Halm, E.A.; Makam, A.N. Is everyone really breathing 20 times a minute? Assessing epidemiology and variation in recorded respiratory rate in hospitalised adults. BMJ Qual. Saf. 2017, 26, 832–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [Green Version]
- Kopitko, C.; Medve, L.; Gondos, T. Renoprotective Postoperative Monitoring: What Is the Best Method for Computing Renal Perfusion Pressure? An Observational, Prospective, Multicentre Study. Nephron 2018, 139, 228–236. [Google Scholar] [CrossRef]
- Rady, M.Y.; Nightingale, P.; Little, R.A.; Edwards, J.D. Shock index: A re-evaluation in acute circulatory failure. Resuscitation 1992, 23, 227–234. [Google Scholar] [CrossRef]
- Rady, M.Y.; Smithline, H.A.; Blake, H.; Nowak, R.; Rivers, E. A comparison of the shock index and conventional vital signs to identify acute, critical illness in the emergency department. Ann. Emerg. Med. 1994, 24, 685–690. [Google Scholar] [CrossRef]
- Allgower, M.; Burri, C. Shock index. Dtsch. Med. Wochenschr. 1967, 92, 1947–1950. [Google Scholar] [CrossRef] [PubMed]
- Gomez, H.; Kellum, J.A. Lactate in sepsis. JAMA 2015, 313, 194–195. [Google Scholar] [CrossRef]
- Chertoff, J.; Chisum, M.; Garcia, B.; Lascano, J. Lactate kinetics in sepsis and septic shock: A review of the literature and rationale for further research. J. Intensive Care 2015, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Bakker, J.; Coffernils, M.; Leon, M.; Gris, P.; Vincent, J.L. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 1991, 99, 956–962. [Google Scholar] [CrossRef]
- Meregalli, A.; Oliveira, R.P.; Friedman, G. Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit. Care 2004, 8, R60–R65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arslan, A.; Flax, L.; Nunez, P.; Kanter, M.; Fraser, R.; Caputo, N.; Simon, R. Detecting Occult Shock in Trauma Patients: A Comparison of Serum Lactate versus Shock Index. Ann. Emerg. Med. 2015, 66, S125. [Google Scholar] [CrossRef]
- Liu, Z.; Meng, Z.; Li, Y.; Zhao, J.; Wu, S.; Gou, S.; Wu, H. Prognostic accuracy of the serum lactate level, the SOFA score and the qSOFA score for mortality among adults with Sepsis. Scand. J. Trauma. Resusc. Emerg. Med. 2019, 27, 51. [Google Scholar] [CrossRef]
- Assicot, M.; Gendrel, D.; Carsin, H.; Raymond, J.; Guilbaud, J.; Bohuon, C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993, 341, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.L.; Snider, R.; Nylen, E.S. Procalcitonin assay in systemic inflammation, infection, and sepsis: Clinical utility and limitations. Crit. Care Med. 2008, 36, 941–952. [Google Scholar] [CrossRef]
- Bouadma, L.; Luyt, C.E.; Tubach, F.; Cracco, C.; Alvarez, A.; Schwebel, C.; Schortgen, F.; Lasocki, S.; Veber, B.; Dehoux, M.; et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): A multicentre randomised controlled trial. Lancet 2010, 375, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Anand, L. Bedside procalcitonin and acute care. Int. J. Crit. Illn. Inj. Sci. 2014, 4, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Leguillier, T.; Jouffroy, R.; Boisson, M.; Boussaroque, A.; Chenevier-Gobeaux, C.; Chaabouni, T.; Vivien, B.; Nivet-Antoine, V.; Beaudeux, J.L. Lactate POCT in mobile intensive care units for septic patients? A comparison of capillary blood method versus venous blood and plasma-based reference methods. Clin. Biochem. 