Metabolic Syndrome and Atrial Fibrillation: Different Entities or Combined Disorders
Abstract
:1. Introduction
2. Definitions
2.1. Metabolic Syndrome
2.2. Atrial Fibrillation
3. Metabolic Syndrome and Atrial Fibrillation: Is There a Correlation?
4. A Correlation Exists: But Why?
4.1. Obesity
4.2. Hypertension
4.3. Insulin Resistance/Diabetes
4.4. Dyslipidemia
4.5. Metabolic Syndrome
5. Are These Patients Suitable for Catheter Ablation?
6. What Drugs to Use?
6.1. Antiarrhythmic
6.2. Anticoagulants
6.3. Holistic Approach
7. Key Points
- Metabolic syndrome significantly elevates the incidence of atrial fibrillation.
- Cardiac chamber structural and electrical remodeling, autonomic imbalance, inflammation, oxidative stress, and fibrosis constitute the primary pathways through which metabolic syndrome contributes to atrial fibrillation.
- For patients with both metabolic syndrome and atrial fibrillation, a comprehensive approach is advised, encompassing the management of all syndrome clusters and subsequent strategies for rhythm regulation.
- The imperative for clinical trials is evident, aiming to elucidate the optimal antiarrhythmic drugs and anticoagulants for this patient population.
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498, Erratum in Eur. Heart J. 2021, 42, 507, Erratum in Eur. Heart J. 2021, 42, 546–547, Erratum in Eur. Heart J. 2021, 42, 4194. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- Zheng, Y.; Xie, Z.; Li, J.; Chen, C.; Cai, W.; Dong, Y.; Xue, R.; Liu, C. Meta-analysis of metabolic syndrome and its individual components with risk of atrial fibrillation in different populations. BMC Cardiovasc. Disord. 2021, 21, 90. [Google Scholar] [CrossRef] [PubMed]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The Metabolic Syndrome and Cardiovascular Risk: A Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed]
- Vyssoulis, G.; Karpanou, E.; Adamopoulos, D.; Kyvelou, S.-M.; Tzamou, V.; Michaelidis, A.; Stefanadis, C. Metabolic syndrome and atrial fibrillation in patients with essential hypertension. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 109–114. [Google Scholar] [CrossRef] [PubMed]
- WHO Consultation. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications; World Health Organization: Geneva, Switzerland, 1999; pp. 31–33.
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. American Heart Association, National Heart, Lung, and Blood Institute: Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Bloomgarden, Z.T. American Association of Clinical Endocrinologists (AACE) consensus conference on the insulin resistance syndrome: 25-26 August 2002, Washington, DC. Diabetes Care 2003, 26, 1297–1303. [Google Scholar] [CrossRef]
- Hills, S.A.; Balkau, B.; Coppack, S.W.; Dekker, J.M.; Mari, A.; Natali, A.; Walker, M.; Ferrannini, E.; Report prepared on behalf of the EGIR-RISC Study Group. The EGIR-RISC STUDY (The European group for the study of insulin resistance: Relationship between insulin sensitivity and cardiovascular disease risk): I. Methodology and Objectives. Diabetologia 2004, 47, 566–570. [Google Scholar] [CrossRef]
- Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497.
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Lee, S.H.; Ahn, M.B.; Choi, Y.J.; Kim, S.K.; Kim, S.H.; Cho, W.K.; Cho, K.S.; Suh, B.-K.; Jung, M.H. Comparison of different criteria for the definition of insulin resistance and its relationship to metabolic risk in children and adolescents. Ann. Pediatr. Endocrinol. Metab. 2020, 25, 227–233. [Google Scholar] [CrossRef]
- Nogueira-De-Almeida, C.A. Metabolic syndrome definition in adolescents should incorporate insulin resistance. Ann. Pediatr. Endocrinol. Metab. 2020, 25, 287–288. [Google Scholar] [CrossRef]
- Kannel, W.B.; Abbott, R.D.; Savage, D.D.; McNamara, P.M. Epidemiologic Features of Chronic Atrial Fibrillation: The Framingham study. N. Engl. J. Med. 1982, 306, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, R.B.; Yin, X.; Gona, P.; Larson, M.G.; Beiser, A.S.; McManus, D.D.; Newton-Cheh, C.; Lubitz, S.A.; Magnani, J.W.; Ellinor, P.T.; et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: A cohort study. Lancet 2015, 386, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, A.M.; Agarwal, S.K.; Ambrose, M.; Folsom, A.R.; Soliman, E.Z.; Alonso, A. Metabolic syndrome and incidence of atrial fibrillation among blacks and whites in the Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J. 2010, 159, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.-J.; Han, K.-D.; Choi, E.-K.; Jung, J.-H.; Kwon, S.; Lee, S.-R.; Oh, S.; Lip, G.Y.H. Cumulative burden of metabolic syndrome and its components on the risk of atrial fibrillation: A nationwide population-based study. Cardiovasc. Diabetol. 2021, 20, 20. [Google Scholar] [CrossRef] [PubMed]
- Nyström, P.K.; Carlsson, A.C.; Leander, K.; de Faire, U.; Hellenius, M.-L.; Gigante, B. Obesity, Metabolic Syndrome and Risk of Atrial Fibrillation: A Swedish, Prospective Cohort Study. PLoS ONE 2015, 10, e0127111. [Google Scholar] [CrossRef]
- Tang, R.-B.; Gao, L.-Y.; Dong, J.-Z.; Liu, X.-H.; Liu, X.-P.; Wu, J.-H.; Long, D.-Y.; Yu, R.-H.; Du, X.; Ma, C.-S. Metabolic syndrome in patients with atrial fibrillation in the absence of structural heart disease from a tertiary hospital in China. Chin. Med. J. 2009, 122, 2744–2747. [Google Scholar]
