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Abstract: Syncope is a challenging problem in the emergency department (ED) as the available risk
prediction tools have suboptimal predictive performances. Predictive models based on machine
learning (ML) are promising tools whose application in the context of syncope remains underexplored.
The aim of the present study was to develop and compare the performance of ML-based models in
predicting the risk of clinically significant outcomes in patients presenting to the ED for syncope. We
enrolled 266 consecutive patients (age 73, IQR 58–83; 52% males) admitted for syncope at three tertiary
centers. We collected demographic and clinical information as well as the occurrence of clinically
significant outcomes at a 30-day telephone follow-up. We implemented an XGBoost model based on
the best-performing candidate predictors. Subsequently, we integrated the XGboost predictors with
knowledge-based rules. The obtained hybrid model outperformed the XGboost model (AUC = 0.81
vs. 0.73, p < 0.001) with acceptable calibration. In conclusion, we developed an ML-based model
characterized by a commendable capability to predict adverse events within 30 days post-syncope
evaluation in the ED. This model relies solely on clinical data routinely collected during a patient’s
initial syncope evaluation, thus obviating the need for laboratory tests or syncope experienced
clinical judgment.

Keywords: machine learning; syncope; risk stratification; emergency department

1. Introduction

Increasing evidence suggests that the use of machine learning (ML) algorithms can
improve emergency department (ED) triage, diagnosis, and risk stratification for various
diseases [1]. However, the lack of external validation and reliable diagnostic standards
currently limits their implementation in clinical practice.

Syncope represents a challenging problem for emergency physicians. This is largely
due to the fact that its diagnosis frequently lacks the backing of specific tests [2]. Moreover,
numerous available prognostic tools [3–7] were found to be partially inefficient [8,9]. In ad-
dition, while new and promising risk scores have emerged [10–12], their external validation
in countries and contexts other than those of derivation showed no significant advantage
over ED physicians’ clinical judgment [13–15].
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Recently, researchers highlighted the potential role of artificial intelligence in managing
syncope [16]. However, at present, only a few studies [17–20] have analyzed the application
of ML in syncope risk prediction. Although initial results were promising, these models
have yet to undergo external validation to confirm their generalizability and true value in
clinical practice.

The aim of the present study is to develop ML-based models to predict 30-day adverse
events among patients admitted to the ED for a syncopal episode.

2. Methods
2.1. Population

The present investigation is a sub-study of The Syncope Monitoring and Natriuretic
peptides in the Emergency department (SyMoNE) study [21].

We enrolled 266 patients (age ≥ 18 years), consecutively admitted for syncope to the
EDs of three tertiary hospitals in the Milan area (Ospedale Maggiore Policlinico, Luigi
Sacco Hospital, Humanitas Research Hospital) from 1 September 2015 to 28 February 2017.
The exclusion criteria are detailed elsewhere [21].

For all participants, we recorded demographics, past medical history, vital signs,
hemoglobin values, characteristics of the index syncopal episode, and ECG features upon
arrival. These were categorized based on the high-/low-risk features established by prior
consensus [22] and the ESC guidelines [2]. A detailed list of all collected variables is
provided in Table S1 of the Supplementary Materials.

All patients were contacted via telephone for a 30-day follow-up to assess the occur-
rence of any adverse events. All provided written consent and oral consent to the telephone
interviews, as applicable.

2.2. Definitions

Syncope is defined as a transient loss of consciousness, likely due to transient global
cerebral hypoperfusion, and characterized by a rapid onset, a short duration, and a sponta-
neous complete recovery [2,23].

Electrocardiogram (ECG) was considered abnormal when presenting new onset non-
sinus rhythm or other abnormalities according to previous consensus [22,24].