2018, 55, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.E.; Ongagna-Yhombi, S.Y.; Wang, R.; Ren, Y.; Srinivasan, B.; Hayden, J.A.; Zhao, Z.; Erickson, D.; Mehta, S. A diagnostic platform for rapid, simultaneous quantification of procalcitonin and C-reactive protein in human serum. EBioMedicine 2022, 76, 103867. [Google Scholar] [CrossRef] [PubMed]
- Kato, R.; Pinsky, M.R. Personalizing blood pressure management in septic shock. Ann. Intensive Care 2015, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Baraff, L.J.; Schriger, D.L. Orthostatic vital signs: Variation with age, specificity, and sensitivity in detecting a 450-mL blood loss. Am. J. Emerg. Med. 1992, 10, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Birkhahn, R.H.; Gaeta, T.J.; Terry, D.; Bove, J.J.; Tloczkowski, J. Shock index in diagnosing early acute hypovolemia. Am. J. Emerg. Med. 2005, 23, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Luft, F.C. Lactic acidosis update for critical care clinicians. J. Am. Soc. Nephrol. 2001, 12 (Suppl. S17), S15–S19. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Kramer, D.J.; Lee, K.; Mankad, S.; Bellomo, R.; Pinsky, M.R. Release of lactate by the lung in acute lung injury. Chest 1997, 111, 1301–1305. [Google Scholar] [CrossRef] [PubMed]
- Levraut, J.; Ciebiera, J.P.; Chave, S.; Rabary, O.; Jambou, P.; Carles, M.; Grimaud, D. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am. J. Respir. Crit. Care Med. 1998, 157, 1021–1026. [Google Scholar] [CrossRef]
- Jansen, T.C.; van Bommel, J.; Schoonderbeek, F.J.; Sleeswijk Visser, S.J.; van der Klooster, J.M.; Lima, A.P.; Willemsen, S.P.; Bakker, J. Early lactate-guided therapy in intensive care unit patients: A multicenter, open-label, randomized controlled trial. Am. J. Respir. Crit. Care Med. 2010, 182, 752–761. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, A.L.; Vanimaya; Ravindran, S.; Saikant, R.; Lakshmi, S.; Kartik, R.; Manoj, G. Procalcitonin: A promising diagnostic marker for sepsis and antibiotic therapy. J. Intensive Care 2017, 5, 51. [Google Scholar] [CrossRef] [Green Version]
Non-Sepsis | Sepsis | p Value | |
---|---|---|---|
n = 224 (22.6%) | n = 765 (77.4%) | ||
Age (year) | 64 (56, 75) | 68 (57, 77) | 0.034 |
Sex (male), n (%) | 132 (58.9) | 487 (63.7) | 0.198 |
BMI (kg/m2) | 22.2 (19.4, 24.3) | 22.0 (19.5, 24.8) | 0.905 |
qSOFA score | 1 (1, 2) | 2 (1, 2) | <0.001 |
0 points, n (%) | 31 (13.8) | 60 (7.8) | |
1 point, n (%) | 92 (41.1) | 216 (28.2) | |
2 points, n (%) | 75 (33.5) | 303 (39.6) | |
3 points, n (%) | 26 (11.6) | 186 (24.3) | |
SOFA score | 6 (3, 9) | 10 (7, 13) | <0.001 |
APACHE II score | 19 (14, 26) | 25 (19, 32) | <0.001 |
CCI | 3 (2, 5) | 3 (1, 4) | 0.274 |
Comorbidity disease, n (%) | |||
Congestive heart failure | 39 (17.4) | 76 (9.9) | 0.002 |
Coronary arterial disease | 28 (12.5) | 104 (13.6) | 0.672 |
Chronic pulmonary disease | 45 (20.1) | 116 (15.2) | 0.079 |
Chronic kidney disease | 53 (23.7) | 136 (17.8) | 0.049 |
Chronic liver disease | 22 (9.8) | 79 (10.3) | 0.802 |
Cerebrovascular disease | 28 (12.5) | 132 (17.3) | 0.089 |