- Choe, W.-S.; Choi, E.-K.; Han, K.-D.; Lee, E.-J.; Lee, S.-R.; Cha, M.-J.; Oh, S. Association of metabolic syndrome and chronic kidney disease with atrial fibrillation: A nationwide population-based study in Korea. Diabetes Res. Clin. Pract. 2019, 148, 14–22. [Google Scholar] [CrossRef]
- Watanabe, H.; Tanabe, N.; Watanabe, T.; Darbar, D.; Roden, D.M.; Sasaki, S.; Aizawa, Y. Metabolic Syndrome and Risk of Development of Atrial Fibrillation: The Niigata preventive medicine study. Circulation 2008, 117, 1255–1260, Erratum in Circulation 2010, 17, e433. [Google Scholar] [CrossRef]
- Umetani, K.; Kodama, Y.; Nakamura, T.; Mende, A.; Kitta, Y.; Kawabata, K.; Obata, J.-E.; Takano, H.; Kugiyama, K. High Prevalence of Paroxysmal Atrial Fibrillation and/or Atrial Flutter in Metabolic Syndrome. Circ. J. 2007, 71, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-G.; Choi, K.-J.; Han, S.; Hwang, K.W.; Kwon, C.H.; Park, G.-M.; Won, K.-B.; Ann, S.H.; Kim, J.; Kim, S.-J.; et al. Metabolic Syndrome and the Risk of New-Onset Atrial Fibrillation in Middle-Aged East Asian Men. Circ. J. 2018, 82, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Choi, E.; Kwon, S.; Yang, S.; Park, J.; Choi, Y.; Lee, H.; Moon, I.; Lee, E.; Han, K.; et al. Association Between Change in Metabolic Syndrome Status and Risk of Incident Atrial Fibrillation: A Nationwide Population-Based Study. J. Am. Heart Assoc. 2021, 10, e020901. [Google Scholar] [CrossRef]
- Kwon, C.H.; Kim, H.; Kim, S.H.; Kim, B.S.; Kim, H.-J.; Sung, J.D.; Kim, D.-K.; Han, S.W.; Ryu, K.-H. The Impact of Metabolic Syndrome on the Incidence of Atrial Fibrillation: A Nationwide Longitudinal Cohort Study in South Korea. J. Clin. Med. 2019, 8, 1095. [Google Scholar] [CrossRef] [PubMed]
- Pastori, D.; Sciacqua, A.; Marcucci, R.; Del Ben, M.; Baratta, F.; Violi, F.; Pignatelli, P.; Saliola, M.; Menichelli, D.; Casciaro, M.A.; et al. Non-alcoholic fatty liver disease (NAFLD), metabolic syndrome and cardiovascular events in atrial fibrillation. A prospective multicenter cohort study. Intern. Emerg. Med. 2021, 16, 2063–2068. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, B.; Li, X.; Zhang, S.; Wu, S.; Xia, Y. Metabolic syndrome, high-sensitivity C-reactive protein levels and the risk of new-onset atrial fibrillation: Results from the Kailuan Study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 102–109. [Google Scholar] [CrossRef]
- Echahidi, N.; Mohty, D.; Pibarot, P.; Després, J.-P.; O’hara, G.; Champagne, J.; Philippon, F.; Daleau, P.; Voisine, P.; Mathieu, P.; et al. Obesity and Metabolic Syndrome Are Independent Risk Factors for Atrial Fibrillation After Coronary Artery Bypass Graft Surgery. Circulation 2007, 116, I213–I219. [Google Scholar] [CrossRef]
- Wijesurendra, R.S.; Casadei, B. Mechanisms of atrial fibrillation. Heart 2019, 105, 1860–1867. [Google Scholar] [CrossRef]
- Wang, T.J.; Parise, H.; Levy, D.; D’Agostino, R.B., Sr.; Wolf, P.A.; Vasan, R.S.; Benjamin, E.J. Obesity and the risk of new-onset atrial fibrillation. JAMA 2004, 292, 2471–2477. [Google Scholar] [CrossRef]
- Baek, Y.; Yang, P.; Kim, T.; Uhm, J.; Park, J.; Pak, H.; Lee, M.; Joung, B. Associations of Abdominal Obesity and New-Onset Atrial Fibrillation in the General Population. J. Am. Heart Assoc. 2017, 6, e004705. [Google Scholar] [CrossRef]
- Rosengren, A.; Hauptman, P.J.; Lappas, G.; Olsson, L.; Wilhelmsen, L.; Swedberg, K. Big men and atrial fibrillation: Effects of body size and weight gain on risk of atrial fibrillation in men. Eur. Heart J. 2009, 30, 1113–1120. [Google Scholar] [CrossRef]
- Wanahita, N.; Messerli, F.H.; Bangalore, S.; Gami, A.S.; Somers, V.K.; Steinberg, J.S. Atrial fibrillation and obesity—Results of a meta-analysis. Am. Heart J. 2008, 155, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Alpert, M.A.; Omran, J.; Bostick, B.P. Effects of Obesity on Cardiovascular Hemodynamics, Cardiac Morphology, and Ventricular Function. Curr. Obes. Rep. 2016, 5, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Pandey, A.; Lau, D.H.; Alpert, M.A.; Sanders, P. Obesity and Atrial Fibrillation Prevalence, Pathogenesis, and Prognosis: Effects of Weight Loss and Exercise. J. Am. Coll. Cardiol. 2017, 70, 2022–2035. [Google Scholar] [CrossRef] [PubMed]
- Magnani, J.W.; Hylek, E.M.; Apovian, C.M. Obesity begets atrial fibrillation: A contemporary summary. Circulation 2013, 128, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Hatem, S.N.; Sanders, P. Epicardial adipose tissue and atrial fibrillation. Cardiovasc. Res. 2014, 102, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Venteclef, N.; Guglielmi, V.; Balse, E.; Gaborit, B.; Cotillard, A.; Atassi, F.; Amour, J.; Leprince, P.; Dutour, A.; Clément, K.; et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur. Heart J. 2015, 36, 795–805. [Google Scholar] [CrossRef]
- Mahajan, R.; Lau, D.H.; Brooks, A.G.; Shipp, N.J.; Manavis, J.; Wood, J.P.; Finnie, J.W.; Samuel, C.S.; Royce, S.G.; Twomey, D.J.; et al. Electrophysiological, Electroanatomical, and Structural Remodeling of the Atria as Consequences of Sustained Obesity. J. Am. Coll. Cardiol. 2015, 66, 1–11. [Google Scholar] [CrossRef]
