Frontal Fibrosing Alopecia and Reproductive Health: Assessing the Role of Sex Hormones in Disease Development
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Hormonal Particularities of FFA Female Patients
First Author, Year | Type of Study | Studied Population | Sex Hormone Statuses |
---|---|---|---|
Kanti 2019 [36] | Observational, cross-sectional study | N = 490 FFA patients N1 = 467 (95%) female FFA patients N2 = 23 (5%) male patients with FFA | N1 = 33 (88%) Testosterone (T)values within normal range N2 = 28 (96%) DHEAS values normal in tested women N3 = 26 (92%) SHBG values normal in tested women N4 = 0 abnormal PRL values N5 = 0 abnormal free androgen index |
Nasiri 2020 [46] | Case-control study | N1= 30 women with FFA N2 = 34 healthy age and menopausal status matched controls | N1 = 12.93 PRL (ng/mL) median in FFA patients N2 = 11.69 PRL (ng/mL) median in controls p = 0.882 N3 = 10.24 Luteinizing hormone (LH) (mIU/mL) median in FFA patients N4 = 11.69 LH (mIU/mL) median in controls p = 0.619 N5 = 24.21 FSH (mIU/mL) median in FFA patients N6 = 27.72 FSH (mIU/mL) median in controls p = 0.288 N7 = 0.12 17-Hydroxyprogesterone (17-OH-prog) (ng/mL) median in FFA patients N8 = 0.36 17-OH-prog (ng/mL) median in controls p = 0.275 N9 = 0.97 Free T (pg/mL) median in FFA patients N10 = 1.4 Free T (pg/mL) median in controls p = 0.135 N11 = 79.26 DHEA-S (µg/dL) median in FFA patients N12 = 152.34 DHEA-S (µg/dL) median in controls p = 0.038 N13 = 1.41 Androstenedione (A4) (ng/mL) median in FFA patients N14 = 2.31 A4(ng/mL) median in controls p = 0.012 |
Sasannia 2020 [33] | Case-control retrospective study | N1 = 20 women with FFA (mean age of 46.9 years) N2 = 20 healthy controls (mean age of 47.20 years) | N1 = 6.40 Mean LH (IU/L) in FFA cases N2 = 9.72 Mean LH (IU/L) in controls p = 0.52 N3 = 9.00 Mean FSH (IU/L) in FFA cases N4 = 15.11 Mean FSH (IU/L) in controls p = 0.03 N5 = 19.88 Mean PRL (ng/mL) in FFA cases N6 = 20.63 Mean PRL (ng/mL) in controls p = 0.44 N7 = 0.42 Mean Total T (ng/mL) in FFA cases N8 = 0.40 Mean Total T (ng/mL) in controls p = 0.58 N9 = 1.28 Mean Free T (pg/mL) in FFA cases N10 = 1.57 Mean Free T (pg/mL) in controls p = 0.48 N11 = 123.87 Mean DHEAS (µg/dL) in FFA cases N12 = 172.75 Mean DHEAS (µg/dL) in controls p = 0.2 N13 = 38.09 Mean LH (IU/L) in Postmenopausal at onset FFA cases N14 = 19.70 Mean LH (IU/L) in Cyclic at onset FFA cases N15 = 55.27 Mean FSH (IU/L) in Postmenopausal at onset FFA cases N16 = 36.72 Mean FSH (IU/L) in Cyclic at onset FFA cases N17 = 11.68 Mean PRL (ng/mL) in Postmenopausal at onset FFA cases N18 = 6.40 Mean PRL (ng/mL) in Cyclic at onset FFA cases N19 = 0.35 Mean Total T (ng/mL) in Postmenopausal at onset FFA cases N20 = 0.31 Mean Total T (ng/mL) in Cyclic at onset FFA cases N21 = 0.84 Mean Free T (pg/mL) in Postmenopausal at onset FFA cases N22 = 0.72 Mean Free T (pg/mL) in Cyclic at onset FFA cases N23 = 52.66 Mean DHEAS (µg/dL) in Postmenopausal at onset FFA cases N24 = 71.00 Mean DHEAS (µg/dL) in Cyclic at onset FFA cases |
Bernárdez 2017 [32] | Retrospective study | N = 43 premenopausal women with FFA N1 = 42.5 years, median age | N1 = 91% FSH within normal range N2 = 87% LH within normal range N3 = 82% Estradiol within normal range N4 = 97% A4 within normal range N5 = 90% 17-OH-P within normal range N6 = 90% PRL within normal range N7 = 100% DHEA-s within normal range N8 = 92% T within normal range N9 = 39 (91%) had hormone profiles expected of fertile women N10 = 4 (9%) had alterations suggestive of perimenopause |