According to the “Standardized Reporting Guidelines for Emergency Department
Syncope Risk-Stratification Research” [24], we considered the following as adverse events at
30 days: death from all causes or related to syncope; ventricular fibrillation; sustained and
symptomatic non-sustained ventricular tachycardia; sinus arrest with cardiac pause > 3 s;
sick sinus syndrome with alternating bradycardia and tachycardia; second-degree type 2
or third-degree atrioventricular (AV) block; permanent pacemaker (PM) or implantable
cardioverter defibrillator (ICD) malfunction with cardiac pauses; aortic stenosis with valve
area ≤ 1 cm2; hypertrophic cardiomyopathy with outflow tract obstruction; left atrial
myxoma or thrombus with outflow tract obstruction; myocardial infarction; pulmonary
embolism; aortic dissection; occult hemorrhage or anemia requiring transfusion; syncope
or fall resulting in major traumatic injury (requiring admission or procedural/surgical
intervention); PM or ICD implantation; cardiopulmonary resuscitation; syncope recurrence
with hospital admission; cerebrovascular events.

In this study, we did not consider acute conditions diagnosed in the ED for which
syncope was the presenting symptom. However, as the aim of the primary study was
to evaluate the diagnostic accuracy of ECG monitoring in non-low-risk patients, adverse
events diagnosed during monitoring were included.

2.3. Model Development

The raw dataset contains a table with 266 rows and 39 columns. Each row represents
the data for a unique patient. Of the 39 columns, one (labeled ‘events’) indicates the
outcome, while the remaining columns serve as potential predictors for the models. All
predictors and the label are binary in nature. The dataset is imbalanced with respect to
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the outcome and many features (the predictors) are sparse, i.e., predominantly consisting
of zeros. For a detailed breakdown of 0 (false), 1 (true), and missing values, refer to Table
S1 in the Supplementary Materials. Three features, specifically “history of congenital
heart disease”, “arrhythmogenic right ventricular cardiomyopathy”, and “ECG changes
consistent with acute ischemia”, are constants. Since constant features lack predictive
value, they were removed from the dataset, leaving 35 candidate predictors. We addressed
missing values by substituting them with the most frequent value of the corresponding
feature.

The data elaboration pipeline is shown in Figure 1.

Figure 1. Data pipeline for models development. Abbreviations: MDs, medical doctors; HY model,
hybrid model. In the figure cylinders represent data (e.g., Excel or binary files), while rounded
rectangles represent blocks of code (e.g., Python scripts).

The entire raw dataset is preprocessed to replace missing data with the most frequent
data so that it can be used to identify the best predictors. For each possible number of
(model) predictors the best (model) predictors are identified with a chi squared test. The
rules knowledge base is obtained through first screening the entire raw dataset to find
candidate rules that are subsequently filtered by MDs using clinically plausible criteria.
The predictors implicit in the knowledge base rules and the best model predictors are
combined to obtain the best hybrid model predictors. The raw data are randomly split
into train (80%) and test (20%) data. The train dataset is used to identify the most frequent
value and missing values are replaced with the most frequent value in both the train and
test dataset (data preprocessing). The best model predictors are used to filter the training
and test dataset (feature elimination) for the XGBoost model training and evaluation. Split
and evaluation are repeated 100 times. The XGBoost model is used to estimate the event
probability and the probability is modified by the hybrid model using the rules knowledge
base. Performance of the XGBoost and hybrid model on the test dataset are computed for
each possible number of predictors. The highest Matthews Correlation Coefficient (MCC)
is used to select the best number and set of XGBoost model and hybrid model predictors.

2.3.1. Rules Knowledge Base

Upon examining the entire raw dataset, we pinpointed all logical rules that adhered
to one of the following formats:

IF <antecedent> THEN <increase_predicted_probability>



J. Pers. Med. 2024, 14, 4 4 of 14

IF <antecedent> THEN <decrease_predicted_probability>

where the antecedent is the logical conjunctions of any of the 35 candidate predictors. For
the sake of interpretability, we limited the number of predictors in the antecedent to a
maximum of three. See Table S2 of Supplementary Materials for the rule’s knowledge base
in tabular format.