- Mahajan, R.; Nelson, A.; Pathak, R.K.; Middeldorp, M.E.; Wong, C.X.; Twomey, D.J.; Carbone, A.; Teo, K.; Agbaedeng, T.; Linz, D.; et al. Electroanatomical Remodeling of the Atria in Obesity: Impact of Adjacent Epicardial Fat. JACC Clin. Electrophysiol. 2018, 4, 1529–1540. [Google Scholar] [CrossRef]
- Lip, G.Y.H.; Coca, A.; Kahan, T.; Boriani, G.; Manolis, A.S.; Olsen, M.H.; Oto, A.; Potpara, T.S.; Steffel, J.; Marín, F.; et al. Hypertension and cardiac arrhythmias: A consensus document from the European Heart Rhythm Association (EHRA) and ESC Council on Hypertension, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS) and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología (SOLEACE). Europace 2017, 19, 891–911. [Google Scholar] [CrossRef]
- Tiwari, S.; Schirmer, H.; Jacobsen, B.K.; Hopstock, L.; Nyrnes, A.; Heggelund, G.; Njølstad, I.; Mathiesen, E.B.; Løchen, M.-L. Association between diastolic dysfunction and future atrial fibrillation in the Tromsø Study from 1994 to 2010. Heart 2015, 101, 1302–1308. [Google Scholar] [CrossRef] [PubMed]
- Takagi, T.; Takagi, A.; Yoshikawa, J. Elevated left ventricular filling pressure estimated by E/E′ ratio after exercise predicts development of new-onset atrial fibrillation independently of left atrial enlargement among elderly patients without obvious myocardial ischemia. J. Cardiol. 2014, 63, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Kockskämper, J.; Pluteanu, F. Left Atrial Myocardium in Arterial Hypertension. Cells 2022, 11, 3157. [Google Scholar] [CrossRef] [PubMed]
- Medi, C.; Kalman, J.M.; Spence, S.J.; Teh, A.W.; Lee, G.; Bader, I.; Kaye, D.M.; Kistler, P.M. Atrial Electrical and Structural Changes Associated with Longstanding Hypertension in Humans: Implications for the Substrate for Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2011, 22, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Jansen, H.J.; Mackasey, M.; Moghtadaei, M.; Liu, Y.; Kaur, J.; Egom, E.E.; Tuomi, J.M.; Rafferty, S.A.; Kirkby, A.W.; Rose, R.A. NPR-C (Natriuretic Peptide Receptor-C) Modulates the Progression of Angiotensin II–Mediated Atrial Fibrillation and Atrial Remodeling in Mice. Circ. Arrhythmia Electrophysiol. 2019, 12, e006863. [Google Scholar] [CrossRef] [PubMed]
- Jansen, H.J.; Mackasey, M.; Moghtadaei, M.; Belke, D.D.; Egom, E.E.; Tuomi, J.M.; Rafferty, S.A.; Kirkby, A.W.; Rose, R.A. Distinct patterns of atrial electrical and structural remodeling in angiotensin II mediated atrial fibrillation. J. Mol. Cell. Cardiol. 2018, 124, 12–25. [Google Scholar] [CrossRef]
- Lau, D.H.; Mackenzie, L.; Kelly, D.J.; Psaltis, P.J.; Brooks, A.G.; Worthington, M.; Rajendram, A.; Kelly, D.R.; Zhang, Y.; Kuklik, P.; et al. Hypertension and atrial fibrillation: Evidence of progressive atrial remodeling with electrostructural correlate in a conscious chronically instrumented ovine model. Heart Rhythm. 2010, 7, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Yang, M.; Liu, D.; Zhao, Q. Immune remodeling and atrial fibrillation. Front. Physiol. 2022, 13, 927221. [Google Scholar] [CrossRef] [PubMed]
- Russo, I.; Frangogiannis, N.G. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. J. Mol. Cell. Cardiol. 2015, 90, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Yamashita, T.; Sekiguchi, A.; Tsuneda, T.; Sagara, K.; Takamura, M.; Kaneko, S.; Aizawa, T.; Fu, L.-T. AGEs-RAGE System Mediates Atrial Structural Remodeling in the Diabetic Rat. J. Cardiovasc. Electrophysiol. 2008, 19, 415–420. [Google Scholar] [CrossRef]
- Jia, G.; Whaley-Connell, A.; Sowers, J.R. Diabetic cardiomyopathy: A hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia 2017, 61, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Ayhan, S.; Ozturk, S.; Alcelik, A.; Ozlu, M.F.; Erdem, A.; Memioglu, T.; Ozdemir, M.; Yazici, M. Atrial conduction time and atrial mechanical function in patients with impaired fasting glucose. J. Interv. Card. Electrophysiol. 2012, 35, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Demir, K.; Avci, A.; Kaya, Z.; Marakoglu, K.; Ceylan, E.; Yilmaz, A.; Ersecgin, A.; Armutlukuyu, M.; Altunkeser, B.B. Assessment of atrial electromechanical delay and P-wave dispersion in patients with type 2 diabetes mellitus. J. Cardiol. 2016, 67, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Chao, T.-F.; Suenari, K.; Chang, S.-L.; Lin, Y.-J.; Lo, L.-W.; Hu, Y.-F.; Tuan, T.-C.; Tai, C.-T.; Tsao, H.-M.; Li, C.-H.; et al. Atrial Substrate Properties and Outcome of Catheter Ablation in Patients with Paroxysmal Atrial Fibrillation Associated With Diabetes Mellitus or Impaired Fasting Glucose. Am. J. Cardiol. 2010, 106, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Yokoshiki, H.; Mitsuyama, H.; Mizukami, K.; Ono, T.; Tsutsui, H. Conduction and refractory disorders in the diabetic atrium. Am. J. Physiol. Circ. Physiol. 2012, 303, H86–H95. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, M.; Stevens, M.J. Cardiovascular autonomic neuropathies as complications of diabetes mellitus. Nat. Rev. Endocrinol. 2012, 8, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.J.; Kypson, A.P.; Rodriguez, E.; Anderson, C.A.; Lehr, E.J.; Neufer, P.D. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J. Am. Coll. Cardiol. 2009, 54, 1891–1898. [Google Scholar] [CrossRef]
- Faria, A.; Persaud, S.J. Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential. Pharmacol. Ther. 2017, 172, 50–62. [Google Scholar] [CrossRef]