Ranasinghe 2017 [38] | Retrospective study | N = 53 women with FFA | N1 = 9 (17.0%) androgen excess/PCOS N2 = 17 (32.1%) low androgens N3 = 9 (17.0%) low/high androgens N4 = 2 (3.8%) hirsute/low androgens N5 = 9 (17.0%) ovarian cyst only N6 = 2 (3.8%) Ovarian cyst/low T |
3.2. The Effect of Fertile Years and Early Menopause on the Development of FFA
First Author, Year | Type of Study | Studied Population | Fertile Statuses |
---|---|---|---|
Banka 2014 [49] | Retrospective study | N = 62 patients with FFA N1 = 61 females | Menopausal N = 49 (80%) Premenopausal N = 12 (20%) |
Grassi 2021 [48] | Retrospective study | N = 119 patients with FFA N1 = 8 men N2 = 111 female | N1 = 101, (91.0%) Menopausal at onset of FFA N2 = 10 (9.0%) Premenopausal at onset of FFA N3 = 50.9 years mean age at menopause onset |
Buendía-Castaño 2018 [54] | Case-control study | N1 = 104 female FFA patients N2 = 208 age-matched controls | N1 = 47.7 age of menopause for FFA patients N2 = 49.7 years, age of menopause for controls p = 0.01 N3 = 34.8 years of fertile life for FFA patients N4 = 36.5 years of fertile life for the control group p = 0.004 N5 = 94 (91.3%) postmenopausal FFA patients N6 = 189 (90.9%) postmenopausal controls |
Panchaprateep 2020 [57] | Retro-prospective cohort study | N = 58 patients with FFA | N1 = 53 (91.4%) Menopause status at present N2 = 16 (27.6%) Onset at pre-menopause N3 = 48 (46–51) Mean age of menopause N4= 20 (37.7%) Surgical menopause |
Imhof 2018 [50] | Retrospective study | N = 148 female FFA patients | N1 = 57,4 mean age at onset of symptoms N2 = 129 (87.2%) postmenopausal at presentation N3 = 14 (9.4%) premenopausal at presentation N4 = 5 (3.4%) menopause status undisclosed. N5 = 48.9 years mean age of menopause |
Tan 2009 [58] | Retrospective study | N1 = 18 patients with FFA | N1 = 15 (83%) menopausal N2 = 3 (17%) premenopausal N3 = 55.5 mean age of onset (range 34–71) |
Müller Ramos 2021 [51] | Case-control study | N1 = 451 FFA patients N2 = 451 sex-matched controls N3 = 434 (96%) females N4 = 17 (4%) males | N1 = 272 (60%) menopausal FFA patients N2 = 200 (44%) menopausal controls N3 = 47 years mean age of disease onset near menopause |
Vañó-Galván 2013 [55] | Retrospective study | N = 355 patients with FFA N1= 343 women with FFA N2= 12 men with FFA N3 = 61 years mean age (range 23–86) | N1 = 294 menopausal women N2 = 49 premenopausal women N3 = 49 years (range 23–60) mean age of menopause N4 = 49 (14%) females with early menopause (<45 years) N4.1 = 31(9%) surgical menopause N5 = 56 years (range 21–81) mean age of onset of FFA |
Starace 2019 [52] | Case-control study | N = 65 females with FFA N2 = 62.5 years (range 42–87) mean age | N1 = 57 (87.75%) menopausal N2 = 8 (12.25) premenopausal N3 = 51.5 years (43–61 years) mean age at menopause onset N4 = 6 (10.5%) had developed premature menopause (≤45 years) N4.1 = 3 (4.6%) had hysterectomy N5 = 9 (13.8%) reported prolonged of irregular menses N6 = 10.3 years average time between the onset of menopause and the development of FFA |
Conde Fernandes 2011 [53] | Retrospective study | N = 11 women with FFA N1 = 64.9 years mean age | N1 = 10 (90.9%) postmenopausal women N2 = 1 (0.1%) premenopausal woman |
Mervis 2019 [59] | Retrospective study | N = 91 patients with FFA N1 = 87 women N2 = 4 men N3 = 59.6 years mean age | N1 = 30 (34%) premenopausal at first visit |
Dlova 2013 [60] | Retrospective study | N= 20 patients with FFA N1 = 19(95%) female N2 = 1 (5%) male N3 = 42 yrs mean age of onset | N1 = 14 (73%) premenopausal N2 = 4 (27%) menopausal |
