Impact of Minimally Invasive Surgery on Anatomic Liver Segmentectomy Using the Extrahepatic Glissonean Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Terminology
2.2. Surgical Indications of AS
2.3. Surgical Techniques
2.4. Background Data Collection
2.5. Perioperative Outcomes
2.6. Subgroup Analyses
2.7. Statistical Analysis
2.8. Ethical Issue
3. Results
3.1. Period of Operation, Case Number, and Procedural Difficulty
3.1.1. Annual Numbers AS Cases
3.1.2. Changes in the Proportion of the MIAS Approach and Surgical Difficulty Levels
3.2. Perioperative Outcomes
3.2.1. Comparison between OAS and MIAS
Background Data (Table 2)
Before PSM | After PSM | |||||
---|---|---|---|---|---|---|
OAS (n = 99) | MIAS (n = 112) | p | OAS (n = 71) | MIAS (n = 71) | p | |
Age, years | 71 (65–75) | 70 (63–74) | 0.165 | 70 (63–75) | 71 (67–76) | 0.433 |
Sex, M/F | 77/22 | 85/27 | 0.746 | 54/17 | 52/19 | 0.700 |
BMI, ≥25.0 kg/m2 | 27 (27.3) | 29 (25.9) | 0.821 | 19 (26.8) | 20 (28.2) | 0.851 |
ASA score, I or II | 75 (75.8) | 106 (94.6) | <0.0001 | 64 (90.1) | 65 (91.5) | 0.771 |
CCI score | 7 (2–12) | 6 (0–12) | 0.003 | 7 (2–12) | 7 (2–11) | 0.788 |
Cirrhosis (histology) | 33 (33.3) | 36 (32.1) | 0.854 | 26 (36.6) | 21 (29.6) | 0.373 |
ICGR15, % | 13.7 (9.0–20.2) | 10.5 (6.4–14.9) | 0.002 | 12.5 (8.9–20.2) | 13.0 (7.8–17.7) | 0.516 |
≥13.0% | 49 (51.6) | 38 (34.2) | 0.012 | 33 (46.5) | 35 (49.3) | 0.737 |
HCC | 75 (75.7) | 86 (76.8) | 0.861 | 53 (74.7) | 50 (70.4) | 0.573 |
Tumor number | ||||||
Single/Multiple | 66/33 (33.3) | 87/25 (22.3) | 0.074 | 48/23 (32.4) | 50/21 (29.6) | 0.717 |
Tumor size, cm | 3.2 (2.2–4.8) | 3.0 (2.0–4.0) | 0.198 | 3.3 (2.4–5.0) | 3.1 (2.1–4.0) | 0.485 |
≥3.0 cm | 57 (57.6) | 58 (51.8) | 0.399 | 42 (59.2) | 40 (56.3) | 0.734 |
Location, AL/PS | 46/53 (53.5) | 46/66 (58.9) | 0.431 | 31/40 (56.3) | 31/40 (56.3) | 1.000 |
Including subsegmentectomy | 29 (29.3) | 37 (33.0) | 0.558 | 21 (29.6) | 19 (26.8) | 0.709 |
Additional wedge resection | 21 (21.2) | 13 (11.6) | 0.058 | 13 (18.3) | 11 (15.5) | 0.654 |
Previous hepatectomy | 18 (18.2) | 24 (21.4) | 0.556 | 12 (16.9) | 12 (16.9) | 1.000 |
Perioperative Outcomes (Table 3)
Before PSM | After PSM | |||||
---|---|---|---|---|---|---|
OAS (n = 99) | MIAS (n = 112) | p | OAS (n = 71) | MIAS (n = 71) | p | |
Operative time, min | 554 (452–707) | 634 (525–768) | 0.026 | 553 (467–674) | 599 (468–737) | 0.266 |
Blood loss, g | 809 (413–1413) | 204 (102–492) | <0.0001 | 809 (451–1383) | 215 (83–500) | <0.0001 |
Transfusion | 46 (46.5) | 17 (15.2) | <0.0001 | 30 (42.3) | 13 (18.3) | 0.002 |
Pringle maneuver | 7 (7.1) | 30 (26.8) | 0.0002 | 3 (4.2) | 18 (25.4) | 0.0004 |
Open conversion | NA | 1 (0.9) | NA | NA | 1 (1.4) | NA |
Max-TB, mg/dL | 2.0 (1.4–2.9) | 1.5 (1.2–1.9) | <0.0001 | 2.0 (1.4–2.8) | 1.4 (1.2–1.8) | <0.0001 |
