A Hybrid Model for 30-Day Syncope Prognosis Prediction in the Emergency Department
Abstract
:1. Introduction
2. Methods
2.1. Population
2.2. Definitions
2.3. Model Development
2.3.1. Rules Knowledge Base
- Filtering out the rules with unclear clinical interpretability;
- Ranking the predicted probability values as low, medium, and high for both the probability increase and probability decrease;
- Selecting 20 of the rules to ensure the simplicity of the hybrid model.
2.3.2. Candidate Predictors
2.3.3. XGBoost Model
2.3.4. Hybrid Model
2.3.5. XGBoost Model Hyperparameters
2.4. Data Analysis
3. Results
4. Discussion
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dipaola, F.; Shiffer, D.; Gatti, M.; Menè, R.; Solbiati, M.; Furlan, R. Machine Learning and Syncope Management in the Ed: The Future Is Coming. Medicina 2021, 57, 351. [Google Scholar] [CrossRef]
- Brignole, M.; Moya, A.; De Lange, F.J.; Deharo, J.C.; Elliott, P.M.; Fanciulli, A.; Fedorowski, A.; Furlan, R.; Kenny, R.A.; Martín, A.; et al. 2018 ESC Guidelines for the Diagnosis and Management of Syncope. Eur. Heart J. 2018, 39, 1883–1948. [Google Scholar] [CrossRef] [PubMed]
- Colivicchi, F.; Ammirati, F.; Melina, D.; Guido, V.; Imperoli, G.; Santini, M. Development and Prospective Validation of a Risk Stratification System for Patients with Syncope in the Emergency Department: The OESIL Risk Score. Eur. Heart J. 2003, 24, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.V.; Stiell, I.G.; McDermott, D.A.; Sellers, K.L.; Kohn, M.A.; Wells, G.A. Derivation of the San Francisco Syncope Rule to Predict Patients with Short-Term Serious Outcomes. Ann. Emerg. Med. 2004, 43, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Grossman, S.A.; Fischer, C.; Lipsitz, L.A.; Mottley, L.; Sands, K.; Thompson, S.; Zimetbaum, P.; Shapiro, N.I. Predicting Adverse Outcomes in Syncope. J. Emerg. Med. 2007, 33, 233–239. [Google Scholar] [CrossRef]
- Del Rosso, A.; Ungar, A.; Maggi, R.; Giada, F.; Petix, N.R.; De Santo, T.; Menozzi, C.; Brignole, M. Clinical Predictors of Cardiac Syncope at Initial Evaluation in Patients Referred Urgently to a General Hospital: The EGSYS Score. Heart 2008, 94, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.J.; Newby, D.E.; Coull, A.J.; Prescott, R.J.; Jacques, K.G.; Gray, A.J. The ROSE (Risk Stratification of Syncope in the Emergency Department) Study. J. Am. Coll. Cardiol. 2010, 55, 713–721. [Google Scholar] [CrossRef]
- Dipaola, F.; Costantino, G.; Perego, F.; Borella, M.; Galli, A.; Cantoni, G.; Barbic, F.; Casella, F.; Duca, P.G.; Furlan, R. San Francisco Syncope Rule, Osservatorio Epidemiologico Sulla Sincope Nel Lazio Risk Score, and Clinical Judgment in the Assessment of Short-Term Outcome of Syncope. Am. J. Emerg. Med. 2010, 28, 432–439. [Google Scholar] [CrossRef]
- Costantino, G.; Casazza, G.; Reed, M.; Bossi, I.; Sun, B.; Del Rosso, A.; Ungar, A.; Grossman, S.; D’Ascenzo, F.; Quinn, J.; et al. Syncope Risk Stratification Tools vs Clinical Judgment: An Individual Patient Data Meta-Analysis. Am. J. Med. 2014, 127, 1126.e13–1126.e25. [Google Scholar] [CrossRef]
- Sroubek, J.; Probst, V.; Mazzanti, A.; Delise, P.; Hevia, J.C.; Ohkubo, K.; Zorzi, A.; Champagne, J.; Kostopoulou, A.; Yin, X.; et al. Programmed Ventricular Stimulation for Risk Stratification in the Brugada Syndrome: A Pooled Analysis. Circulation 2016, 133, 622–630. [Google Scholar] [CrossRef]
- Thiruganasambandamoorthy, V.; Kwong, K.; Wells, G.A.; Sivilotti, M.L.A.; Mukarram, M.; Rowe, B.H.; Lang, E.; Perry, J.J.; Sheldon, R.; Stiell, I.G.; et al. Development of the Canadian Syncope Risk Score to Predict Serious Adverse Events after Emergency Department Assessment of Syncope. CMAJ 2016, 188, E289–E298. [Google Scholar] [CrossRef] [PubMed]