Tosti 2005 [61] | Retrospective study | N = 14 women with FFA N1 = 62 years mean age (range 54 and 78 years) | N1 = 14 (100%) menopausal N2 = 5.5 yeas mean time (range 2–12 years) from menopause to disease onset |
Kanti 2019 [36] | Observational, cross-sectional study | N = 490 FFA patients N1 = 467 (95%) female FFA patients N2 = 23 (5%) male patients with FFA N3 = 60 years mean age of onset (IQR 53–68 years) | N1 = 84% women were postmenopausal |
Moreno-Arrones 2019 [14] | Case-Control study | N1 = 578 women N2 = 289 women with FFA N3 = 289 female controls N4 = 77 men N5 = 19 men with FFA N6 = 58 male controls | N1 = 34.2 (17–48) number of reproductive years-controls N2 = 34.5 (15–52) number of reproductive years-FFA p = 0.59 N3 = 219 (75.8%) controls who had pregnancies N4= 241 (83.4%) cases who had pregnancies p = 0.03 |
Nasiri 2020 [46] | Case-control study | N1= 30 women with FFA N2 = 34 healthy age and menopausal status matched controls N3 = 51.07 ± 9.22 years–mean age of FFA patients N4 = 51.15 ± 8.16 years–mean age of controls | N1 = 15 (50.0%) patients with FFA were postmenopausal N2 = 15 (50.0%) patients with FFA were premenopausal N3 = 19(55.9%) controls were postmenopausal N4 = 15(44.1%) controls were premenopausal |
MacDonald 2012 [28] | Retrospective study | N = 60 women with FFA | N1 = 3 (5%) premenopausal N2 = 55 (95%) menopausal |
Suchonwanit 2020 [62] | Retrospective study | N = 56 patients with FFA N1 = 54 (96.4%) women with FFA N2 = 2(3.6%) men with FFA N3 = 51 years–average age of disease onset (range, 39–80 years) | N1 = 48 (88.9%) postmenopausal women N2 = 8 (11.1%) premenopausal women |
Heppt 2018 [47] | Retrospective study | N = 72 FFA patients N1 = 70 (97.2%) women N2 = 2 (2.8%) men | N1 = 57 (81.4%) Postmenopausal N2 = 6 (8.6%) Premenopausal N3 = 7 (10.0%) Unknown menopausal status |
Sasannia 2020 [33] | Case-control retrospective study | N1 = 20 women with FFA (mean age of 46.9 years) N2 = 20 healthy controls (mean age of 47.20 years) | N1 = 8 participants were postmenopausal in each group N2 = 12 participants were cyclic in each group N3 = 6 presented the disease after the onset of menopause |
Bernárdez 2017 [32] | Retrospective study | N = 43 premenopausal women with FFA N1 = 42.5 years, median age | N = 43 (100%) premenopausal |
Meinhard 2014 [56] | Retrospective study | N1 = 31 women with FFA N2 = 1 man with FFA | N = 95.5% postmenopausal |
3.3. Surgical Menopause and FFA
3.4. Hormone Replacement Therapy and FFA
3.5. Contraceptive Measures and FFA
3.6. Gynecologic Neoplasias and Tamoxifen Use in Relation to FFA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vañó-Galván, S.; Saceda-Corralo, D.; Blume-Peytavi, U.; Cucchía, J.; Dlova, N.C.; Dias, M.F.R.G.; Grimalt, R.; Guzmán-Sánchez, D.; Harries, M.; Ho, A.; et al. Frequency of the Types of Alopecia at Twenty-Two Specialist Hair Clinics: A Multicenter Study. Skin. Appendage Disord. 2019, 5, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Kerkemeyer, K.L.S.; Eisman, S.; Bhoyrul, B.; Pinczewski, J.; Sinclair, R.D. Frontal fibrosing alopecia. Clin. Dermatol. 2021, 39, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Grassi, S.; Fortuna, M.C.; Garelli, V.; Pranteda, G.; Caro, G.; Carlesimo, M. Unusual patterns of presentation of frontal fibrosing alopecia: A clinical and trichoscopic analysis of 98 patients. J. Am. Acad. Dermatol. 2017, 77, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Varghaei, A.; Rostami, A.; Yarmohamadi, M.; Mahmoudi, H.; Balighi, K.; Daneshpazhooh, M. Assessment of health-related quality of life in patients with frontal fibrosing alopecia. J. Cosmet. Dermatol. 2022, 21, 6169–6173. [Google Scholar] [CrossRef] [PubMed]