Max-AST, IU/L | 409 (289–773) | 630 (316–1081) | 0.003 | 416 (305–723) | 522 (290–1088) | 0.165 |
Max-CRP, mg/dL | 10.9 (7.6–14.4) | 9.1 (6.4–12.7) | 0.007 | 10.7 (7.3–13.8) | 9.1 (6.5–12.4) | 0.034 |
R0 resection | 92 (94.9) | 112 (100) | 0.015 | 64 (92.8) | 71 (100) | 0.021 |
Morbidity ≤ 90 days | ||||||
Overall (≥C-D I) | 50 (50.5) | 42 (37.5) | 0.057 | 38 (53.5) | 28 (39.4) | 0.093 |
Major (≥C-D IIIa) | 16 (16.2) | 13 (11.6) | 0.338 | 12 (16.9) | 6 (8.5) | 0.130 |
Bile leak/collection | 9 (9.1) | 7 (6.3) | 0.437 | 8 (11.3) | 2 (2.8) | 0.049 |
Mortality | ||||||
≤30 days | 1 (1.0) | 0 (0) | 0.286 | 1 (1.4) | 0 (0) | 0.316 |
≤90 days | 3 (3.0) | 0 (0) | 0.064 | 3 (4.2) | 0 (0) | 0.080 |
Length of hospital stay, days | 26 (19–34) | 15 (12–20) | <0.0001 | 24 (17–33) | 16 (12–20) | <0.0001 |
3.2.2. Comparison between Laparoscopic and Robotic AS
Background Data (Table 4)
Before PSM | After PSM | |||||
---|---|---|---|---|---|---|
Laparoscopic (n = 77) | Robotic (n = 35) | p | Laparoscopic (n = 30) | Robotic (n = 30) | p | |
Age, years | 70 (62–74) | 72 (64–74) | 0.561 | 71 (66–73) | 71 (63–74) | 0.947 |
Sex, male/female | 57/20 | 28/7 | 0.493 | 26/4 | 24/6 | 0.488 |
BMI, ≥25.0 kg/m2 | 21 (27.3) | 8 (22.9) | 0.621 | 7 (23.3) | 7 (23.3) | 1.000 |
ASA score, I or II | 75 (97.4) | 31 (88.6) | 0.054 | 29 (96.7) | 27(90.0) | 0.300 |
CCI score | 6 (0–12) | 6 (3–11) | 0.716 | 7 (2–9) | 6 (3–11) | 0.693 |
Cirrhosis (histology) | 30 (39.0) | 6 (17.1) | 0.022 | 11 (36.7) | 6 (20.0) | 0.152 |
ICGR15, % | 10.3 (6.5–14.6) | 11.1 (5.9–15.8) | 0.952 | 11.2 (7.8–14.7) | 10.6 (5.9–15.8) | 0.411 |
≥13.0% | 25 (32.9) | 13 (37.1) | 0.661 | 10 (33.3) | 10 (33.3) | 1.000 |
HCC | 58 (75.3) | 28 (80.0) | 0.587 | 22 (73.3) | 25 (83.3) | 0.347 |
Tumor number | ||||||
Single/Multiple | 64/13 (16.9) | 23/12 (34.3) | 0.040 | 21/9 (30.0) | 23/7 (23.3) | 0.559 |
Tumor size, cm | 3.0 (2.2–4.0) | 2.5 (2.0–3.3) | 0.071 | 3.0 (2.1–3.8) | 2.7 (2.0–3.5) | 0.584 |
≥3.0 cm | 44 (57.1) | 14 (40.0) | 0.092 | 15 (50.0) | 14 (46.7) | 0.796 |
Location, AL/PS | 30/47 (61.0) | 16/19 (54.3) | 0.501 | 11/19 (63.3) | 15/15 (50.0) | 0.297 |
Including subsegmentectomy | 21 (27.3) | 17 (48.6) | 0.027 | 6 (20.0) | 14 (46.7) | 0.028 |
Additional wedge resection | 6 (7.8) | 7 (20.0) | 0.062 | 5 (16.7) | 4 (13.3) | 0.718 |
Iwate difficulty level; Advanced or Expert | 55 (71.4) | 24 (68.6) | 0.759 | 22 (73.3) | 20 (66.7) | 0.573 |
Previous hepatectomy | 11 (14.3) | 13 (37.1) | 0.006 | 7 (23.3) | 8 (26.7) | 0.766 |
Number ≥2 times | 0 (0) | 7 (20.0) | <0.0001 | 0 (0) | 4 (13.3) | 0.038 |
Perioperative Outcomes (Table 5)
Before PSM | After PSM | |||||
---|---|---|---|---|---|---|
Laparoscopic (n = 77) | Robotic (n = 35) | p | Laparoscopic (n = 30) | Robotic (n = 30) | p | |