The rules having a potential impact on the model performance were inspected by
two physicians who are experts in syncope (FD, RF) with the following objectives:

• Filtering out the rules with unclear clinical interpretability;
• Ranking the predicted probability values as low, medium, and high for both the

probability increase and probability decrease;
• Selecting 20 of the rules to ensure the simplicity of the hybrid model.

The rules obtained through this process formed our knowledge base of rules.

2.3.2. Candidate Predictors

The entire (raw) dataset was first analyzed to find the best predictors. For each of the
35 possible number of predictors, we identified the best candidate predictors using a chi
squared test. Ideally, this operation would be conducted on a distinct validation dataset,
separate from the training and test datasets. However, due to the limited size of our dataset,
we utilized the whole dataset for this operation. Out of this operation, we obtained for
each of the possible number of predictors a candidate XGBoost model predictors sets. By
extracting all predictors used by the rules from the rule knowledge base and incorporating
these into the XGBoost model’s predictors, we generated 35 hybrid model predictors sets.

2.3.3. XGBoost Model

We then randomly split the entire (raw) dataset into training and testing datasets (an
80/20% split). In the training dataset, we identified the most common value for each feature.
For both training and testing datasets, missing values were replaced with the most common
value of the respective feature. The training and testing datasets were subsequently filtered
by retaining only the candidate XGBoost model predictors. This filtered training dataset
was employed to train and evaluate the XGBoost model.

The block of operations described in the previous paragraph was repeated 100 times
with different random/test splits.

The series of steps described in the previous two paragraphs were repeated 35 times,
one for each possible candidate XGBoost model predictor set, thereby obtaining the graph
in Figure 2 (red points). Using this graph, we determined the optimal set of predictors
by choosing the predictor set that achieved the highest Matthews Correlation Coefficient
(MCC, see below) on the testing dataset.

XGBoost models were selected because they have top performance on tabular data [25].

2.3.4. Hybrid Model

The hybrid model does not require training; instead, it utilizes previously trained
XGBoost models (one for each candidate set of XGBoost model predictors) [26].

We randomly split the entire (raw) dataset into training and testing datasets, employ-
ing an 80/20% split procedure. Next, within the training set, we determined the most
common value for each feature. Both the training and testing datasets then had any missing
values replaced with the respective feature’s most common value. Following that, the
training and testing datasets were filtered to retain only the predictors specific to the hybrid
model. The filtered training dataset was then used to evaluate the hybrid model.

The procedures outlined in the preceding paragraph were repeated 100 times with
different random/test splits.

The sequence of operations described in the two previous paragraphs were conducted
35 times, one for each possible candidate hybrid model predictor set. The results from
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these iterations are depicted in Figure 2, represented by black points. From this graph we
obtained the optimal set of predictors by selecting the set of predictors with the highest
MCC on the testing dataset.
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2.3.5. XGBoost Model Hyperparameters

XGBoost models performance strongly depends on the selection of a few hyper-
parameters. These parameters are often selected by extensive search on the validation
dataset. Due to the smallness of the dataset, we could not afford having a validation dataset
and therefore we decided to perform search on the entire dataset. The most important
parameters are described hereafter.

The parameter ‘scal_pos_weight’ controls the balance of positive and negative weights.
Since our dataset is imbalanced (event = True much rarer than event = False), we had to
increase it from the default value (1) to the 5.2 value. The parameter ‘n_estimators’ controls
the number of boosted trees to fit. The default value is 100 but seeing that our dataset is
very small we used the much lower value of 7. The parameter ‘max_depth’ controls the
maximum depth of a tree. The default value is 7, but to reduce overfitting we used the
value of 6.

2.4. Data Analysis

Descriptive data are presented as median (with interquartile range—IQR) for contin-
uous variables, and as numbers and percentages for categorical variables for describing
baseline characteristics of all enrolled patients and 30-day adverse events.

To evaluate the model predictive performance, we assessed discrimination and
calibration.