- Ko, S.-H.; Park, Y.-M.; Yun, J.-S.; Cha, S.-A.; Choi, E.-K.; Han, K.; Han, E.; Lee, Y.-H.; Ahn, Y.-B. Severe hypoglycemia is a risk factor for atrial fibrillation in type 2 diabetes mellitus: Nationwide population-based cohort study. J. Diabetes Complicat. 2018, 32, 157–163. [Google Scholar] [CrossRef]
- Saito, S.; Teshima, Y.; Fukui, A.; Kondo, H.; Nishio, S.; Nakagawa, M.; Saikawa, T.; Takahashi, N. Glucose fluctuations increase the incidence of atrial fibrillation in diabetic rats. Cardiovasc. Res. 2014, 104, 5–14. [Google Scholar] [CrossRef]
- Watanabe, H.; Tanabe, N.; Yagihara, N.; Watanabe, T.; Aizawa, Y.; Kodama, M. Association Between Lipid Profile and Risk of Atrial Fibrillation. Circ. J. 2011, 75, 2767–2774. [Google Scholar] [CrossRef] [PubMed]
- Siasos, G.; Tousoulis, D.; Oikonomou, E.; Zaromitidou, M.; Stefanadis, C.; Papavassiliou, A.G. Inflammatory Markers in Hyperlipidemia: From Experimental Models to Clinical Practice. Curr. Pharm. Des. 2011, 17, 4132–4146. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-M.; Kim, J.-M.; Shin, D.-G.; Kim, J.-R.; Cho, K.-H. Relation of atrial fibrillation (AF) and change of lipoproteins: Male patients with AF exhibited severe pro-inflammatory and pro-atherogenic properties in lipoproteins. Clin. Biochem. 2014, 47, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Soghomonian, A.; Dutour, A.; Kachenoura, N.; Thuny, F.; Lasbleiz, A.; Ancel, P.; Cristofari, R.; Jouve, E.; Simeoni, U.; Kober, F.; et al. Is increased myocardial triglyceride content associated with early changes in left ventricular function? A 1H-MRS and MRI strain study. Front. Endocrinol. 2023, 14, 1181452. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-C.; Shin, S.-J.; Huang, J.-K.; Lin, M.-Y.; Lin, Y.-H.; Ke, L.-Y.; Jiang, H.-J.; Tsai, W.-C.; Chao, M.-F.; Lin, Y.-H. The role of postprandial very-low-density lipoprotein in the development of atrial remodeling in metabolic syndrome. Lipids Health Dis. 2020, 19, 210. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-C.; Cheng, W.-C.; Ma, W.-L.; Lin, Y.-H.; Shin, S.-J.; Lin, Y.-H. Association of lipid composition and unsaturated fatty acids of VLDL with atrial remodeling in metabolic syndrome. Sci. Rep. 2023, 13, 6575. [Google Scholar] [CrossRef] [PubMed]
- Hohl, M.; Lau, D.H.; Müller, A.; Elliott, A.D.; Linz, B.; Mahajan, R.; Hendriks, J.M.L.; Böhm, M.; Schotten, U.; Sanders, P.; et al. Concomitant Obesity and Metabolic Syndrome Add to the Atrial Arrhythmogenic Phenotype in Male Hypertensive Rats. J. Am. Heart Assoc. 2017, 6, e006717. [Google Scholar] [CrossRef] [PubMed]
- Itani, H.A.; Jaffa, M.A.; Elias, J.; Sabra, M.; Zakka, P.; Ballout, J.; Bekdash, A.; Ibrahim, R.; Al Hariri, M.; Ghemrawi, M.; et al. Genomic and Proteomic Study of the Inflammatory Pathway in Patients with Atrial Fibrillation and Cardiometabolic Syndrome. Front. Cardiovasc. Med. 2020, 7, 613271. [Google Scholar] [CrossRef]
- Rafaqat, S.; Sharif, S.; Majeed, M.; Naz, S.; Manzoor, F.; Rafaqat, S. Biomarkers of Metabolic Syndrome: Role in Pathogenesis and Pathophysiology of Atrial Fibrillation. J. Atr. Fibrillation 2021, 14, 20200495. [Google Scholar] [CrossRef]
- Fukui, A.; Takahashi, N.; Nakada, C.; Masaki, T.; Kume, O.; Shinohara, T.; Teshima, Y.; Hara, M.; Saikawa, T. Role of Leptin Signaling in the Pathogenesis of Angiotensin II–Mediated Atrial Fibrosis and Fibrillation. Circ. Arrhythmia Electrophysiol. 2013, 6, 402–409. [Google Scholar] [CrossRef]
- Lin, Y.-K.; Chen, Y.-C.; Chang, S.-L.; Lin, Y.-J.; Chen, J.-H.; Yeh, Y.-H.; Chen, S.-A.; Chen, Y.-J. Heart failure epicardial fat increases atrial arrhythmogenesis. Int. J. Cardiol. 2013, 167, 1979–1983. [Google Scholar] [CrossRef]
- Gehi, A.K.; Lampert, R.; Veledar, E.; Lee, F.; Goldberg, J.; Jones, L.; Murrah, N.; Ashraf, A.; Vaccarino, V. A Twin Study of Metabolic Syndrome and Autonomic Tone. J. Cardiovasc. Electrophysiol. 2009, 20, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.; Chen, Y.; Hu, W.; Gong, X.; Qiu, H.; Chen, H.; Xin, Y.; Li, H. The Role of Mitochondria in Metabolic Syndrome–Associated Cardiomyopathy. Oxidative Med. Cell. Longev. 2022, 2022, 9196232. [Google Scholar] [CrossRef] [PubMed]
- Panov, A.; Mayorov, V.I.; Dikalov, S. Metabolic Syndrome and β-Oxidation of Long-Chain Fatty Acids in the Brain, Heart, and Kidney Mitochondria. Int. J. Mol. Sci. 2022, 23, 4047. [Google Scholar] [CrossRef] [PubMed]
- Federico, M.; De la Fuente, S.; Palomeque, J.; Sheu, S. The role of mitochondria in metabolic disease: A special emphasis on heart dysfunction. J. Physiol. 2021, 599, 3477–3493. [Google Scholar] [CrossRef]
- Sommese, L.; Valverde, C.A.; Blanco, P.; Castro, M.C.; Rueda, O.V.; Kaetzel, M.; Dedman, J.; Anderson, M.E.; Mattiazzi, A.; Palomeque, J. Ryanodine receptor phosphorylation by CaMKII promotes spontaneous Ca2+ release events in a rodent model of early stage diabetes: The arrhythmogenic substrate. Int. J. Cardiol. 2016, 202, 394–406. [Google Scholar] [CrossRef]
- Miao, M.; Han, Y.; Liu, L. Mitophagy in metabolic syndrome. J. Clin. Hypertens. 2023, 25, 397–403. [Google Scholar] [CrossRef]
- Pathak, R.K.; Middeldorp, M.E.; Lau, D.H.; Mehta, A.B.; Mahajan, R.; Twomey, D.; Alasady, M.; Hanley, L.; Antic, N.A.; McEvoy, R.D.; et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: The AR-REST-AF cohort study. J. Am. Coll. Cardiol. 2014, 64, 2222–2231. [Google Scholar] [CrossRef]