- Saceda-Corralo, D.; Pindado-Ortega, C.; Moreno-Arrones, M.; Fernández-González, P.; Rodrigues-Barata, A.R.; Jaén-Olasolo, P.; Vañó-Galván, S. Health-Related Quality of Life in Patients with Frontal Fibrosing Alopecia. JAMA Dermatol. 2018, 154, 479. [Google Scholar] [CrossRef] [PubMed]
- Kossard, S.; Lee, M.S.; Wilkinson, B. Postmenopausal frontal fibrosing alopecia: A frontal variant of lichen planopilaris. J. Am. Acad. Dermatol. 1997, 36, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Naz, E.; Vidaurrazaga, C.; Hernández-Cano, N.; Herranz, P.; Mayor, M.; Hervella, M.; Casado, M. Postmenopausal frontal fibrosing alopecia. Clin. Exp. Dermatol. 2003, 28, 25–27. [Google Scholar] [CrossRef]
- Ramos, P.M.; Garbers, L.E.F.d.M.; Silva, N.S.; Castro, C.F.; Andrade, H.S.; Souza, A.S.; Castelli, E.C.; Miot, H.A. A large familial cluster and sporadic cases of frontal fibrosing alopecia in Brazil reinforce known human leucocyte antigen (HLA) associations and indicate new HLA susceptibility haplotypes. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2409–2413. [Google Scholar] [CrossRef]
- Ocampo-Garza, S.S.; Orizaga-y-Quiroga, T.L.; Olvera-Rodríguez, V.; Herz-Ruelas, M.E.; Chavez-Alvarez, S.; Vañó-Galván, S.; Ocampo-Candiani, J. Frontal Fibrosing Alopecia: Is There a Link in Relatives? Ski. Appendage Disord. 2021, 7, 206–211. [Google Scholar] [CrossRef]
- Lis-Święty, A.; Brzeźińska-Wcisło, L. Frontal fibrosing alopecia: A disease that remains enigmatic. Adv. Dermatol. Allergol. 2020, 37, 482–489. [Google Scholar] [CrossRef]
- Miao, Y.-J.; Jing, J.; Du, X.-F.; Mao, M.-Q.; Yang, X.-S.; Lv, Z.-F. Frontal fibrosing alopecia: A review of disease pathogenesis. Front. Med. 2022, 9, 911944. [Google Scholar] [CrossRef]
- Aldoori, N.; Dobson, K.; Holden, C.R.; McDonagh, A.J.; Harries, M.; Messenger, A.G. Frontal fibrosing alopecia: Possible association with leave-on facial skin care products and sunscreens; a questionnaire study. Br. J. Dermatol. 2016, 175, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.; McMichael, A.; Wang, S.Q.; Lim, H.W. Sunscreen and frontal fibrosing alopecia: A review. J. Am. Acad. Dermatol. 2020, 82, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Arrones, O.M.; Saceda-Corralo, D.; Rodrigues-Barata, A.R.; Castellanos-González, M.; Fernández-Pugnaire, M.A.; Grimalt, R.; Hermosa-Gelbard, A.; Bernárdez, C.; Molina-Ruiz, A.M.; Ormaechea-Pérez, N.; et al. Risk factors associated with frontal fibrosing alopecia: A multicentre case–control study. Clin. Exp. Dermatol. 2019, 44, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Fonda-Pascual, P.; Saceda-Corralo, D.; Moreno-Arrones, O.M.; Alegre-Sanchez, A.; Vaño-Galvan, S. Frontal fibrosing alopecia and environment: May tobacco be protective? J. Eur. Acad. Dermatol. Venereol. 2017, 31, e98–e99. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, L.; Rakowska, A. The increasing incidence of frontal fibrosing alopecia. In search of triggering factors. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1579–1580. [Google Scholar] [CrossRef] [PubMed]
- Tziotzios, C.; Petridis, C.; Dand, N.; Ainali, C.; Saklatvala, J.R.; Pullabhatla, V.; Onoufriadis, A.; Pramanik, R.; Baudry, D.; Lee, S.H.; et al. Genome-wide association study in frontal fibrosing alopecia identifies four susceptibility loci including HLA-B*07:02. Nat. Commun. 2019, 10, 1150. [Google Scholar] [CrossRef]
- Pindado-Ortega, C.; Perna, C.; Saceda-Corralo, D.; Fernández-Nieto, D.; Jaén-Olasolo, P.; Vañó-Galván, S. Frontal fibrosing alopecia: Histopathological, immunohistochemical and hormonal study of clinically unaffected scalp areas. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e84–e85. [Google Scholar] [CrossRef]