As measures of discrimination, we calculated F1 score, area under the curve (AUC),
and Matthews Correlation Coefficient (MCC), which has intrinsic ability to simultaneously
consider true positive, false positive, true negative, and false negative predictions, making
it more reliable for binary classification tasks [27,28]. MCC ranges from −1 to +1, with 0
representing a prediction no better than random. The F1 score, AUC, and MCC of different
models have been compared using a paired t-test.

Model calibration was assessed using the expected calibration error (ECE) [29]. Cal-
ibration discretizes the probability interval into a fixed number of bins and assigns each
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predicted probability to the bin that encompasses it. The ECE is the difference between the
fraction of correct predictions in the bin (accuracy) and the mean of the probabilities in the
bin (confidence). Therefore, if a model’s accuracy is equal to the bin’s mean probability,
the ECE would be 0, indicating perfect calibration. Lower values of ECE correspond to
better calibrations.

3. Results

During the enrollment period, the researchers screened 319 patients who presented to
the three participating hospitals’ EDs for syncope for potential study participation. A total
of 266 patients were included in the study (Figure 3).
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Figure 3. Study flow chart. Abbreviations: CSM, carotid sinus massage.

Table 1 shows the demographic and clinical characteristics of the study population.

Table 1. Characteristics of enrolled patients.

Characteristic n (%) or Median (IQR)

Patients enrolled 266

Patient characteristics
Sex (male) 139 (52.3)
Age (years) 73 (58–83)

Systolic blood pressure (mm Hg) 130 (110–150)
Systolic blood pressure < 90 mm Hg 7 (2.6)

Heart rate (beats/min) 75 (65–86)
Admitted to hospital 90 (33.8)

Syncopal episode characteristics
During exertion 3 (1.1)

In supine position 8 (3)
In seated position 74 (27.8)

In orthostatic position 116 (62.4)
While standing from a seated position 13 (4.9)

Associated with
Chest pain 14 (5.3)

Palpitations 13 (4.9)
Nausea/vomiting 52 (19.5)

Sensation of warmth 24 (9)
Triggered by pain/stressors 14 (5.3)

Triggered by cough/micturition/defecation 18 (6.8)
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Table 1. Cont.

Characteristic n (%) or Median (IQR)

Past medical history
Syncope in the previous year 71 (26.7)

Family history of sudden death 7 (2.6)
Congestive heart failure 9 (3.4)

Ischemic cardiomyopathy 46 (17.3)
Congenital heart disease 0 (0)

Aortic stenosis 5 (1.9)
Left ventricular outflow obstruction 1 (0.38)

Dilated/hypertrophic cardiomyopathy 4 (1.5)
Left ventricular ejection fraction < 40% 6 (2.3)

Pulmonary hypertension 9 (3.4)
Previously documented arrhythmia (ventricular) 2 (0.75)

Previous ICD implantation 2 (0.75)
Arterial hypertension 151 (56.8)

Stroke/TIA 24 (9)
Neoplasm 37 (13.9)

Chronic kidney disease (serum creatinine ≥ 2 mg/dL) 12 (4.5)
COPD 16 (6)

ECG findings (ECG results available for 258 patients)
Normal 224 (86.8)

Non-sinus rhythm (new) 12 (4.6)
New (or previously unknown) left bundle branch block 8 (3.1)

Bifascicular block 2 (0.78)
Bifascicular block + first degree AV block 8 (3.1)

High-grade (second-degree type 2 or third-degree) AV block 3 (1.2)
Sinus bradycardia (≤50 bpm) 11 (4.3)

Prolonged QTc (>450 ms) 5 (1.9)
Brugada ECG pattern 1 (0.39)

Arrhythmogenic right ventricular cardiomyopathy 0 (0)
ECG changes consistent with acute ischemia 0 (0)

Abbreviations: ICD, implantable cardioverter–defibrillator; TIA, transient ischemic attack; COPD, chronic obstruc-
tive pulmonary disease; AV block, atrioventricular block; ECG, electrocardiogram.