- Jongnarangsin, K.; Chugh, A.; Good, E.; Mukerji, S.; Dey, S.; Crawford, T.; Sarrazin, J.F.; Kuhne, M.; Chalfoun, N.; Wells, D.; et al. Body Mass Index, Obstructive Sleep Apnea, and Outcomes of Catheter Ablation of Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2008, 19, 668–672. [Google Scholar] [CrossRef]
- Winkle, R.A.; Mead, R.H.; Engel, G.; Kong, M.H.; Fleming, W.; Salcedo, J.; Patrawala, R.A. Impact of obesity on atrial fibrillation ablation: Patient characteristics, long-term outcomes, and complications. Heart Rhythm. 2017, 14, 819–827. [Google Scholar] [CrossRef]
- Gessler, N.; Willems, S.; Steven, D.; Aberle, J.; Akbulak, R.O.; Gosau, N.; Hoffmann, B.; Meyer, C.; Sultan, A.; Tilz, R.; et al. Supervised Obesity Reduction Trial for AF ablation patients: Results from the SORT-AF trial. Europace 2021, 23, 1548–1558. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.X.; Sullivan, T.; Sun, M.T.; Mahajan, R.; Pathak, R.K.; Middeldorp, M.; Twomey, D.; Ganesan, A.N.; Rangnekar, G.; Roberts-Thomson, K.C.; et al. Obesity and the Risk of Incident, Post-Operative, and Post-Ablation Atrial Fibrillation: A Meta-Analysis of 626,603 Individuals in 51 Studies. JACC Clin. Electrophysiol. 2015, 1, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Zylla, M.M.; Hochadel, M.; Andresen, D.; Brachmann, J.; Eckardt, L.; Hoffmann, E.; Kuck, K.-H.; Lewalter, T.; Schumacher, B.; Spitzer, S.G.; et al. Ablation of Atrial Fibrillation in Patients with Hypertension—An Analysis from the German Ablation Registry. J. Clin. Med. 2020, 9, 2402. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.-B.; Dong, J.-Z.; Liu, X.-P.; Long, D.-Y.; Yu, R.-H.; Kalifa, J.; Ma, C.-S. Metabolic Syndrome and Risk of Recurrence of Atrial Fibrillation After Catheter Ablation. Circ. J. 2009, 73, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Mohanty, P.; Di Biase, L.; Bai, R.; Pump, A.; Santangeli, P.; Burkhardt, D.; Gallinghouse, J.G.; Horton, R.; Sanchez, J.E.; et al. Impact of Metabolic Syndrome on Procedural Outcomes in Patients with Atrial Fibrillation Undergoing Catheter Ablation. J. Am. Coll. Cardiol. 2012, 59, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Li, X.-F.; Liu, J.; Yu, M.; Fang, P.-H.; Zhang, S. The influence of metabolic syndrome on atrial fibrillation recurrence: Five-year outcomes after a single cryoballoon ablation procedure. J. Geriatr. Cardiol. 2021, 18, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.J.; Cho, S.I.; Tiwari, N.; Bergman, M.; Kizer, J.R.; Palma, E.C.; Taub, C.C. Impact of metabolic syndrome on the risk of atrial fibrillation recurrence after catheter ablation: Systematic review and meta-analysis. J. Interv. Card. Electrophysiol. 2014, 39, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.-S.; Yang, P.-S.; Kim, T.-H.; Uhm, J.-S.; Kim, J.-Y.; Joung, B.; Lee, M.-H.; Pak, H.-N. Delayed recurrence of atrial fibrillation 2 years after catheter ablation is associated with metabolic syndrome. Int. J. Cardiol. 2016, 223, 276–281. [Google Scholar] [CrossRef]
- Charitakis, E.; Dragioti, E.; Stratinaki, M.; Korela, D.; Tzeis, S.; Almroth, H.; Liuba, I.; Jönsson, A.H.; Charalambous, G.; Karlsson, L.; et al. Predictors of recurrence after catheter ablation and electrical cardioversion of atrial fibrillation: An umbrella review of meta-analyses. Europace 2023, 25, 40–48. [Google Scholar] [CrossRef]
- Mohanty, S.; Mohanty, P.; DI Biase, L.; Bai, R.; Trivedi, C.; Santangeli, P.; Santoro, F.; Hongo, R.; Hao, S.; Beheiry, S.; et al. Long-Term Outcome of Catheter Ablation in Atrial Fibrillation Patients with Coexistent Metabolic Syndrome and Obstructive Sleep Apnea: Impact of Repeat Procedures versus Lifestyle Changes. J. Cardiovasc. Electrophysiol. 2014, 25, 930–938. [Google Scholar] [CrossRef]
- Rabinowich, L.; Shibolet, O. Drug Induced Steatohepatitis: An Uncommon Culprit of a Common Disease. BioMed. Res. Int. 2015, 2015, 168905. [Google Scholar] [CrossRef] [PubMed]
- Lazo, M.; Hernaez, R.; Eberhardt, M.S.; Bonekamp, S.; Kamel, I.; Guallar, E.; Koteish, A.; Brancati, F.L.; Clark, J.M. Prevalence of Nonalcoholic Fatty Liver Disease in the United States: The Third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Epidemiol. 2013, 178, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Handelsman, Y.; Bunch, T.J.; Rodbard, H.W.; Steinberg, B.A.; Thind, M.; Bigot, G.; Konigsberg, L.; Wieloch, M.; Kowey, P.R. Impact of dronedarone on patients with atrial fibrillation and diabetes: A sub-analysis of the ATHENA and EURIDIS/ADONIS studies. J. Diabetes Complicat. 2022, 36, 108227. [Google Scholar] [CrossRef] [PubMed]
- Ornelas-Loredo, A.; Kany, S.; Abraham, V.; Alzahrani, Z.; Darbar, F.A.; Sridhar, A.; Ahmed, M.; Alamar, I.; Menon, A.; Zhang, M.; et al. Association Between Obesity-Mediated Atrial Fibrillation and Therapy with Sodium Channel Blocker Antiarrhythmic Drugs. JAMA Cardiol. 2020, 5, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Grassi, G.; Zanchetti, A. New-onset diabetes and antihypertensive drugs. J. Hypertens. 2006, 24, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.M.; Pischon, T.; Hardt, S.; Kunz, I.; Luft, F.C. Hypothesis: β-Adrenergic Receptor Blockers and Weight Gain: A systematic analysis. Hypertension 2001, 37, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Dahlof, B.; Dobson, J.; Sever, P.S.; Wedel, H.; Poulter, N.; Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) Investigators. Determinants of New-Onset Diabetes Among 19,257 Hypertensive Patients Randomized in the Anglo-Scandinavian Cardiac Outcomes Trial–Blood Pressure Lowering Arm and the Relative Influence of Antihypertensive Medication. Diabetes Care 2008, 31, 982–988. [Google Scholar] [CrossRef]