- Thiruganasambandamoorthy, V.; Sivilotti, M.L.A.; Le Sage, N.; Yan, J.W.; Huang, P.; Hegdekar, M.; Mercier, E.; Mukarram, M.; Nemnom, M.J.; McRae, A.D.; et al. Multicenter Emergency Department Validation of the Canadian Syncope Risk Score. JAMA Intern. Med. 2020, 180, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Voigt, R.D.; Alsayed, M.; Bellolio, F.; Campbell, R.L.; Mullan, A.; Colleti, J.E.; Oliveira, J.E.; e Silva, L. Prognostic Accuracy of Syncope Clinical Prediction Rules in Older Adults in the Emergency Department. J. Am. Coll. Emerg. Physicians Open 2022, 3, e1282. [Google Scholar] [CrossRef] [PubMed]
- Solbiati, M.; Talerico, G.; Villa, P.; Dipaola, F.; Furlan, R.; Furlan, L.; Fiorelli, E.M.; Rabajoli, F.; Casagranda, I.; Cazzola, K.; et al. Multicentre External Validation of the Canadian Syncope Risk Score to Predict Adverse Events and Comparison with Clinical Judgement. Emerg. Med. J. 2021, 38, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, T.; du Fay de Lavallaz, J.; Nestelberger, T.; Gualandro, D.M.; Lopez-Ayala, P.; Badertscher, P.; Widmer, V.; Shrestha, S.; Strebel, I.; Glarner, N.; et al. International Validation of the Canadian Syncope Risk Score. Ann. Intern. Med. 2022, 175, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Statz, G.M.; Evans, A.Z.; Johnston, S.L.; Adhaduk, M.; Mudireddy, A.R.; Sonka, M.; Lee, S.; Barsotti, E.J.; Ricci, F.; Dipaola, F.; et al. Can Artificial Intelligence Enhance Syncope Management?: A JACC: Advances Multidisciplinary Collaborative Statement. JACC Adv. 2023, 2, 100323. [Google Scholar] [CrossRef]
- Grant, L.; Joo, P.; Nemnom, M.J.; Thiruganasambandamoorthy, V. Machine Learning versus Traditional Methods for the Development of Risk Stratification Scores: A Case Study Using Original Canadian Syncope Risk Score Data. Intern. Emerg. Med. 2022, 17, 1145–1153. [Google Scholar] [CrossRef]
- Lee, S.; Reddy Mudireddy, A.; Kumar Pasupula, D.; Adhaduk, M.; Barsotti, E.J.; Sonka, M.; Statz, G.M.; Bullis, T.; Johnston, S.L.; Evans, A.Z.; et al. Novel Machine Learning Approach to Predict and Personalize Length of Stay for Patients Admitted with Syncope from the Emergency Department. J. Pers. Med. 2023, 13, 7. [Google Scholar] [CrossRef]
- Costantino, G.; Falavigna, G.; Solbiati, M.; Casagranda, I.; Sun, B.C.; Grossman, S.A.; Quinn, J.V.; Reed, M.J.; Ungar, A.; Montano, N.; et al. Neural Networks as a Tool to Predict Syncope Risk in the Emergency Department. EP Eur. 2017, 19, 1891–1895. [Google Scholar] [CrossRef]
- Falavigna, G.; Costantino, G.; Furlan, R.; Quinn, J.V.; Ungar, A.; Ippoliti, R. Artificial Neural Networks and Risk Stratification in Emergency Departments. Intern. Emerg. Med. 2019, 14, 291–299. [Google Scholar] [CrossRef]
- Solbiati, M.; Dipaola, F.; Villa, P.; Seghezzi, S.; Casagranda, I.; Rabajoli, F.; Fiorini, E.; Porta, L.; Casazza, G.; Voza, A.; et al. Predictive Accuracy of Electrocardiographic Monitoring of Patients with Syncope in the Emergency Department: The SyMoNE Multicenter Study. Acad. Emerg. Med. 2020, 27, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Costantino, G.; Sun, B.C.; Barbic, F.; Bossi, I.; Casazza, G.; Dipaola, F.; McDermott, D.; Quinn, J.; Reed, M.J.; Sheldon, R.S.; et al. Syncope Clinical Management in the Emergency Department: A Consensus from the First International Workshop on Syncope Risk Stratification in the Emergency Department. Eur. Heart J. 2016, 37, 1493–1498. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.C.; Costantino, G.; Barbic, F.; Bossi, I.; Casazza, G.; Dipaola, F.; McDermott, D.; Quinn, J.; Reed, M.; Sheldon, R.S.; et al. Priorities for Emergency Department Syncope Research. Ann. Emerg. Med. 2014, 64, 649–655.e2. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.C.; Thiruganasambandamoorthy, V.; Dela Cruz, J. Standardized Reporting Guidelines for Emergency Department Syncope Risk-Stratification Research. Acad. Emerg. Med. 2012, 19, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Shwartz-Ziv, R.; Armon, A. Tabular Data: Deep Learning Is Not All You Need. Inf. Fusion. 2022, 81, 84–90. [Google Scholar] [CrossRef]