After 30 days of follow-up, 45 (16.9%) patients had serious outcomes and three of
these patients died (see Table 2).

Table 2. Thirty-day adverse events.

Adverse Event n (%)

Serious adverse events 45 (16.9)
Death 3 (1.1)

Ventricular fibrillation 1 (0.04)
Cardiac pause > 3 s/third-degree AV block 3 (1.1)
PM/ICD malfunction with cardiac pauses 1 (0.04)

PM or ICD implantation 22 (8.3)
Syncope recurrence with hospital admission 7 (2.6)

Myocardial infarction 1 (0.04)
Pulmonary embolism 1 (0.04)

Occult hemorrhage or anemia requiring transfusion 4 (1.5)
Cerebrovascular event 2 (0.08)

Abbreviations: AV block, atrioventricular block; PM, pacemaker; ICD, implantable cardioverter–defibrillator.

Table 3 summarizes the predictors included in the XGBoost model and the hybrid
model.
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Table 3. Models predictors.

XGBoost Model Hybrid Model

Age < 40 years
Syncopal recurrences in the last year
History of ischemic cardiomyopathy

History of congestive heart failure
History of pulmonary hypertension

History of previous ICD implantation
Second-degree type 2 or third-degree AV block

Heart rate < 40 bpm

XGBoost model predictors
Syncopal recurrences in the last year

History of previous ICD implantation
Heart rate < 40 bpm

combined with
Knowledge base predictors

Age < 40 years
Syncope during exertion

Syncope in seated position
Syncope while standing from a seated position

Syncope in orthostatic position
Syncope associated with nausea/vomiting

Syncope associated with sensation of warmth
Syncope triggered by pain/stressors

Syncope triggered by
cough/micturition/defecation

Syncopal recurrences in the last year
History of ischemic cardiomyopathy

History of congestive heart failure
History of LV ejection fraction < 40%
History of pulmonary hypertension

History of arterial hypertension
Family history of sudden death

Systolic blood pressure < 90 mm Hg
Heart rate < 40 bpm

ECG normal
Non sinus rhythm (new)

Abbreviations: AV block, atrioventricular block; LV, left ventricle.

Table 4 summarizes the performance of XGBoost and hybrid models in predicting
syncope 30-day adverse events in the test set.

Table 4. Model performances in predicting 30-day adverse events from syncope ED evaluation.

Model F1 Score AUC MCC

XG Boost 0.637 ± 0.053 0.728 ± 0.073 0.318 ± 0.110
Hybrid 0.701 ± 0.056 * 0.801 ± 0.060 * 0.430 ± 0.114 *

Results are presented as means and standard deviations of 100 iterations. AUC, area under the curve; MCC,
Matthews Correlation Coefficient. * p < 0.001 according to a paired t-test to compare each performance metric
between the two groups.

The hybrid model showed significantly greater discrimination capability than the XG
boost model (p < 0.001).

Both models’ receiver operating characteristic (ROC) curves are displayed in Figure 4.
The mean ECE for outcome prediction was 0.442 ± 0.032 for the XGBoost model and

0.483 ± 0.034 for the hybrid model.



J. Pers. Med. 2024, 14, 4 9 of 14

J. Pers. Med. 2023, 13, x FOR PEER REVIEW 9 of 14 
 

ECG normal 
Non sinus rhythm (new) 

Abbreviations: AV block, atrioventricular block; LV, left ventricle. 

Table 4 summarizes the performance of XGBoost and hybrid models in predicting 
syncope 30-day adverse events in the test set. 

Table 4. Model performances in predicting 30-day adverse events from syncope ED evaluation. 

Model F1 Score AUC  MCC  
XG Boost 0.637 ± 0.053 0.728 ± 0.073 0.318 ± 0.110 
Hybrid 0.701 ± 0.056 * 0.801 ± 0.060 * 0.430 ± 0.114 * 

Results are presented as means and standard deviations of 100 iterations. AUC, area under the 
curve; MCC, Matthews Correlation Coefficient. * p < 0.001 according to a paired t-test to compare 
each performance metric between the two groups. 