- Bakris, G.L.; Fonseca, V.; Katholi, R.E.; McGill, J.B.; Messerli, F.; Phillips, R.A.; Raskin, P.; Wright, J.T.; Waterhouse, B.; Lukas, M.A.; et al. Differential Effects of β-Blockers on Albuminuria in Patients with Type 2 Diabetes. Hypertension 2005, 46, 1309–1315. [Google Scholar] [CrossRef]
- Bell, D.S.H.; Bakris, G.L.; McGill, J.B. Comparison of carvedilol and metoprolol on serum lipid concentration in diabetic hypertensive patients. Diabetes Obes. Metab. 2009, 11, 234–238. [Google Scholar] [CrossRef]
- Bakris, G.L.; Fonseca, V.; Katholi, R.E.; McGill, J.B.; Messerli, F.H.; Phillips, R.A.; Raskin, P.; Wright, J.T.; Oakes, R.; Lukas, M.A.; et al. Metabolic Effects of Carvedilol vs Metoprolol in Patients with Type 2 Diabetes Mellitus and Hypertension: A randomized controlled trial. JAMA 2004, 292, 2227–2236. [Google Scholar] [CrossRef]
- Schmidt, A.C.; Graf, C.; Brixius, K.; Scholze, J. Blood Pressure-Lowering Effect of Nebivolol in Hypertensive Patients with Type 2 Diabetes Mellitus: The YESTONO study. Clin. Drug Investig. 2007, 27, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 2018, 36, 2284–2309, Erratum in J. Hypertens. 2019, 37, 456. [Google Scholar] [CrossRef] [PubMed]
- Bansilal, S.; Bloomgarden, Z.; Halperin, J.L.; Hellkamp, A.S.; Lokhnygina, Y.; Patel, M.R.; Becker, R.C.; Breithardt, G.; Hacke, W.; Hankey, G.J.; et al. Efficacy and safety of rivaroxaban in patients with diabetes and nonvalvular atrial fibrillation: The Rivaroxaban Once-daily, Oral, Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF Trial). Am. Heart J. 2015, 170, 675–682.e8. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Sun, J.-Y.; Su, Y.; Qu, Q.; Wang, H.-Y.; Sun, W.; Kong, X.-Q. The Safety and Efficacy of Rivaroxaban Compared with Warfarin in Patients with Atrial Fibrillation and Diabetes: A Systematic Review and Meta-analysis. Am. J. Cardiovasc. Drugs 2021, 21, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-K.; Liu, P.P.-S.; Lin, S.-M.; Yeh, J.-I.; Hsu, J.-Y.; Peng, C.C.-H.; Munir, K.M.; Loh, C.-H.; Tu, Y.-K. Risk of serious hypoglycaemia in patients with atrial fibrillation and diabetes concurrently taking antidiabetic drugs and oral anticoagulants: A nationwide cohort study. Eur. Heart J. Cardiovasc. Pharmacother. 2023, 9, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Zhu, K.; Wang, L.; Zhi, H. A network meta-analysis of non-vitamin K antagonist oral anticoagulants versus warfarin in patients with atrial fibrillation and diabetes mellitus. Acta Cardiol. 2021, 76, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Tittl, L.; Endig, S.; Marten, S.; Reitter, A.; Beyer-Westendorf, I.; Beyer-Westendorf, J. Impact of BMI on clinical outcomes of NOAC therapy in daily care—Results of the prospective Dresden NOAC Registry (NCT01588119). Int. J. Cardiol. 2018, 262, 85–91. [Google Scholar] [CrossRef]
- Boivin-Proulx, L.-A.; Potter, B.J.; Dorais, M.; Perreault, S. Comparative Effectiveness and Safety of Direct Oral Anticoagulants vs Warfarin Among Obese Patients with Atrial Fibrillation. CJC Open 2022, 4, 395–405. [Google Scholar] [CrossRef]
- Hohnloser, S.H.; Fudim, M.; Alexander, J.H.; Wojdyla, D.M.; Ezekowitz, J.A.; Hanna, M.; Atar, D.; Hijazi, Z.; Bahit, M.C.; Al-Khatib, S.M.; et al. Efficacy and Safety of Apixaban Versus Warfarin in Patients with Atrial Fibrillation and Extremes in Body Weight. Circulation 2019, 139, 2292–2300. [Google Scholar] [CrossRef]
- O’kane, C.P.; Avalon, J.C.O.; Lacoste, J.L.; Fang, W.; Bianco, C.M.; Davisson, L.; Piechowski, K.L. Apixaban and rivaroxaban use for atrial fibrillation in patients with obesity and BMI ≥ 50 kg/m2. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2022, 42, 112–118. [Google Scholar] [CrossRef]
- Boriani, G.; Ruff, C.T.; Kuder, J.F.; Shi, M.; Lanz, H.J.; Rutman, H.; Mercuri, M.F.; Antman, E.M.; Braunwald, E.; Giugliano, R.P. Relationship between body mass index and outcomes in patients with atrial fibrillation treated with edoxaban or warfarin in the ENGAGE AF-TIMI 48 trial. Eur. Heart J. 2019, 40, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Guo, M.; Li, D.; Xu, W.; Pan, C.; He, C.; Cui, X. Pharmacokinetics and Dosing Regimens of Direct Oral Anticoagulants in Morbidly Obese Patients: An Updated Literature Review. Clin. Appl. Thromb. Hemost. 2023, 29, 10760296231153638. [Google Scholar] [CrossRef]
- Chugh, Y.; Gupta, K.; Krishna, H.B.; Ayala, R.Q.; Zepeda, I.; Grushko, M.; Faillace, R.T. Safety and efficacy of apixaban, dabigatran and rivaroxaban in obese and morbidly obese patients with heart failure and atrial fibrillation: A real-world analysis. Pacing Clin. Electrophysiol. 2023, 46, 50–58. [Google Scholar] [CrossRef]
- Abed, H.S.; Wittert, G.A.; Leong, D.P.; Shirazi, M.G.; Bahrami, B.; Middeldorp, M.E.; Lorimer, M.F.; Lau, D.H.; Antic, N.A.; Brooks, A.G.; et al. Effect of Weight Reduction and Cardiometabolic Risk Factor Management on Symptom Burden and Severity in Patients With Atrial Fibrillation: A randomized clinical trial. JAMA 2013, 310, 2050–2060. [Google Scholar] [CrossRef] [PubMed]