- Talaulikar, V. Menopause transition: Physiology and symptoms. Best. Pract. Res. Clin. Obstet. Gynaecol. 2022, 81, 3–7. [Google Scholar] [CrossRef]
- Santoro, N.; Roeca, C.; Peters, B.A.; Neal-Perry, G. The Menopause Transition: Signs, Symptoms, and Management Options. J. Clin. Endocrinol. Metab. 2021, 106, 1–15. [Google Scholar] [CrossRef]
- Ali, I.; Wojnarowska, F. Physiological changes in scalp, facial and body hair after the menopause: A cross-sectional population-based study of subjective changes. Br. J. Dermatol. 2011, 164, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Blume-Peytavi, U.; Atkin, S.; Gieler, U.; Grimalt, R. Skin academy: Hair, skin, hormones and menopause—Current status/knowledge on the management of hair disorders in menopausal women. Eur. J. Dermatol. 2012, 22, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Zouboulis, C.C.; Blume-Peytavi, U.; Kosmadaki, M.; Roó, E.; Vexiau-Robert, D.; Kerob, D.; Goldstein, S.R. Skin, hair and beyond: The impact of menopause. Climacteric 2022, 25, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.; Cook, D.K. Female pattern hair loss. Aust. J. Gen. Pract. 2018, 47, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Hasan, R.; Juma, H.; Eid, F.A.; Alaswad, H.A.; Ali, W.M.; Aladraj, F.J. Effects of Hormones and Endocrine Disorders on Hair Growth. Cureus 2022, 14, e32726. [Google Scholar] [CrossRef]
- Vañó-Galván, S.; Saceda-Corral, D.; Alonso-Castro, L.; Urech, M.; Espada, J. Antiandrogenic drugs, a therapeutic option for frontal fibrosing alopecia patients. J. Am. Acad. Dermatol. 2016, 74, e77. [Google Scholar] [CrossRef]
- Moreno-Ramírez, D.; Camacho Martínez, F. Frontal fibrosing alopecia: A survey in 16 patients. J. Eur. Acad. Dermatol. Venereol. 2005, 19, 700–705. [Google Scholar] [CrossRef]
- MacDonald, A.; Clark, C.; Holmes, S. Frontal fibrosing alopecia: A review of 60 cases. J. Am. Acad. Dermatol. 2012, 67, 955–961. [Google Scholar] [CrossRef]
- Stockmeier, M.; Kunte, C.; Sander, C.A.; Wolff, H. Frontale fibrosierende Alopezie Kossard bei einem Mann. Der Hautarzt 2002, 53, 409–411. [Google Scholar] [CrossRef]
- Doche, I.; Nico, M.M.; Gerlero, P.; Rebeis, M.; Melo, D.F.; Tortelly, V.; Ramos, P.M.; Larrondo, J.; Mardones, F.; González, M.L.; et al. Clinical features and sex hormone profile in male patients with frontal fibrosing alopecia: A multicenter retrospective study with 33 patients. J. Am. Acad. Dermatol. 2022, 86, 1176–1178. [Google Scholar] [CrossRef]
- Tolkachjov, S.N.; Chaudhry, H.M.; Camilleri, M.J.; Torgerson, R.R. Frontal fibrosing alopecia among men: A clinicopathologic study of 7 cases. J. Am. Acad. Dermatol. 2017, 77, 683–690.e2. [Google Scholar] [CrossRef] [PubMed]
- Bernárdez, C.; Molina-Ruiz, A.M.; Vañó-Galvan, S.; Urech, M.; Saceda-Corralo, D.; Moreno-Arrones, O.M.; Requena, L.; Camacho, F.M. Sex hormone status in premenopausal women with frontal fibrosing alopecia: A multicentre review of 43 patients. Clin. Exp. Dermatol. 2017, 42, 921–923. [Google Scholar] [CrossRef] [PubMed]
- Sasannia, M.; Saki, N.; Aslani, F. Comparison of serum level of sex hormones in patients with frontal fibrosing alopecia with control group. Int. J. Trichol. 2020, 12, 1–6. [Google Scholar]