Operative time, min | 618 (502–735) | 663 (545–897) | 0.094 | 589 (503–704) | 662 (544–868) | 0.209 |
Blood loss, g | 193 (96–449) | 225 (105–647) | 0.522 | 192 (108–358) | 180 (72–578) | 0.994 |
Transfusion | 12 (15.9) | 5 (14.3) | 0.859 | 4 (13.3) | 4 (13.3) | 1.000 |
Pringle maneuver | 12 (15.6) | 18 (51.4) | <0.0001 | 2 (6.8) | 15 (50.0) | 0.0002 |
Open conversion | 0 (0) | 1 (2.9) | 0.136 | 0 (0) | 0 (0) | 1.000 |
Max-TB, mg/dL | 1.4 (1.2–1.9) | 1.5 (1.4–2.0) | 0.383 | 1.4 (1.2–1.9) | 1.5 (1.2–2.0) | 0.523 |
Max-AST, IU/L | 512 (289–864) | 1028 (526–2279) | 0.0004 | 475 (324–855) | 1212 (558–2885) | 0.002 |
Max-CRP, mg/dL | 8.9 (6.5–12.4) | 10.1 (6.1–14.1) | 0.367 | 9.1 (6.7–12.5) | 10.3 (6.0–14.1) | 0.534 |
R0 resection | 77 (100) | 35 (100) | 1.000 | 30 (100) | 30 (100) | 1.000 |
Morbidity ≤ 90 days | ||||||
Overall (≥C-D I) | 25 (32.5) | 17 (48.6) | 0.103 | 9 (30.0) | 12 (40.0) | 0.417 |
Major (≥C-D IIIa) | 6 (7.8) | 7 (20.0) | 0.062 | 1 (3.3) | 4(13.3) | 0.161 |
Bile leak/collection | 5 (6.5) | 2 (5.7) | 0.875 | 1 (3.3) | 1 (3.3) | 1.000 |
Mortality ≤ 90 days | 0 (0) | 0 (0) | 1.000 | 0 (0) | 0 (0) | 1.000 |
Length of hospital stay, days | 15 (12–19) | 16 (13–21) | 0.219 | 15 (12–20) | 16 (11–21) | 0.495 |
3.2.3. Subgroup Analysis
Anatomic PS (sub)Segmentectomy (Table 6)
Before PSM | After PSM | Laparoscopic (n = 47) | Robotic (n = 19) | p *** | |||||
---|---|---|---|---|---|---|---|---|---|
OAS (n = 53) | MIAS (n = 66) | p * | OAS (n = 40) | MIAS (n = 40) | p ** | ||||
Age, years | 73 (44–91) | 71 (36–86) | 0.087 | 72 (44–91) | 71 (36–85) | 0.630 | 71 (36–86) | 72 (55–82) | 0.766 |
Sex, male/female | 38/15 | 48/18 | 0.908 | 29/11 | 28/12 | 0.805 | 34/13 | 14/5 | 0.912 |
ASA score, I or II | 38 (71.7) | 63 (95.5) | 0.0003 | 37 (92.5) | 37 (92.5) | 1.000 | 46 (97.8) | 17 (89.5) | 0.138 |
CCI score | 7 (2–12) | 7 (2–12) | 0.022 | 7 (2–12) | 7 (2–12) | 0.313 | 7 (2–12) | 7 (4–10) | 0.645 |
Cirrhosis (histology) | 36 (67.9) | 40 (60.6) | 0.409 | 14 (35.0) | 17 (42.5) | 0.491 | 22 (46.8) | 4 (21.1) | 0.053 |
ICGR15 ≥13.0% | 25 (49.0) | 25 (37.9) | 0.227 | 18 (47.4) | 16 (40.0) | 0.512 | 15 (31.9) | 10 (52.6) | 0.116 |
HCC | 42 (79.3) | 52 (78.8) | 0.952 | 31 (77.5) | 32 (80.0) | 0.785 | 38 (80.9) | 14 (73.7) | 0.519 |
Tumor number, Multiple | 17 (32.1) | 17 (25.8) | 0.448 | 12 (30.0) | 9 (22.5) | 0.446 | 7 (14.9) | 10 (52.6) | 0.002 |
Tumor size, ≥3.0 cm | 32 (60.4) | 37 (56.1) | 0.635 | 24 (60.0) | 24 (60.0) | 1.000 | 29 (61.7) | 8 (42.1) | 0.146 |
Including subsegmentectomy | 21 (39.6) | 25 (37.9) | 0.846 | 15 (37.5) | 18 (45.0) | 0.496 | 15 (31.9) | 10 (52.6) | 0.116 |
Additional wedge resection | 10 (18.8) | 8 (12.1) | 0.307 | 8 (20.0) | 5 (12.5) | 0.363 | 2 (4.3) | 6 (31.6) | 0.002 |