- Middeldorp, M.; Pathak, R.K.; Meredith, M.; Mehta, A.B.; Elliott, A.D.; Mahajan, R.; Twomey, D.; Gallagher, C.; Hendriks, J.M.L.; Linz, D.; et al. PREVEntion and regReSsive Effect of weight-loss and risk factor modification on Atrial Fibrillation: The REVERSE-AF study. Europace 2018, 20, 1929–1935. [Google Scholar] [CrossRef] [PubMed]
- Pathak, R.K.; Middeldorp, M.E.; Meredith, M.; Mehta, A.B.; Mahajan, R.; Wong, C.X.; Twomey, D.; Elliott, A.D.; Kalman, J.M.; Abhayaratna, W.P.; et al. Long-Term Effect of Goal-Directed Weight Management in an Atrial Fibrillation Cohort: A Long-Term Follow-Up Study (LEGACY). J. Am. Coll. Cardiol. 2015, 65, 2159–2169. [Google Scholar] [CrossRef] [PubMed]
- Pontiroli, A.E.; Centofanti, L.; Le Roux, C.W.; Magnani, S.; Tagliabue, E.; Folli, F. Effect of Prolonged and Substantial Weight Loss on Incident Atrial Fibrillation: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 940. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Yu, P.; Liu, M.; Ma, J.; Wang, J.; Zhu, W.; Liu, X. Association between weight loss and outcomes in patients undergoing atrial fibrillation ablation: A systematic review and dose–response meta-analysis. Nutr. Metab. 2023, 20, 5. [Google Scholar] [CrossRef]
- Kim, D.; Yang, P.-S.; Kim, T.-H.; Jang, E.; Shin, H.; Kim, H.Y.; Yu, H.T.; Uhm, J.-S.; Kim, J.-Y.; Pak, H.-N.; et al. Ideal Blood Pressure in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2018, 72, 1233–1245. [Google Scholar] [CrossRef]
- Fogari, R.; Mugellini, A.; Zoppi, A.; Preti, P.; Destro, M.; Lazzari, P.; Derosa, G. Effect of Telmisartan and Ramipril on Atrial Fibrillation Recurrence and Severity in Hypertensive Patients with Metabolic Syndrome and Recurrent Symptomatic Paroxysmal and Persistent Atrial Fibrillation. J. Cardiovasc. Pharmacol. Ther. 2012, 17, 34–43. [Google Scholar] [CrossRef]
- Fauchier, L.; Pierre, B.; de Labriolle, A.; Grimard, C.; Zannad, N.; Babuty, D. Antiarrhythmic Effect of Statin Therapy and Atrial Fibrillation: A Meta-Analysis of Randomized Controlled Trials. J. Am. Coll. Cardiol. 2008, 51, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, L.; Korantzopoulos, P.; Liu, E.; Li, G. Statin use and development of atrial fibrillation: A systematic review and meta-analysis of randomized clinical trials and observational studies. Int. J. Cardiol. 2008, 126, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Donnellan, E.; Aagaard, P.; Kanj, M.; Jaber, W.; Elshazly, M.; Hoosien, M.; Baranowski, B.; Hussein, A.; Saliba, W.; Wazni, O. Association Between Pre-Ablation Glycemic Control and Outcomes Among Patients with Diabetes Undergoing Atrial Fibrillation Ablation. JACC Clin. Electrophysiol. 2019, 5, 897–903. [Google Scholar] [CrossRef]
- Lu, Z.-H.; Liu, N.; Bai, R.; Yao, Y.; Li, S.-N.; Yu, R.-H.; Sang, C.-H.; Tang, R.-B.; Long, D.-Y.; Du, X.; et al. HbA1c levels as predictors of ablation outcome in type 2 diabetes mellitus and paroxysmal atrial fibrillation. Herz 2015, 40, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Papazoglou, A.S.; Kartas, A.; Moysidis, D.V.; Tsagkaris, C.; Papadakos, S.P.; Bekiaridou, A.; Samaras, A.; Karagiannidis, E.; Papadakis, M.; Giannakoulas, G. Glycemic control and atrial fibrillation: An intricate relationship, yet under investigation. Cardiovasc. Diabetol. 2022, 21, 39. [Google Scholar] [CrossRef]
- Pathak, R.K.; Evans, M.; Middeldorp, M.E.; Mahajan, R.; Mehta, A.B.; Meredith, M.; Twomey, D.; Wong, C.X.; Hendriks, J.M.; Abhayaratna, W.P.; et al. Cost-Effectiveness and Clinical Effectiveness of the Risk Factor Management Clinic in Atrial Fibrillation: The CENT Study. JACC Clin. Electrophysiol. 2017, 3, 436–447. [Google Scholar] [CrossRef]
Revised Criteria for Clinical Diagnosis of the Metabolic Syndrome | |
---|---|
Measure | Categorical Cut Points |
Elevated waist circumference * | Population- and country-specific definitions |
Elevated triglycerides (drug treatment for elevated triglycerides is an alternate indicator †) | 150 mg/dL (1.7 mmol/L) |
Reduced HDL-C (drug treatment for reduced HDL-C is an alternate indicator †) | <40 mg/dL (1.0 mmol/L) in males; <50 mg/dL (1.3 mmol/L) in women |
Elevated blood pressure (antihypertensive drug treatment in a patient with a history of hypertension is an alternate indicator) | Systolic 130 and/or diastolic 85 mm Hg |
Elevated fasting glucose ‡ (drug treatment of elevated glucose is an alternate indicator) | 100 mg/dL |
Definitions of Metabolic Syndrome |
---|
National Cholesterol Education Program (NCEP) ATP3 2005 |
|
International Diabetes Federation 2006 (IDF) |
Central obesity (defined as waist circumference ≥ 94 cm for Europid men and ≥80 cm for Europid women, with ethnicity-specific values for other groups) plus any two of the following four factors:
|
Studies | Design | Total Cases | Population | MetS Definition | AF-MetS (% of Total Population) | Findings |
---|---|---|---|---|---|---|
Hyo-Jeong Ahn et al. [18], 2021 | Retrospective Cohort Study | 2.985.189 | Korean (2009–2013) (NHID) (aged > 20) | NCEP-ATPIII + modified waist circumference (WC) criteria of the Korean Society for the Study of Obesity | −14.1 | positive association of AF with the cumulative number of MetS criteria 1.46 (1.38–1.55), and 1.72 (1.63–1.82), p for trend < 0.001. HR for 3 and 4 criteria, respectively |