- Chiang, C.; Sah, D.; Cho, B.K.; Ochoa, B.E.; Price, V.H. Hydroxychloroquine and lichen planopilaris: Efficacy and introduction of Lichen Planopilaris Activity Index scoring system. J. Am. Acad. Dermatol. 2010, 62, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Fechine, C.O.C.; Valente, N.Y.S.; Romiti, R. Lichen planopilaris and frontal fibrosing alopecia: Review and update of diagnostic and therapeutic features. An. Bras. Dermatol. 2022, 97, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Kanti, V.; Constantinou, A.; Reygagne, P.; Vogt, A.; Kottner, J.; Blume-Peytavi, U. Frontal fibrosing alopecia: Demographic and clinical characteristics of 490 cases. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1976–1983. [Google Scholar] [CrossRef]
- Tavakolpour, S.; Mahmoudi, H.; Abedini, R.; Kamyab Hesari Kambiz Kiani, A.; Daneshpazhooh, M. Frontal fibrosing alopecia: An update on the hypothesis of pathogenesis and treatment. Int. J. Womens Dermatol. 2019, 5, 116–123. [Google Scholar] [CrossRef]
- Ranasinghe, G.C.; Piliang, M.P.; Bergfeld, W.F. Prevalence of hormonal and endocrine dysfunction in patients with lichen planopilaris (LPP): A retrospective data analysis of 168 patients. J. Am. Acad. Dermatol. 2017, 76, 314–320. [Google Scholar] [CrossRef]
- Mendoza-Milla, C.; Jiménez, A.V.; Rangel, C.; Lozano, A.; Morales, V.; Becerril, C.; Chavira, R.; Ruiz, V.; Barrera, L.; Montaño, M.; et al. Dehydroepiandrosterone has strong antifibrotic effects and is decreased in idiopathic pulmonary fibrosis. Eur. Respir. J. 2013, 42, 1309–1321. [Google Scholar] [CrossRef]
- Zhang, J.; Qiu, X.; Gui, Y.; Xu, Y.; Li, D.; Wang, L. Dehydroepiandrosterone improves the ovarian reserve of women with diminished ovarian reserve and is a potential regulator of the immune response in the ovaries. Biosci. Trends 2015, 9, 350–359. [Google Scholar] [CrossRef]
- Hazeldine, J.; Arlt, W.; Lord, J.M. Dehydroepiandrosterone as a regulator of immune cell function. J. Steroid Biochem. Mol. Biol. 2010, 120, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Guler, S.A.; Machahua, C.; Geiser, T.K.; Kocher, G.; Marti, T.M.; Tan, B.; Trappetti, V.; Ryerson, C.J.; Funke-Chambour, M. Dehydroepiandrosterone in fibrotic interstitial lung disease: A translational study. Respir. Res. 2022, 23, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Derksen, R.H.W.M. Dehydroepiandrosterone (DHEA) and systemic lupus erythematosus. Semin. Arthritis Rheum. 1998, 27, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Mozafari, N.; Hosseini, M.S.; Gholamin, S.; Razavi, S.; Namazi, M.R.; Younespour, S. Evaluating serum prolactin and serum dehydroepiandrosterone sulfate levels in patients with pemphigus. Int. J. Dermatol. 2016, 55, e332–e337. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, N.K. DHEA and frontal fibrosing alopecia: Molecular and physiopathological mechanisms. An. Bras. Dermatol. 2016, 91, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, S.; Dadkhahfar, S.; Mansouri, P.; Rahmani-Khah, E.; Mozafari, N. Evaluation of serum level of sex hormones in women with frontal fibrosing alopecia in comparison to healthy controls. Dermatol. Ther. 2020, 33, e13842. [Google Scholar] [CrossRef]
- Letulé, V.; Laniauskaite, I.; Reinholz, M.; Tietze, J.K.; Wolff, H.; Ruzicka, T.; Sattler, E.C.; Heppt, M.V. Frontal Fibrosing Alopecia: A Retrospective Analysis of 72 Patients from a German Academic Center. Facial Plast. Surg. 2018, 34, 088–094. [Google Scholar] [CrossRef]
- Grassi, S.; Cicogna, G.T.; Magri, F.; Fortuna, M.C.; Caro, G.; Pernazza, A.; Soda, G.; Miraglia, E.; Giustini, S.; Carlesimo, M.; et al. Frontal fibrosing alopecia and genital Lichen sclerosus: Single-center experience. J. Cosmet. Dermatol. 2021, 20, 615–620. [Google Scholar] [CrossRef]