Repeat hepatectomy | 8 (15.1) | 13 (19.7) | 0.513 | 7 (17.5) | 6 (15.0) | 0.762 | 6 (12.8) | 7 (36.8) | 0.026 |
Operative time, min | 622 (530–786) | 706 (570–884) | 0.024 | 632 (550–792) | 697 (568–852) | 0.260 | 681 (567–829) | 858 (582–1055) | 0.064 |
Blood loss, g | 1053 (561–1563) | 353 (162–756) | <0.0001 | 1075 (606–1611) | 271 (154–683) | <0.0001 | 300 (158–655) | 631 (162–1116) | 0.088 |
Open conversion | NA | 1 (1.5) | NA | NA | 1 (2.5) | NA | 0 (0) | 1 (5.3) | 0.113 |
R0 resection | 49 (92.5) | 66 (100) | 0.023 | 37 (92.5) | 40 (100) | 0.078 | 47 (100) | 19 (100) | 1.000 |
Morbidity ≤ 90 days | |||||||||
Overall (≥ C-D I) | 32 (60.4) | 28 (42.4) | 0.052 | 25 (62.5) | 25 (62.5) | 0.025 | 19 (40.4) | 9 (47.4) | 0.605 |
Major (≥ C-D IIIa) | 11 (20.8) | 10 (15.2) | 0.426 | 6 (15.0) | 6 (15.0) | 1.000 | 5 (10.6) | 5 (26.3) | 0.108 |
Bile leak/Collection | 5 (9.4) | 4 (6.1) | 0.489 | 3 (7.5) | 3 (7.5) | 1.000 | 3 (6.4) | 1 (5.3) | 0.863 |
Mortality ≤ 90 days | 3 (5.7) | 0 (0) | 0.050 | 2 (5.0) | 0 (0) | 0.152 | 0 (0) | 0 (0) | 1.000 |
Length of hospital stay, days | 29 (22–41) | 16 (13–21) | <0.0001 | 29 (21–36) | 15 (11–18) | <0.0001 | 16 (12–20) | 16 (14–24) | 0.580 |
AS in the Repeat Hepatectomy Setting (Table 7)
OAS (n = 18) | MIAS (n = 24) | p * | Laparoscopic (n = 11) | Robotic (n = 13) | p ** | |
---|---|---|---|---|---|---|
Age, years | 74 (68–75) | 70 (68–74) | 0.646 | 70 (67–71) | 72 (69–77) | 0.416 |
Sex, M/F | 15/3 | 19/5 | 0.734 | 10/1 | 9/4 | 0.193 |
CCI score | 7 (4–12) | 6 (2–10) | 0.391 | 6 (2–10) | 6 (4–9) | 0.976 |
Cirrhosis (histology) | 6 (33.3) | 10 (41.7) | 0.582 | 6 (54.6) | 4 (30.8) | 0.239 |
ICGR15 ≥ 13.0% | 7 (41.2) | 9 (39.1) | 0.896 | 2 (20.0) | 7 (53.9) | 0.099 |
HCC | 14 (77.8) | 19 (79.2) | 0.914 | 8 (72.7) | 11 (84.6) | 0.475 |
Multiple tumors | 5 (27.8) | 5 (20.8) | 0.601 | 0 (0) | 5 (38.5) | 0.021 |
Tumor size, ≥3.0 cm | 9 (50.0) | 5 (20.8) | 0.047 | 3 (27.3) | 2 (15.4) | 0.475 |
Previous Hx ≥2 times | 0 (0) | 7 (29.2) | 0.012 | 0 (0) | 7 (53.9) | 0.004 |
Previous open Hx | 15 (83.3) | 12 (50.0) | 0.026 | 3 (27.3) | 9 (69.2) | 0.041 |
Iwate difficulty level, Advanced or Expert | NA | 14 (58.3) | NA | 6 (54.6) | 8 (61.5) | 0.729 |
Operative time, min | 533 (439–780) | 658 (547–750) | 0.112 | 654 (546–751) | 661 (534–829) | 0.931 |
Blood loss, g | 514 (323–1579) | 149 (87–945) | 0.004 | 153 (114–994) | 138 (68–957) | 0.839 |
Open conversion | NA | 1 (4.2) | NA | 0 (0) | 1 (7.7) | 0.347 |
R0 resection | 17 (94.4) | 24 (100) | 0.243 | 11 (100) | 13 (100) | 1.000 |
Morbidity ≤ 90 days | ||||||
Overall (≥C-D I) | 9 (50.0) | 13 (54.2) | 0.789 | 4 (36.3) | 9 (69.2) | 0.107 |
Major (≤C-D IIIa) | 3 (16.7) | 5 (20.8) | 0.734 | 1 (9.1) | 4 (30.8) | 0.193 |
Bile leak/Collection | 2 (11.1) | 3 (12.5) | 0.891 | 1 (9.1) | 2 (15.4) | 0.643 |