- Kierner, S.; Kucharski, J.; Kierner, Z. Taxonomy of Hybrid Architectures Involving Rule-Based Reasoning and Machine Learning in Clinical Decision Systems: A Scoping Review. J. Biomed. Inform. 2023, 144, 104428. [Google Scholar] [CrossRef] [PubMed]
- Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The Matthews Correlation Coefficient (MCC) Should Replace the ROC AUC as the Standard Metric for Assessing Binary Classification. BioData Min. 2023, 16, 4. [Google Scholar] [CrossRef]
- Nixon, J.; Google, M.D.; Ghassen, B.; Google, J.; Nguyen, B.T.; Research, G.; Liu, J.; Zhang, L.; Google Brain, D.T. Measuring Calibration in Deep Learning. CVPR Workshops 2019, 2, 7. [Google Scholar]
- Liu, Y.; Chen, P.H.C.; Krause, J.; Peng, L. How to Read Articles That Use Machine Learning: Users’ Guides to the Medical Literature. JAMA 2019, 322, 1806–1816. [Google Scholar] [CrossRef]
- Singh, H.; Giardina, T.D.; Meyer, A.N.D.; Forjuoh, S.N.; Reis, M.D.; Thomas, E.J. Types and Origins of Diagnostic Errors in Primary Care Settings. JAMA Intern. Med. 2013, 173, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Costantino, G.; Perego, F.; Dipaola, F.; Borella, M.; Galli, A.; Cantoni, G.; Dell’Orto, S.; Dassi, S.; Filardo, N.; Duca, P.G.; et al. Short- and Long-Term Prognosis of Syncope, Risk Factors, and Role of Hospital Admission: Results from the STePS (Short-Term Prognosis of Syncope) Study. J. Am. Coll. Cardiol. 2008, 51, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Hinton, G. Deep Learning-A Technology with the Potential to Transform Health Care. JAMA 2018, 320, 1101–1102. [Google Scholar] [CrossRef]
- Andaur Navarro, C.L.; Damen, J.A.A.; Takada, T.; Nijman, S.W.J.; Dhiman, P.; Ma, J.; Collins, G.S.; Bajpai, R.; Riley, R.D.; Moons, K.G.M.; et al. Risk of Bias in Studies on Prediction Models Developed Using Supervised Machine Learning Techniques: Systematic Review. BMJ 2021, 375, n2281. [Google Scholar] [CrossRef]
- Moons, K.G.M.; Wolff, R.F.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann. Intern. Med. 2019, 170, W1–W33. [Google Scholar] [CrossRef]
Characteristic | n (%) or Median (IQR) |
---|---|
Patients enrolled | 266 |
Patient characteristics | |
Sex (male) | 139 (52.3) |
Age (years) | 73 (58–83) |
Systolic blood pressure (mm Hg) | 130 (110–150) |
Systolic blood pressure < 90 mm Hg | 7 (2.6) |
Heart rate (beats/min) | 75 (65–86) |
Admitted to hospital | 90 (33.8) |
Syncopal episode characteristics | |
During exertion | 3 (1.1) |
In supine position | 8 (3) |
In seated position | 74 (27.8) |
In orthostatic position | 116 (62.4) |
While standing from a seated position | 13 (4.9) |
Associated with | |
Chest pain | 14 (5.3) |
Palpitations | 13 (4.9) |
Nausea/vomiting | 52 (19.5) |
Sensation of warmth | 24 (9) |
Triggered by pain/stressors | 14 (5.3) |
Triggered by cough/micturition/defecation | 18 (6.8) |
Past medical history | |
Syncope in the previous year | 71 (26.7) |
Family history of sudden death | 7 (2.6) |
Congestive heart failure | 9 (3.4) |
Ischemic cardiomyopathy | 46 (17.3) |
Congenital heart disease | 0 (0) |
Aortic stenosis | 5 (1.9) |
Left ventricular outflow obstruction | 1 (0.38) |
Dilated/hypertrophic cardiomyopathy | 4 (1.5) |
Left ventricular ejection fraction < 40% | 6 (2.3) |
Pulmonary hypertension | 9 (3.4) |
Previously documented arrhythmia (ventricular) | 2 (0.75) |
