Potential Use of Vivascope for Real-Time Histological Evaluation in Endoscopic Laryngeal Surgery
Abstract
:1. Introduction
2. Materials and Methods
- Inclusion criteria: leukoplakia, erythroplakia, erythroleucoplakia, or other mucosal lesions of one or both vocal cords that have not regressed after appropriate medical therapy.
- Exclusion criteria: submucosal lesions, lesions greater than 2 mm thick, surface extension greater than 2 cm, significant extension above or subglottic, refusal of informed consent, and age less than 18 years.
2.1. Tissue Collection and Preparation
2.2. CLSM Assessment
- Inadequate/Not diagnostic.
- Adequate, which includes all samples showing a satisfactory digital image.
- The following parameters shall be evaluated for all defined and appropriate samples:
- Presence or absence of invasive carcinoma and in situ carcinoma.
- Presence or absence of dysplasia; in the case of dysplasia, the distinction between high-grade dysplasia/low-grade dysplasia.
- Positive or negative surgical margin according to the orientation scheme.
- Presence or absence of inflammatory outbreaks.
2.3. Post-Vivascope Processing of the Sample
2.4. Statistical Analysis
3. Results
3.1. Patients and Characteristics of Lesions
3.2. Evaluation Using Vivascope
3.3. Histological Evaluation of Definitive Paraffin Sections
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peretti, G.; Cappiello, J.; Nicolai, P.; Smussi, C.; Antonelli, A.R. Endoscopic Laser excisional biopsy for selected glottic carcinomas. Laryngoscope 1994, 104, 1276–1279. [Google Scholar] [CrossRef] [PubMed]
- Hamzany, Y.; Shoffel-Havakuk, H.; Devons-Sberro, S.; Shteinberg, S.; Yaniv, D.; Mizrachi, A. Single stage transoral laser microsurgery for early glottic cancer. Front. Oncol. 2018, 8, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remacle, M.; Van Haverbeke, C.; Eckel, H.; Bradley, P.; Chevalier, D.; Djukic, V.; de Vicentiis, M.; Friedrich, G.; Olofsson, J.; Peretti, G.; et al. Proposal for revision of the European Laryngological Society classification of endoscopic cordectomies. Eur. Arch. Oto-Rhino-Laryngol. 2007, 264, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, Y.Z.; Uğurlar, M.; Yılmaz, B.B.; Gülmez, Z.D.; Özdoğan, H.A.; Ataş, A.; Batıoğlu-Karaaltın, A. The comparison of narrow band imaging, White light laryngoscopy and videolaryngostroboscopy in the evaluation of benign vocal fold lesions. J. Voice 2021, 37, 275–281. [Google Scholar] [CrossRef]
- Colevas, A.D.; Yom, S.S.; Pfister, D.G.; Spencer, S.; Adelstein, D.; Adkins, D.; Brizel, D.M.; Burtness, B.; Busse, P.M.; Caudell, J.J.; et al. NCCN guidelines insights: Head and neck cancers, Version 1.2018. J. Natl. Compr. Cancer Netw. 2018, 16, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Ansarin, M.; Santoro, L.; Cattaneo, A.; Massaro, M.A.; Calabrese, L.; Giugliano, G.; Maffini, F.; Ostuni, A.; Chiesa, F. Laser surgery for early glottic cancer. Arch. Otolaryngol. Neck Surg. 2009, 135, 385–390. [Google Scholar] [CrossRef]
- Ansarin, M.; Cattaneo, A.; De Benedetto, L.; Zorzi, S.; Lombardi, F.; Alterio, D.; Rocca, M.C.; Scelsi, D.; Preda, L.; Chiesa, F.; et al. Retrospective analysis of factors influencing oncologic outcome in 590 patients with early-intermediate glottic cancer treated by transoral laser microsurgery. Head Neck 2017, 39, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Cikojević, D.; Glunčić, I.; Pešutić-Pisac, V. Comparison of contact endoscopy and frozen section histopathology in the intra-operative diagnosis of laryngeal pathology. J. Laryngol. Otol. 2007, 122, 836–839. [Google Scholar] [CrossRef]