Mortality ≤ 90 days | 0 (0) | 0 (0) | 1.000 | 0 (0) | 0 (0) | 1.000 |
LOS, days | 24 (20–36) | 17 (13–21) | 0.005 | 15 (11–18) | 19 (16–24) | 0.087 |
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strasberg, S.M.; Belghiti, J.; Clavien, P.A.; Gadzijev, E.; Garden, J.O.; Lau, W.Y.; Makuuchi, M.; Strong, R.W. The Brisbane 2000 Terminology of Liver Anatomy and Resections. HPB 2000, 2, 333–339. [Google Scholar] [CrossRef]
- Wakabayashi, G.; Cherqui, D.; Geller, D.A.; Abu Hilal, M.; Berardi, G.; Ciria, R.; Abe, Y.; Aoki, T.; Asbun, H.J.; Chan, A.C.Y.; et al. The Tokyo 2020 terminology of liver anatomy and resections: Updates of the Brisbane 2000 system. J. Hepatobiliary Pancreat. Sci. 2022, 29, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Liau, K.H.; Blumgart, L.H.; DeMatteo, R.P. Segment-oriented approach to liver resection. Surg. Clin. N. Am. 2004, 84, 543–561. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Kokudo, N.; Imamura, H.; Matsuyama, Y.; Aoki, T.; Minagawa, M.; Sano, K.; Sugawara, Y.; Takayama, T.; Makuuchi, M. Prognostic impact of anatomic resection for hepatocellular carcinoma. Ann. Surg. 2005, 242, 252–259. [Google Scholar] [CrossRef]
- Makuuchi, M.; Hasegawa, H.; Yamazaki, S. Ultrasonically guided subsegmentectomy. Surg. Gynecol. Obstet. 1985, 161, 346–350. [Google Scholar] [PubMed]
- Torzilli, G.; Procopio, F.; Cimino, M.; Del Fabbro, D.; Palmisano, A.; Donadon, M.; Montorsi, M. Anatomical segmental and subsegmental resection of the liver for hepatocellular carcinoma: A new approach by means of ultrasound-guided vessel compression. Ann. Surg. 2010, 251, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Ishizawa, T.; Gumbs, A.A.; Kokudo, N.; Gayet, B. Laparoscopic segmentectomy of the liver: From segment I to VIII. Ann. Surg. 2012, 256, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Ome, Y.; Honda, G.; Doi, M.; Muto, J.; Seyama, Y. Laparoscopic Anatomic Liver Resection of Segment 8 Using Intrahepatic Glissonean Approach. J. Am. Coll. Surg. 2020, 230, e13–e20. [Google Scholar] [CrossRef]
- Kato, Y.; Sugioka, A.; Kojima, M.; Kiguchi, G.; Tanahashi, Y.; Uchida, Y.; Yoshikawa, J.; Yasuda, A.; Nakajima, S.; Takahara, T.; et al. Laparoscopic isolated liver segmentectomy 8 for malignant tumors: Techniques and comparison of surgical results with the open approach using a propensity score–matched study. Langenbeck’s Arch. Surg. 2022, 407, 2881–2892. [Google Scholar] [CrossRef]
- Lee, J.H.; Han, D.H.; Jang, D.S.; Choi, G.H.; Choi, J.S. Robotic extrahepatic Glissonean pedicle approach for anatomic liver resection in the right liver: Techniques and perioperative outcomes. Surg. Endosc. 2016, 30, 3882–3888. [Google Scholar] [CrossRef]