Previous ICD implantation | 2 (0.75) |
Arterial hypertension | 151 (56.8) |
Stroke/TIA | 24 (9) |
Neoplasm | 37 (13.9) |
Chronic kidney disease (serum creatinine ≥ 2 mg/dL) | 12 (4.5) |
COPD | 16 (6) |
ECG findings (ECG results available for 258 patients) | |
Normal | 224 (86.8) |
Non-sinus rhythm (new) | 12 (4.6) |
New (or previously unknown) left bundle branch block | 8 (3.1) |
Bifascicular block | 2 (0.78) |
Bifascicular block + first degree AV block | 8 (3.1) |
High-grade (second-degree type 2 or third-degree) AV block | 3 (1.2) |
Sinus bradycardia (≤50 bpm) | 11 (4.3) |
Prolonged QTc (>450 ms) | 5 (1.9) |
Brugada ECG pattern | 1 (0.39) |
Arrhythmogenic right ventricular cardiomyopathy | 0 (0) |
ECG changes consistent with acute ischemia | 0 (0) |
Adverse Event | n (%) |
---|---|
Serious adverse events | 45 (16.9) |
Death | 3 (1.1) |
Ventricular fibrillation | 1 (0.04) |
Cardiac pause > 3 s/third-degree AV block | 3 (1.1) |
PM/ICD malfunction with cardiac pauses | 1 (0.04) |
PM or ICD implantation | 22 (8.3) |
Syncope recurrence with hospital admission | 7 (2.6) |
Myocardial infarction | 1 (0.04) |
Pulmonary embolism | 1 (0.04) |
Occult hemorrhage or anemia requiring transfusion | 4 (1.5) |
Cerebrovascular event | 2 (0.08) |
XGBoost Model | Hybrid Model |
---|---|
Age < 40 years Syncopal recurrences in the last year History of ischemic cardiomyopathy History of congestive heart failure History of pulmonary hypertension History of previous ICD implantation Second-degree type 2 or third-degree AV block Heart rate < 40 bpm | XGBoost model predictors Syncopal recurrences in the last year History of previous ICD implantation Heart rate < 40 bpm combined with Knowledge base predictors Age < 40 years Syncope during exertion Syncope in seated position Syncope while standing from a seated position Syncope in orthostatic position Syncope associated with nausea/vomiting Syncope associated with sensation of warmth Syncope triggered by pain/stressors Syncope triggered by cough/micturition/defecation Syncopal recurrences in the last year History of ischemic cardiomyopathy History of congestive heart failure History of LV ejection fraction < 40% History of pulmonary hypertension History of arterial hypertension Family history of sudden death Systolic blood pressure < 90 mm Hg Heart rate < 40 bpm ECG normal Non sinus rhythm (new) |
Model | F1 Score | AUC | MCC |
---|---|---|---|
XG Boost | 0.637 ± 0.053 | 0.728 ± 0.073 | 0.318 ± 0.110 |
Hybrid | 0.701 ± 0.056 * | 0.801 ± 0.060 * | 0.430 ± 0.114 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dipaola, F.; Gatti, M.; Menè, R.; Shiffer, D.; Giaj Levra, A.; Solbiati, M.; Villa, P.; Costantino, G.; Furlan, R. A Hybrid Model for 30-Day Syncope Prognosis Prediction in the Emergency Department. J. Pers. Med. 2024, 14, 4. https://doi.org/10.3390/jpm14010004
Dipaola F, Gatti M, Menè R, Shiffer D, Giaj Levra A, Solbiati M, Villa P, Costantino G, Furlan R. A Hybrid Model for 30-Day Syncope Prognosis Prediction in the Emergency Department. Journal of Personalized Medicine. 2024; 14(1):4. https://doi.org/10.3390/jpm14010004
Chicago/Turabian StyleDipaola, Franca, Mauro Gatti, Roberto Menè, Dana Shiffer, Alessandro Giaj Levra, Monica Solbiati, Paolo Villa, Giorgio Costantino, and Raffaello Furlan. 2024. "A Hybrid Model for 30-Day Syncope Prognosis Prediction in the Emergency Department" Journal of Personalized Medicine 14, no. 1: 4. https://doi.org/10.3390/jpm14010004
APA StyleDipaola, F., Gatti, M., Menè, R., Shiffer, D., Giaj Levra, A., Solbiati, M., Villa, P., Costantino, G., & Furlan, R. (2024). A Hybrid Model for 30-Day Syncope Prognosis Prediction in the Emergency Department. Journal of Personalized Medicine, 14(1), 4. https://doi.org/10.3390/jpm14010004