The hybrid model showed significantly greater discrimination capability than the XG 
boost model (p < 0.001). 

Both models’ receiver operating characteristic (ROC) curves are displayed in Figure 
4. 

 
Figure 4. XGBoost model and hybrid model receiver operating characteristic curves. The blue and 
orange curves show the ROC curve for the XGBoost and hybrid model, respectively. Both curves 
show the values obtained through taking the average on the 100 iterations. The green and yellow 
vertical bars show the standard deviation (on the same 100 iterations) of the true positive rate; while 
the green and yellow horizontal bars show the standard deviation of the false positive rate. 

The mean ECE for outcome prediction was 0.442 ± 0.032 for the XGBoost model and 
0.483 ± 0.034 for the hybrid model. 

4. Discussion 
In this study, we determined that several factors, including age under 40 years, his-

tory of heart failure, prior instances of ischemic heart disease, previous pulmonary hyper-
tension, being equipped with an ICD, recurrence of syncope within the last year, a heart 
rate below 40 bpm, and the presence of either a second-degree heart block Mobitz type II 
or third-degree heart block on the ECG, were effective in predicting the likelihood of ad-
verse events at 30 days for patients assessed in the ED for syncope. These predictors 

Figure 4. XGBoost model and hybrid model receiver operating characteristic curves. The blue and
orange curves show the ROC curve for the XGBoost and hybrid model, respectively. Both curves
show the values obtained through taking the average on the 100 iterations. The green and yellow
vertical bars show the standard deviation (on the same 100 iterations) of the true positive rate; while
the green and yellow horizontal bars show the standard deviation of the false positive rate.

4. Discussion

In this study, we determined that several factors, including age under 40 years, history
of heart failure, prior instances of ischemic heart disease, previous pulmonary hypertension,
being equipped with an ICD, recurrence of syncope within the last year, a heart rate below
40 bpm, and the presence of either a second-degree heart block Mobitz type II or third-
degree heart block on the ECG, were effective in predicting the likelihood of adverse events
at 30 days for patients assessed in the ED for syncope. These predictors achieved an AUC
of 0.73 and an MCC of 0.32. After accounting for combined predictors through clinical
rules, the model’s performance enhanced, as indicated by an AUC of 0.80 and an MCC
of 0.43.

The hybrid model in question integrates an ML model (specifically, XGBoost) with
a series of logical rules. When applied, these rules have the potential to modify the
resulting predictions and associated probabilities. These logical rules were ascertained
by meticulously analyzing the complete dataset to find relevant rules. Subsequently, we
excluded rules that either lacked clinical clarity or had a minimal effect on the model’s
efficacy. Each retained rule was then ranked based on its perceived clinical significance,
with its importance being graded as low, medium, or high, contingent on the projected
probability of an adverse event as determined by the researchers’ clinical expertise.

Rules that increase the likelihood of experiencing adverse events from syncope within
30 days incorporate the following risk factors: age above 40 years; syncope during exer-
tion; syncope in seated position; syncope not in orthostatic position; absence of syncopal
recurrences in the last year; history of ischemic cardiomyopathy; history of congestive
heart failure; history of left ventricle (LV) ejection fraction below 40%; history of pulmonary
hypertension; history of arterial hypertension; heart rate below 40 bpm; ECG abnormal.

Rules that decrease the likelihood of syncope 30-day adverse events include the fol-
lowing protective factors: syncope triggered by pain/stressors; syncope triggered by cough,
micturition, defecation; syncope while standing from a seated position; syncope associated
with nausea/vomiting; syncope associated with sensation of warmth; presence of syncopal
recurrences in the last year; no history of congestive heart failure, arterial hypertension,
LV ejection fraction below 40%; no family history of sudden death; SBP > 90 mm Hg; ECG
normal at presentation; absence of (new) non sinus rhythm.
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These findings indicate that by solely utilizing data related to the presentation of the
syncope episode, a patient’s medical history, vital signs, and ECG—all of which a clinician
can easily gather during the initial assessment of a patient with syncope—it is feasible to
predict 30-day adverse events with good discrimination and reliable calibration.