- Kato, Y.; Sugioka, A.; Uyama, I. Minimally invasive isolated anatomic liver segmentectomy for hepatocellular carcinoma using extrahepatic Glissonian approach: Surgical techniques and outcomes. Mini-Invasive Surg. 2023, 7, 11. [Google Scholar] [CrossRef]
- Kato, Y.; Sugioka, A.; Kojima, M.; Kiguchi, G.; Mii, S.; Uchida, Y.; Takahara, T.; Uyama, I. Initial experience with robotic liver resection: Audit of 120 consecutive cases at a single center and comparison with open and laparoscopic approaches. J. Hepatobiliary Pancreat. Sci. 2023, 30, 72–90. [Google Scholar] [CrossRef] [PubMed]
- Sugioka, A.; Kato, Y.; Tanahashi, Y. Systematic extrahepatic Glissonean pedicle isolation for anatomical liver resection based on Laennec’s capsule: Proposal of a novel comprehensive surgical anatomy of the liver. J. Hepatobiliary Pancreat. Sci. 2017, 24, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Sugioka, A.; Kojima, M.; Mii, S.; Uchida, Y.; Iwama, H.; Mizumoto, T.; Takahara, T.; Uyama, I. Minimally Invasive Anatomic Liver Resection for Hepatocellular Carcinoma Using the Extrahepatic Glissonian Approach: Surgical Techniques and Comparison of Outcomes with the Open Approach and between the Laparoscopic and Robotic Approaches. Cancers 2023, 15, 2219. [Google Scholar] [CrossRef] [PubMed]
- Berardi, G.; Igarashi, K.; Li, C.J.; Ozaki, T.; Mishima, K.; Nakajima, K.; Honda, M.; Wakabayashi, G. Parenchymal Sparing Anatomical Liver Resections With Full Laparoscopic Approach: Description of Technique and Short-term Results. Ann. Surg. 2021, 273, 785–791. [Google Scholar] [CrossRef]
- Morimoto, M.; Matsuo, Y.; Nonoyama, K.; Denda, Y.; Murase, H.; Kato, T.; Imafuji, H.; Saito, K.; Takiguchi, S. Glissonean Pedicle Isolation Focusing on the Laennec’s Capsule for Minimally Invasive Anatomical Liver Resection. J. Pers. Med. 2023, 13, 1154. [Google Scholar] [CrossRef]
- Lopez-Lopez, V.; Ome, Y.; Kawamoto, Y.; Ruiz, A.G.; Campos, R.R.; Honda, G. Laparoscopic Liver Resection of Segments 7 and 8: From the Initial Restrictions to the Current Indications. J. Minim. Invasive Surg. 2020, 23, 5–16. [Google Scholar] [CrossRef]
- Takayasu, K.; Moriyama, N.; Muramatsu, Y.; Shima, Y.; Goto, H.; Yamada, T. Intrahepatic portal vein branches studied by percutaneous transhepatic portography. Radiology 1985, 154, 31–36. [Google Scholar] [CrossRef]
- Makuuchi, M.; Kosuge, T.; Takayama, T.; Yamazaki, S.; Kakazu, T.; Miyagawa, S.; Kawasaki, S. Surgery for small liver cancers. Semin. Surg. Oncol. 1993, 9, 298–304. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Wakabayashi, G. What has changed after the Morioka consensus conference 2014 on laparoscopic liver resection? Hepatobiliary Surg. Nutr. 2016, 5, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Duarte, V.C.; Coelho, F.F.; Valverde, A.; Danoussou, D.; Kruger, J.A.P.; Zuber, K.; Fonseca, G.M.; Jeismann, V.B.; Herman, P.; Lupinacci, R.M. Minimally invasive versus open right hepatectomy: Comparative study with propensity score matching analysis. BMC Surg. 2020, 20, 260. [Google Scholar] [CrossRef] [PubMed]