- Banka, N.; Mubki, T.; Bunagan, M.J.K.; McElwee, K.; Shapiro, J. Frontal fibrosing alopecia: A retrospective clinical review of 62 patients with treatment outcome and long-term follow-up. Int. J. Dermatol. 2014, 53, 1324–1330. [Google Scholar] [CrossRef]
- Imhof, R.L.; Chaudhry, H.M.; Larkin, S.C.; Torgerson, R.R.; Tolkachjov, S.N. Frontal Fibrosing Alopecia in Women: The Mayo Clinic Experience with 148 Patients, 1992–2016. Mayo Clin. Proc. 2018, 93, 1581–1588. [Google Scholar] [CrossRef]
- Ramos, P.M.; Anzai, A.; Duque-Estrada, B.; Farias, D.C.; Melo, D.F.; Mulinari-Brenner, F.; Pinto, G.M.; Abraham, L.S.; Santos, L.D.N.; Pirmez, R.; et al. Risk factors for frontal fibrosing alopecia: A case-control study in a multiracial population. J. Am. Acad. Dermatol. 2021, 84, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Starace, M.; Brandi, N.; Alessandrini, A.; Bruni, F.; Piraccini, B.M. Frontal fibrosing alopecia: A case series of 65 patients seen in a single Italian centre. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Conde Fernandes, I.; Selores, M.; Machado, S. Frontal fibrosing alopecia: A review of eleven patients. Eur. J. Dermatol. 2011, 21, 750–752. [Google Scholar] [CrossRef] [PubMed]
- Buendía-Castaño, D.; Saceda-Corralo, D.; Moreno-Arrones, O.M.; Fonda-Pascual, P.; Alegre-Sánchez, A.; Pindado-Ortega, C.; Fernandez-Gonzalez, P.; Vañó-Galván, S. Hormonal and Gynecological Risk Factors in Frontal Fibrosing Alopecia: A Case-Control Study. Ski. Appendage Disord. 2018, 4, 274–276. [Google Scholar] [CrossRef] [PubMed]
- Vañó-Galván, S.; Molina-Ruiz, A.M.; Serrano-Falcón, C.; Arias-Santiago, S.; Rodrigues-Barata, A.R.; Garnacho-Saucedo, G.; Martorell-Calatayud, A.; Fernández-Crehuet, P.; Grimalt, R.; Aranegui, B.; et al. Frontal fibrosing alopecia: A multicenter review of 355 patients. J. Am. Acad. Dermatol. 2014, 70, 670–678. [Google Scholar] [CrossRef]
- Meinhard, J.; Stroux, A.; Lünnemann, L.; Vogt, A.; Blume-Peytavi, U. Lichen planopilaris: Epidemiology and prevalence of subtypes—A retrospective analysis in 104 patients. J. Dtsch. Dermatol. Ges. 2014, 12, 229–235. [Google Scholar] [CrossRef]
- Panchaprateep, R.; Ruxrungtham, P.; Chancheewa, B.; Asawanonda, P. Clinical characteristics, trichoscopy, histopathology and treatment outcomes of frontal fibrosing alopecia in an Asian population: A retro-prospective cohort study. J. Dermatol. 2020, 47, 1301–1311. [Google Scholar] [CrossRef]
- Tan, K.T.; Messenger, A.G. Frontal fibrosing alopecia: Clinical presentations and prognosis. Br. J. Dermatol. 2009, 160, 75–79. [Google Scholar] [CrossRef]
- Mervis, J.S.; Borda, L.J.; Miteva, M. Facial and Extrafacial Lesions in an Ethnically Diverse Series of 91 Patients with Frontal Fibrosing Alopecia Followed at a Single Center. Dermatology 2019, 235, 112–119. [Google Scholar] [CrossRef]
- Dlova, N.C.; Jordaan, H.F.; Skenjane, A.; Khoza, N.; Tosti, A. Frontal fibrosing alopecia: A clinical review of 20 black patients from South Africa. Br. J. Dermatol. 2013, 169, 939–941. [Google Scholar] [CrossRef]
- Tosti, A.; Piraccini, B.M.; Iorizzo, M.; Misciali, C. Frontal fibrosing alopecia in postmenopausal women. J. Am. Acad. Dermatol. 2005, 52, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Suchonwanit, P.; Pakornphadungsit, K.; Leerunyakul, K.; Khunkhet, S.; Sriphojanart, T.; Rojhirunsakool, S. Frontal fibrosing alopecia in Asians: A retrospective clinical study. Int. J. Dermatol. 2020, 59, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, E.; Salemi, J.L.; Mogos, M.F.; Hart, S.; Salihu, H.M.; Imudia, A.N. National trends of adnexal surgeries at the time of hysterectomy for benign indication, United States, 1998–2011. Am. J. Obstet. Gynecol. 2015, 213, e1–e713. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.; Venturella, R.; Mocciaro, R.; Di Cello, A.; Rania, E.; Lico, D.; D’Alessandro, P.; Zullo, F. Prophylactic salpingectomy in premenopausal low-risk women for ovarian cancer: Primum non nocere. Gynecol. Oncol. 2013, 129, 448–451. [Google Scholar] [CrossRef] [PubMed]