Recently, a study by Grant et al. [17] presented a gradient-boosting (GB) model adept
at forecasting 30-day adverse events for syncope patients after ED disposition. Drawing
from all 43 variables considered during the derivation phase of the Canadian Syncope
Risk Score [11], they pinpointed several predictors: age; ED diagnosis of cardiac syncope;
ED diagnosis of vasovagal syncope; history of heart disease; QRS duration; QRS axis;
QTc > 480 ms; troponin levels above 99% of the normal population; and hemoglobin levels.
This GB model achieved predictions for a 30-day composite endpoint similar to ours,
encompassing most of the adverse events we assessed, and boasted an AUC of 0.91 with
acceptable calibration. While our model exhibits lower performance and requires a larger
set of predictors, it holds a distinct advantage: it can be seamlessly implemented in diverse
clinical environments—not just the ED, given its exclusion of lab tests. Moreover, our
model hinges on predictors linked to the patient’s history, physical examination, and ECG
readings at the outset, and is not influenced by the subjective expertise of a physician’s
diagnosis of cardiac or vasovagal syncope. Notably, the term “cardiac syncope” itself
encompasses various conditions that align with the exact outcomes our model seeks to
forecast. Conversely, vasovagal syncope, by its very nature, is deemed a benign condition
that does not warrant risk prediction. As such, incorporating a syncope’s etiological
diagnosis, even if solely based on an emergency physician’s initial assessment, might
diminish the predictive model’s clinical relevance and escalate the overfitting risk [30].

While we acknowledge a certain degree of subjectivity and plausible inaccuracy in the
anamnestic collection [31] from the patient with syncope, especially if amnesic about the
event and in the absence of witnesses, we believe that most of the anamnestic information
used as predictors in our model is objectifiable and easily obtained by even the least-
experienced physician.

In an earlier study, Costantino et al. [19] developed an artificial neural network (ANN)
to predict the short-term prognosis of syncope. The predictors they utilized included
sex, age, syncope during exertion, trauma following syncope, presence of abnormal ECG,
absence of prodromes, history of cerebrovascular disease, history of cardiac disease, and
history of hypertension. This ANN, when tested on a cohort of 1844 patients from three
independent prospective studies [4,6,32], proved to predict a previously established com-
posite endpoint [9,23] 7–10 days after -ED evaluation. The AUC varied between 0.69 and
0.78, depending on the proportion of patients used in the training and test sets.

While there are significant similarities in terms of the predictors used, the clinical
setting, and the serious outcomes predicted, and even with comparable performance
metrics, we do believe that our approach holds an advantage. Specifically, we opted not to
include acute conditions diagnosed in the ED within the composite endpoint, as we view
such predictions as having limited clinical relevance. Indeed, when the cause of syncope
is evident after initial assessment, the subsequent steps and potential treatment strategies
in the ED are well-established by available guidelines [2]. However, whenever the cause
of syncope remains elusive, a precise prognostic stratification becomes crucial. It ensures
that low-risk patients, who are unlikely to experience adverse events within 30 days, can
be safely discharged, while high-risk patients, who might require extended monitoring or
immediate treatments, have not to be prematurely released.

The same authors [20] also demonstrated that such ANN could predict patient hos-
pitalization with an AUC between 0.79 and 0.89, thus outperforming previous predictive
tools based on traditional statistical methods, in turn resulting in possible increased appro-
priateness of care and enhanced hospital efficiency.