- Kasai, M.; Cipriani, F.; Gayet, B.; Aldrighetti, L.; Ratti, F.; Sarmiento, J.M.; Scatton, O.; Kim, K.H.; Dagher, I.; Topal, B.; et al. Laparoscopic versus open major hepatectomy: A systematic review and meta-analysis of individual patient data. Surgery 2018, 163, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Chiow, A.K.H.; Fuks, D.; Choi, G.H.; Syn, N.; Sucandy, I.; Marino, M.V.; Prieto, M.; Chong, C.C.; Lee, J.H.; Efanov, M.; et al. International multicentre propensity score-matched analysis comparing robotic versus laparoscopic right posterior sectionectomy. Br. J. Surg. 2021, 108, 1513–1520. [Google Scholar] [CrossRef]
- Nota, C.L.; Woo, Y.; Raoof, M.; Boerner, T.; Molenaar, I.Q.; Choi, G.H.; Kingham, T.P.; Latorre, K.; Borel Rinkes, I.H.M.; Hagendoorn, J.; et al. Robotic Versus Open Minor Liver Resections of the Posterosuperior Segments: A Multinational, Propensity Score-Matched Study. Ann. Surg. Oncol. 2019, 26, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Sucandy, I.; Rayman, S.; Lai, E.C.; Tang, C.N.; Chong, Y.; Efanov, M.; Fuks, D.; Choi, G.H.; Chong, C.C.; Chiow, A.K.H.; et al. Robotic Versus Laparoscopic Left and Extended Left Hepatectomy: An International Multicenter Study Propensity Score-Matched Analysis. Ann. Surg. Oncol. 2022, 29, 8398–8406. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y.; Choi, G.H.; Chin, K.M.; Choi, S.H.; Syn, N.L.; Cheung, T.T.; Chiow, A.K.H.; Sucandy, I.; Marino, M.V.; Prieto, M.; et al. Robotic and laparoscopic right anterior sectionectomy and central hepatectomy: Multicentre propensity score-matched analysis. Br. J. Surg. 2022, 109, 311–314. [Google Scholar] [CrossRef]
- Chong, C.C.; Fuks, D.; Lee, K.F.; Zhao, J.J.; Choi, G.H.; Sucandy, I.; Chiow, A.K.H.; Marino, M.V.; Gastaca, M.; Wang, X.; et al. Propensity Score-Matched Analysis Comparing Robotic and Laparoscopic Right and Extended Right Hepatectomy. JAMA Surg. 2022, 157, 436–444. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, W.; Zhao, J.J.; Syn, N.L.; Cipriani, F.; Alzoubi, M.; Aghayan, D.L.; Siow, T.F.; Lim, C.; Scatton, O.; et al. Propensity-score Matched and Coarsened-exact Matched Analysis Comparing Robotic and Laparoscopic Major Hepatectomies: An International Multicenter Study of 4822 Cases. Ann. Surg. 2023, 278, 969–975. [Google Scholar] [CrossRef]
- Chua, D.; Syn, N.; Koh, Y.X.; Goh, B.K.P. Learning curves in minimally invasive hepatectomy: Systematic review and meta-regression analysis. Br. J. Surg. 2021, 108, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Gumbs, A.A.; Hilal, M.A.; Croner, R.; Gayet, B.; Chouillard, E.; Gagner, M. The initiaion, standardization and proficiency (ISP) phases of the learning curve for minimally invasive liver resection: Comparison of a fellowship-trained surgeon with the pioneers and early adopters. Surg. Endosc. 2021, 35, 5268–5278. [Google Scholar] [CrossRef] [PubMed]