- Nerurkar, N.K.; Shah, K.; Patel, K.; Muzumdar, G. A retrospective study to assess the accuracy of frozen sections in laser laryngeal surgery. Ann. Otol. Rhinol. Laryngol. 2022, 132, 1096–1101. [Google Scholar] [CrossRef]
- Malvehy, J.; Pérez-Anker, J.; Toll, A.; Pigem, R.; Garcia, A.; Alos, L.; Puig, S. Ex vivo confocal microscopy: Revolution in fast pathology in dermatology. Br. J. Dermatol. 2020, 183, 1011–1025. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Sabir, S.; Ban, K.; Wu, Y.; Sheth, R.; Tam, A.; Meric-Bernstam, F.; Shaw, K.; Mills, G.; Bassett, R.; et al. Comparison of real-time fluorescence confocal digital microscopy with hematoxylin-eosin–stained sections of core-needle biopsy specimens. JAMA Netw. Open 2020, 3, e200476. [Google Scholar] [CrossRef] [PubMed]
- Longo, C.; Pampena, R.; Bombonato, C.; Gardini, S.; Piana, S.; Mirra, M.; Raucci, M.; Kyrgidis, A.; Pellacani, G.; Ragazzi, M. Diagnostic accuracy of ex vivo fluorescence confocal microscopy in Mohs surgery of basal cell carcinomas: A prospective study on 753 margins. Br. J. Dermatol. 2018, 180, 1473–1480. [Google Scholar] [CrossRef]
- Rocco, B.; Sighinolfi, M.C.; Bertoni, L.; Spandri, V.; Puliatti, S.; Eissa, A.; Bonetti, L.R.; Azzoni, P.; Sandri, M.; De Carne, C.; et al. Real-time assessment of surgical margins during radical prostatectomy: A novel approach that uses fluorescence confocal microscopy for the evaluation of peri-prostatic soft tissue. BJU Int. 2020, 125, 487–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stigliano, S.; Crescenzi, A.; Taffon, C.; Covotta, F.; Hassan, C.; Antonelli, G.; Verri, M.; Biasutto, D.; Scarpa, R.M.; Di Matteo, F.M. Role of fluorescence confocal microscopy for rapid evaluation of EUS fine-needle biopsy sampling in pancreatic solid lesions. Gastrointest. Endosc. 2021, 94, 562–568. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.K.; Chan, J.K.C.; Grandis, J.R.; Takata, T.; Slootweg, P.J. WHO Classification of Head and Neck Tumors, 4th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2017.
- Krishnamurthy, S.; Ban, K. Feasibility of using digital confocal microscopy for cytopathological examination in clinical practice. Mod. Pathol. 2022, 35, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Reggiani, C.; Pellacani, G.; Bonetti, L.R.; Zanelli, G.; Azzoni, P.; Chester, J.; Kaleci, S.; Ferrari, B.; Bellini, P.; Longo, C.; et al. An intraoperative study with ex vivo fluorescence confocal microscopy: Diagnostic accuracy of the three visualization modalities. J. Eur. Acad. Dermatol. Venereol. 2020, 35, e92–e94. [Google Scholar] [CrossRef]
- Titze, U.; Sievert, K.-D.; Titze, B.; Schulz, B.; Schlieker, H.; Madarasz, Z.; Weise, C.; Hansen, T. Ex vivo fluorescence confocal microscopy in specimens of the liver: A proof-of-concept study. Cancers 2022, 14, 590. [Google Scholar] [CrossRef]
- Puliatti, S.; Bertoni, L.; Pirola, G.M.; Azzoni, P.; Bevilacqua, L.; Eissa, A.; Elsherbiny, A.; Sighinolfi, M.C.; Chester, J.; Kaleci, S.; et al. Ex vivo fluorescence confocal microscopy: The first application for real-time pathological examination of prostatic tissue. BJU Int. 2019, 124, 469–476. [Google Scholar] [CrossRef]
- Just, T.; Stave, J.; Bombor, I.; Kreutzer, H.-J.; Guthoff, R.; Pau, H. In-vivo-Diagnostik von Epithelveränderungen des Oropharynx mittels konfokaler Mikroskopie. Laryngo-Rhino-Otologie 2007, 87, 174–180. [Google Scholar] [CrossRef]
- Shavlokhova, V.; Sandhu, S.; Flechtenmacher, C.; Koveshazi, I.; Neumeier, F.; Padrón-Laso, V.; Jonke, Z.; Saravi, B.; Vollmer, M.; Vollmer, A.; et al. Deep learning on oral squamous cell carcinoma ex vivo fluorescent confocal microscopy data: A feasibility study. J. Clin. Med. 2021, 10, 5326. [Google Scholar] [CrossRef]