Pastori et al. [27], 2021 | Prospective Cohort Study | 1.735 | Italian (mean age 75.1) Patients with a history of AF | NCEP-ATPIII | 100–49 | MetS and NAFLD were more frequently affected by persistent/permanent AF AF combined with MetS showed a higher risk for CVEs |
Lee et al. [25], 2021 | Retrospective Cohort Study | 7.565.531 | Korean (2008–2009) (NHID) (aged >20) | AHA/NHLBI | 1.79–36.9 | AF risk was higher by 31% in the MM group [hazard ratio (HR), 1.308; 95% CI, 1.290–1.327], 26% in the MH group (HR, 1.259; 95% CI, 1.238–1.280), and 16% in the HM group (HR, 1.155; 95% CI, 1.134–1.178) compared with the HH group, respectively |
Wang et al. [28], 2020 | Prospective Cohort Study | 81.092 | Chinese (2006–2007) (Kailuan study) (aged 18–98) | NCEP-ATPIII | 0.3–29.8 | MS and a high hs-CRP level were associated with higher AF risk (HR = 1.61; 95% CI 1.08–2.41; p = 0.019) |
Choe et al. [21], 2019 | Retrospective Cohort Study | 22.896.663 | Korean (2009–2012) (NHID) (aged > 40) | NCEP-ATPIII | 0.98–27.4 | HR for incident AF in patients with MetS was 1.38 (95% confidence interval [CI] 1.36–1.39) compared to those without MetS |
Kwon et al. [26], 2019 | Retrospective Cohort Study | 7.830.602 | Korean (2009–2016) (NHID) (aged 30–69) | NCEP-ATPIII | 0.26–15.9 | Incidence of AF 0.12% in the normal group and 0.53% in the MetS group |
Kim et al. [24], 2018 | Retrospective Cohort Study | 21.981 | Korean (2003–2008) (University Hospital of Ulsan) (mean age 46) | IDF | 0.8–11.5 | MetS was associated with an increased risk of AF. Age-adjusted HR for AF in subjects with MetS was 1.62 (95% CI 1.08–2.44, p = 0.02) |
Nyström et al. [19], 2015 | Prospective Cohort Study | 4.021 | Swedish (1997–1999) | Revised MetS criteria of IDF [11] | 7.1–27.6 | 37.9% of the AF group had MetS vs. 26.8% of the non-AF group had MetS |
Vyssoulis et al. [5], 2013 | Prospective Cohort Study | 15.075 | Greek (1988–2010) (aged > 40) Patients with hypertension | NCEP-ATPIII AHA/NHLBI WHO IDF GISSI Score | Not mentioned—from 31.7 to 47.8, according to the definition used | Presence of MS in patients with hypertension was constantly associated with a higher incidence of AF in all groups (p < 0.001). Odds ratio 1.61 to 1.99, depending on the definition of MS used |
Chamberlain et al. [17], 2010 | Prospective Cohort Study | 15.094 | Americans (1987–1989) Atherosclerosis Risk in Communities (ARIC) Study Two groups: Black race and white race (aged 45–64) | AHA/NHLBI | 8.2–41.1 | HR for AF among individuals with, compared to those without, the MetSyn was 1.67 (95% CI, 1.49–1.87) in both races |
Tang et al. [20], 2009 | Retrospective Cohort Study | 741 | Chinese (2005–2007) (Mean age 55.8) | NCEP-ATPIII | 100–46.3 | Higher prevalence of MetS in AF than that in Chinese adults (46.3% vs. 16.5%, p < 0.001) |
Watanabe et al. [22], 2008 | Prospective Cohort Study | 28.449 | Japanese (1996–1998) (aged > 20) | NCEP-ATPIII AHA/NHLBI | 0.9–13 (NCEP-ATPIII) 16 (AHA/NHLBI) | HR for developing AF in patients with METS was 1.88 (95% CI, 1.4–2.52) for NCEP-ATPIII and 1.61 (95% CI, 1.21–2.15) for AHA/NHLBI |
Umetanani et al. [23], 2007 | Prospective Cohort Study | 592 | Japanese (2001–2005) (mean age 63) | NCEP-ATPIII | 5–21 | MetS was a risk factor for PAF/PAFL independently from other parameters OR 2.8, 95% confidence interval (CI) 1.3–6.2, p < 0.01) |
Echadidi et al. [29], 2007 | Retrospective Cohort Study | 5.085 | Canadians (2000–2004) (mean age 64) After CABG | NCEP-ATPIII | 27–46 | Incidence of AF in patients with MetS was 29% and 26% in patients without MetS (p = 0.01) |
Antiarrhythmic Drugs | |
---|---|
Amiodarone (Class III—Potassium channel blockers) [93,94] |
|
Dronedarone (Class III—Potassium channel blockers) [95] |
|
Class I—Sodium channel blockers [96] |
|
Class II—B blockers [97,98,99,100,101,102,103,104] |
|
Class IV—Nondihydropyridine Calcium channel blockers |
|
Anticoagulants | |
Dabigatran [105,106,107,108] |
|
Rivaroxaban [105,106,107,108,109,110] |
|
Apixaban [110,111,112,114,115] |
|
Edoxaban [113] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakynthinos, G.E.; Tsolaki, V.; Oikonomou, E.; Vavouranakis, M.; Siasos, G.; Zakynthinos, E. Metabolic Syndrome and Atrial Fibrillation: Different Entities or Combined Disorders. J. Pers. Med. 2023, 13, 1323. https://doi.org/10.3390/jpm13091323
Zakynthinos GE, Tsolaki V, Oikonomou E, Vavouranakis M, Siasos G, Zakynthinos E. Metabolic Syndrome and Atrial Fibrillation: Different Entities or Combined Disorders. Journal of Personalized Medicine. 2023; 13(9):1323. https://doi.org/10.3390/jpm13091323
Chicago/Turabian StyleZakynthinos, George E., Vasiliki Tsolaki, Evangelos Oikonomou, Manolis Vavouranakis, Gerasimos Siasos, and Epaminondas Zakynthinos. 2023. "Metabolic Syndrome and Atrial Fibrillation: Different Entities or Combined Disorders" Journal of Personalized Medicine 13, no. 9: 1323. https://doi.org/10.3390/jpm13091323
APA StyleZakynthinos, G. E., Tsolaki, V., Oikonomou, E., Vavouranakis, M., Siasos, G., & Zakynthinos, E. (2023). Metabolic Syndrome and Atrial Fibrillation: Different Entities or Combined Disorders. Journal of Personalized Medicine, 13(9), 1323. https://doi.org/10.3390/jpm13091323