OAS (n = 99) | MIAS (n = 112) | Total | ||
---|---|---|---|---|
Laparoscopic (n = 77) | Robotic (n = 35) | |||
Resected (sub)segments, n | ||||
Sg1 | 2 | 4 | 4 | 10 |
Sg1l | 3 | 3 | 2 | 8 |
Sg2 | 3 | 4 | 3 | 10 |
Sg3 | 5 | 4 | 2 | 11 |
Sg3a | 1 | 0 | 0 | 1 |
Sg3b | 0 | 1 | 0 | 1 |
Sg4 | 3 | 1 | 0 | 4 |
Sg4b | 1 | 1 | 1 | 3 |
Sg4b+8a | 1 | 0 | 0 | 1 |
Sg4b+5 | 1 | 1 | 0 | 2 |
Sg4b+5+6a | 2 | 0 | 0 | 2 |
Sg5 | 13 | 5 | 2 | 20 |
Sg5a | 1 | 1 | 0 | 2 |
Sg5ab | 1 | 0 | 0 | 1 |
Sg5+6a | 1 | 1 | 0 | 2 |
Sg5+8b | 1 | 0 | 0 | 1 |
Sg5+6 | 5 | 3 | 1 | 9 |
Sg5+6+8c | 1 | 0 | 0 | 1 |
Sg5+Sg2 | 1 | 0 | 0 | 1 |
Sg6 | 8 | 7 | 2 | 17 |
Sg6a | 0 | 1 | 2 | 3 |
Sg6ab | 0 | 0 | 1 | 1 |
Sg6bc | 0 | 0 | 1 | 1 |
Sg6+5c | 0 | 0 | 1 | 1 |
Sg7 | 12 | 8 | 2 | 22 |
Sg7b | 0 | 1 | 0 | 1 |
Sg7bc | 0 | 0 | 1 | 1 |
Sg7bc+6c | 0 | 1 | 0 | 1 |
Sg7+6c | 2 | 0 | 0 | 2 |
Sg7+6bc+8c | 1 | 0 | 0 | 1 |
Sg7+8 | 2 | 0 | 0 | 2 |
Sg7+Sg2 | 1 | 0 | 0 | 1 |
Sg8 | 15 | 20 | 3 | 38 |
Sg8a | 3 | 1 | 1 | 5 |
Sg8b | 0 | 1 | 1 | 2 |
Sg8c | 4 | 3 | 2 | 9 |
Sg8ab | 1 | 1 | 0 | 2 |
Sg8bc | 0 | 1 | 0 | 1 |
Sg8abc | 1 | 0 | 0 | 1 |
Sg8acd | 0 | 0 | 1 | 1 |
Sg8bcd | 1 | 0 | 0 | 1 |
Sg8a+5a | 0 | 1 | 0 | 1 |
Sg8b+5+6a | 0 | 1 | 0 | 1 |
Sg8c+5bc | 0 | 1 | 0 | 1 |
Sg8c+5c+6c | 0 | 0 | 1 | 1 |
Sg8+1r | 1 | 0 | 0 | 1 |
Sg8+5b | 1 | 0 | 0 | 1 |
Sg8ab+Sg1l | 0 | 0 | 1 | 1 |
Classification, n (%) | ||||
Anterolateral | 46 (46.5) | 30 (39.0) | 16 (45.7) | 92 (43.6) |
Posterosuperior | 53 (53.5) | 47 (61.0) | 19 (54.3) | 119 (56.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, Y.; Sugioka, A.; Kojima, M.; Uyama, I. Impact of Minimally Invasive Surgery on Anatomic Liver Segmentectomy Using the Extrahepatic Glissonean Approach. J. Pers. Med. 2024, 14, 120. https://doi.org/10.3390/jpm14010120
Kato Y, Sugioka A, Kojima M, Uyama I. Impact of Minimally Invasive Surgery on Anatomic Liver Segmentectomy Using the Extrahepatic Glissonean Approach. Journal of Personalized Medicine. 2024; 14(1):120. https://doi.org/10.3390/jpm14010120
Chicago/Turabian StyleKato, Yutaro, Atsushi Sugioka, Masayuki Kojima, and Ichiro Uyama. 2024. "Impact of Minimally Invasive Surgery on Anatomic Liver Segmentectomy Using the Extrahepatic Glissonean Approach" Journal of Personalized Medicine 14, no. 1: 120. https://doi.org/10.3390/jpm14010120
APA StyleKato, Y., Sugioka, A., Kojima, M., & Uyama, I. (2024). Impact of Minimally Invasive Surgery on Anatomic Liver Segmentectomy Using the Extrahepatic Glissonean Approach. Journal of Personalized Medicine, 14(1), 120. https://doi.org/10.3390/jpm14010120