- Shavlokhova, V.; Flechtenmacher, C.; Sandhu, S.; Vollmer, M.; Vollmer, A.; Pilz, M.; Hoffmann, J.; Ristow, O.; Engel, M.; Freudlsperger, C. Feasibility and implementation of ex vivo fluorescence confocal microscopy for diagnosis of oral leukoplakia: Preliminary study. Diagnostics 2021, 11, 951. [Google Scholar] [CrossRef] [PubMed]
Id Patient | Male/Female (M: F) | Age (Years) | Anatomic Region | Dimension (cm) | Surgical Procedure | Evaluable with Vivascope (Yes/No) | Dysplasia and Grade | Surgical Margins | Inflammatory Outbreaks |
---|---|---|---|---|---|---|---|---|---|
01 | F | 63 | Middle third of the left vocal cord | 0.9 × 0.7 × 0.2 | Cordectomy (type I) using cold steel | Yes | Low-grade dysplasia | Low-grade dysplasia on posterior margin (1/4) | Chronic inflammation |
02 | F | 39 | All the left vocal cord | 1.1 × 0.6 × 0.1 | Cordectomy (type I) using CO2 laser | Yes | Low-grade dysplasia | Free surgical margins | No inflammation |
03 | M | 72 | Middle third of the right vocal cord | 1.5 × 1 × 0.3 | Cordectomy (type I) using CO2 laser | Yes | Low-grade dysplasia | Free surgical margins | No inflammation |
04 | M | 83 | Third middle and anterior of the right vocal cord | 2.7 × 1 × 0.3 | Cordectomy (type II) using CO2 laser | Yes | Low and high-grade dysplasia | Free surgical margins | No inflammation |
05 | F | 73 | Third middle and anterior of the right vocal cord | 0.6 × 0.5 × 0.2 | Cordectomy (type I) using CO2 laser | Yes | High-grade dysplasia | All margins with low-grade dysplasia 6/6 | Chronic inflammation |
06 | M | 56 | All the left vocal cord | 1.4 × 1 × 0.2 | Cordectomy (type II) using CO2 laser | Yes | Low-grade and high-grade dysplasia | Posterior margin (low-grade dysplasia) and inferior margin (high-grade dysplasia) 2/6 | chronic inflammation |
07 | M | 83 | The middle third of the left vocal cord | 1 × 0.7 × 0.3 | Cordectomy (type I) using CO2 laser | Yes | Low-grade dysplasia | Anterior and inferior margin (low-grade dysplasia) 2/6 | No inflammation |
08 | F | 74 | All the right vocal cord | 0.8 × 0.5 × 0.3 | Cordectomy (type I) using cold steel | Yes | Low-grade dysplasia | Free surgical margins | No inflammation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Benedetto, L.; Moffa, A.; Baptista, P.; Di Giovanni, S.; Giorgi, L.; Verri, M.; Taffon, C.; Crescenzi, A.; Casale, M. Potential Use of Vivascope for Real-Time Histological Evaluation in Endoscopic Laryngeal Surgery. J. Pers. Med. 2023, 13, 1252. https://doi.org/10.3390/jpm13081252
De Benedetto L, Moffa A, Baptista P, Di Giovanni S, Giorgi L, Verri M, Taffon C, Crescenzi A, Casale M. Potential Use of Vivascope for Real-Time Histological Evaluation in Endoscopic Laryngeal Surgery. Journal of Personalized Medicine. 2023; 13(8):1252. https://doi.org/10.3390/jpm13081252
Chicago/Turabian StyleDe Benedetto, Luigi, Antonio Moffa, Peter Baptista, Simone Di Giovanni, Lucrezia Giorgi, Martina Verri, Chiara Taffon, Anna Crescenzi, and Manuele Casale. 2023. "Potential Use of Vivascope for Real-Time Histological Evaluation in Endoscopic Laryngeal Surgery" Journal of Personalized Medicine 13, no. 8: 1252. https://doi.org/10.3390/jpm13081252
APA StyleDe Benedetto, L., Moffa, A., Baptista, P., Di Giovanni, S., Giorgi, L., Verri, M., Taffon, C., Crescenzi, A., & Casale, M. (2023). Potential Use of Vivascope for Real-Time Histological Evaluation in Endoscopic Laryngeal Surgery. Journal of Personalized Medicine, 13(8), 1252. https://doi.org/10.3390/jpm13081252