Using a large US administrative database that encompassed nearly 5 million pa-
tients across 37 states, and included demographics as well as data on 31 comorbidities,
Lee et al. [18] recently devised an ANN capable of predicting the length of hospital stays.
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The AUC for this prediction ranged between 0.78 and 0.88, varying based on the specific
time thresholds implemented. While the length of stay might be considered as an indi-
cator of disease severity, it is worth noting that factors such as the rationale for hospital
admission and duration of hospitalization can also be influenced by socioeconomic con-
siderations and structural elements inherent to different healthcare systems. The authors
themselves acknowledged the intrinsic drawbacks of retrospectively analyzing an admin-
istrative database, namely the absence of clinically relevant data such as the results from
diagnostic tests.

In the past few years, ANNs, along with their extension, deep learning (DL) models,
have been rigorously and successfully evaluated in diverse clinical settings. Their strength
lies in processing vast amounts of data and recognizing nonlinear correlations between
risk factors (inputs) and the outcomes they are designed to predict (outputs), thereby
mimicking the functioning of the human nervous system [33,34]. However, it is essential to
highlight that the lack of explainability, interpretability, and traceability may lead clinicians
to distrust these “black box” models and prefer linear “white box” models that can clearly
demonstrate how they produce predictions and which input features are influential (e.g.,
linear regression, gradient-boosting decision trees) [16].

5. Study Limitations

We acknowledge that our study presents certain limitations. Firstly, the dataset we
employed is relatively small with a notably low event-per-variable ratio [35,36]. As a
result, there is a potential that our model’s apparent performance metrics might be biased.
However, calculating the average value of the MCC over 100 iterations, in relation to the
increasing percentage of data used, we observed that the MCC remained largely stable,
while its standard deviation (SD) decreased more notably (see Figure S1 in Supplementary
Materials). Therefore, we inferred that using a larger sample size would not have signif-
icantly altered the predictive performance of our model, but it could potentially lead to
a more stable estimation of the results. Currently, data limitations stand as a significant
barrier to the advancement of ML-based predictive tools. However, it is likely that in the
future these limitations may be overcome by the formation of large, shared, prospective
clinical databases. Additionally, like other ML-based predictive models cited above, our
model has only been evaluated within its development cohort. We are aware that external
validation is necessary to assess its generalizability. Another potential limitation of our
study lies in our subjective weighting of the various clinical rules incorporated into our
hybrid model, which may not be universally shared among researchers. Lastly, our choice
to integrate our model’s predictors with clinical rules, i.e., combinations of risk or protective
factors, may limit usability and portability. However, given that the required information
is part of the standard initial assessment of syncope and is obtainable in any clinical setting,
and that currently user-friendly calculators and information technology (IT) solutions are
within everyone’s reach, we do believe that this is not a real impediment to its possible
future implementation in daily clinical practice.

6. Conclusions

In the present study, we aimed to explore the potential of supervised ML-based models
in automating the risk stratification process of the patient with syncope.

We developed a hybrid model characterized by a commendable capability to predict
adverse events occurring within 30 days post-syncope evaluation in the ED. This model
relies solely on patient history, vital signs, and the ECG at presentation, obviating the need
for laboratory tests or syncope experienced clinical judgment. While encouraging, our
findings are far from being conclusive.

In the foreseeable future, ML-based predictive models might offer a promising al-
ternative to traditional syncope risk stratification methodologies, which have shown in
the past a limited effectiveness. To advance and operationalize dependable and clinically
pertinent predictive models, it is crucial to establish expansive, collaborative prospective
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clinical databases, prioritize high-quality data acquisition, and foster cooperation between
clinicians, data scientists, and IT specialists. Moreover, given that a bulk of intricate prog-
nostic data exists primarily in textual format, a significant challenge will involve leveraging
natural language processing on electronic health records to extract pertinent phenotypic
data. Finally, the implementation of unsupervised ML methods could potentially uncover
currently unknown risk patterns, leading, as a result, to more personalized approaches in
risk prediction.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm14010004/s1, Table S1. Candidate predictors, data sparsity and
missing. Table S2. Rules knowledge base. Figure S1. Models’ performances on test dataset as a
function of the sample size.
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