Solid cancer | 55 (24.6) | 227 (29.7) | 0.136 |
Hematologic malignancy | 8 (3.6) | 52 (6.8) | 0.075 |
ARDS, n (%) | 13 (5.8) | 86 (11.2) | 0.017 |
PaO2/FiO2 ratio | 232.8 (148.9, 360.1) | 190.0 (113.2, 296.4) | <0.001 |
AKI, n (%) | 54 (24.1) | 254 (33.2) | 0.010 |
Positive blood culture, n (%) | 18 (8.0) | 273 (35.7) | <0.001 |
28-day mortality, (non-survivors), n (%) | 42 (18.8) | 266 (34.8) | <0.001 |
ICU mortality, (non-survivors), n (%) | 34 (15.2) | 252 (32.9) | <0.001 |
Hospital mortality, (non-survivors), n (%) | 86 (38.4) | 389 (50.8) | 0.001 |
Non-Sepsis | Sepsis | p Value | |
---|---|---|---|
n = 224 (22.6%) | n = 765 (77.4%) | ||
Mean arterial pressure (mmHg) | 78 (66, 101) | 66 (55, 80) | <0.001 |
Heart rate (beats/min) | 95 (79, 112) | 106 (88, 126) | <0.001 |
Shock index | 1.0 (0.7, 1.3) | 1.2 (0.9, 1.6) | <0.001 |
WBC (103/μL) | 8.5 (5.6, 13.1) | 13.3 (7.2, 20.2) | <0.001 |
Hct (%) | 28.3 (24.2, 33.0) | 28.3 (24.5, 33.2) | 0.997 |
RDW (%) | 15.2 (14.0, 16.8) | 15.4 (14.1, 17.2) | 0.236 |
Platelet (103/μL) | 151 (83, 221) | 121 (59, 210) | 0.001 |
DNI (%) | 1.5 (0.2, 3.9) | 4.0 (1.6, 13.1) | <0.001 |
BUN, (mg/dL) | 27.5 (17.2, 54.0) | 33.1 (20.3, 50.8) | 0.036 |
Creatinine (mg/dL) | 1.0 (0.7, 2.7) | 1.4 (0.8, 2.6) | 0.046 |
Albumin (g/dL) | 2.7 (2.3, 3.1) | 2.5 (2.2, 2.9) | <0.001 |
Total bilirubin (mg/dL) | 0.6 (0.4, 1.1) | 0.8 (0.5, 1.7) | <0.001 |
Sodium (mmol/L) | 137 (134, 141) | 138 (134, 142) | 0.024 |
Potassium (mmol/L) | 4.2 (3.4, 4.7) | 3.9 (3.3, 4.7) | 0.147 |
Lactate, (mmol/L) | 1.3 (0.9, 2.2) | 2.4 (1.5, 5.0) | <0.001 |
CRP (mg/L) | 44.9 (15.8, 108.6) | 102.9 (42.3, 181.7) | <0.001 |
Procalcitonin (ng/mL) | 0.50 (0.20, 1.80) | 1.80 (0.40, 14.05) | <0.001 |
Univariable Logistic | Multivariable Logistic | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p Value | OR | 95% CI | p Value | |
Mean arterial pressure | 0.982 | 0.977–0.988 | <0.001 | 0.985 | 0.979–0.992 | <0.001 |
Procalcitonin | 1.094 | 1.054–1.136 | <0.001 | 1.075 | 1.038–1.114 | <0.001 |
Lactate | 1.177 | 1.101–1.258 | <0.001 | 1.095 | 1.028–1.166 | 0.005 |
Shock index | 2.384 | 1.735–3.274 | <0.001 | 1.526 | 1.075–2.165 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, B.R.; Seol, C.H.; Min, I.K.; Park, M.S.; Park, J.E.; Chung, K.S. Biomarker-Based Assessment Model for Detecting Sepsis: A Retrospective Cohort Study. J. Pers. Med. 2023, 13, 1195. https://doi.org/10.3390/jpm13081195
Yoon BR, Seol CH, Min IK, Park MS, Park JE, Chung KS. Biomarker-Based Assessment Model for Detecting Sepsis: A Retrospective Cohort Study. Journal of Personalized Medicine. 2023; 13(8):1195. https://doi.org/10.3390/jpm13081195
Chicago/Turabian StyleYoon, Bo Ra, Chang Hwan Seol, In Kyung Min, Min Su Park, Ji Eun Park, and Kyung Soo Chung. 2023. "Biomarker-Based Assessment Model for Detecting Sepsis: A Retrospective Cohort Study" Journal of Personalized Medicine 13, no. 8: 1195. https://doi.org/10.3390/jpm13081195
APA StyleYoon, B. R., Seol, C. H., Min, I. K., Park, M. S., Park, J. E., & Chung, K. S. (2023). Biomarker-Based Assessment Model for Detecting Sepsis: A Retrospective Cohort Study. Journal of Personalized Medicine, 13(8), 1195. https://doi.org/10.3390/jpm13081195