- CPillay, O.; Manyonda, I. The surgical menopause. Best. Pract. Res. Clin. Obstet. Gynaecol. 2022, 81, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Davison, S.L.; Bell, R.; Donath, S.; Montalto, J.G.; Davis, S.R. Androgen levels in adult females: Changes with age, menopause, and oophorectomy. J. Clin. Endocrinol. Metab. 2005, 90, 3847–3853. [Google Scholar] [CrossRef]
- Hogervorst, E.; Bandelow, S. Sex steroids to maintain cognitive function in women after the menopause: A meta-analyses of treatment trials. Maturitas 2010, 66, 56–71. [Google Scholar] [CrossRef]
- Georgakis, M.K.; Beskou-Kontou, T.; Theodoridis, I.; Skalkidou, A.; Petridou, E.T. Surgical menopause in association with cognitive function and risk of dementia: A systematic review and meta-analysis. Psychoneuroendocrinology 2019, 106, 9–19. [Google Scholar] [CrossRef]
- Jang, J.H.; Arora, N.; Kwon, J.S.; Hanley, G.E. Hormone Therapy Use After Premature Surgical Menopause Based on Prescription Records: A Population-Based Study. J. Obstet. Gynaecol. Can. 2020, 42, 1511–1517. [Google Scholar] [CrossRef]
- Garg, N.; Behbehani, S.; Kosiorek, H.; Wasson, M. Hormone Replacement Therapy Prescription after Premature Surgical Menopause. J. Minim. Invasive Gynecol. 2020, 27, 1618–1623. [Google Scholar] [CrossRef]
- Faubion, S.S.; Crandall, C.J.; Davis, L.; El Khoudary, S.R.; Hodis, H.N.; Lobo, R.A.; Maki, P.M.; Manson, J.E.; Pinkerton, J.V.; Santoro, N.F.; et al. The 2022 hormone therapy position statement of The North American Menopause Society. Menopause 2022, 29, 767–794. [Google Scholar]
- Gordhandas, S.; Norquist, B.M.; Pennington, K.P.; Yung, R.L.; Laya, M.B.; Swisher, E.M. Hormone replacement therapy after risk reducing salpingo-oophorectomy in patients with BRCA1 or BRCA2 mutations; a systematic review of risks and benefits. Gynecol. Oncol. 2019, 153, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Wang-Cheng, R.; Rosenfeld, J.A. Hormone Replacement Therapy. BMJ 2003, 327, E139. [Google Scholar]
- Bain, C.; Willett, W.; Hennekens, C.H.; Rosner, B.; Belanger, C.; Speizer, F.E. Use of postmenopausal hormones and risk of myocardial infarction. Circulation 1981, 64, 42–46. [Google Scholar] [CrossRef]
- Grodstein, F.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C.; Manson, J.E.; Joffe, M.; Rosner, B.; Fuchs, C.; Hankinson, S.E.; Hunter, D.J.; et al. Postmenopausal Hormone Therapy and Mortality. N. Engl. J. Med. 1997, 336, 1769–1776. [Google Scholar] [CrossRef]
- Flores, V.A.; Pal, L.; Manson, J.E. Hormone Therapy in Menopause: Concepts, Controversies, and Approach to Treatment. Endocr. Rev. 2021, 42, 720–752. [Google Scholar] [CrossRef]
- Vigneswaran, K.; Hamoda, H. Hormone replacement therapy—Current recommendations. Best. Pract. Res. Clin. Obstet. Gynaecol. 2022, 81, 8–21. [Google Scholar] [CrossRef]
- Cooper, D.B.; Patel, P.; Mahdy, H. Oral Contraceptive Pills. In A History of Intellectual Property in 50 Objects; StatPearls Publishing: Treasure Island, FL, USA, 2022; pp. 224–231. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430882/ (accessed on 12 November 2023).
- Louw-du Toit, R.; Perkins, M.S.; Hapgood, J.P.; Africander, D. Comparing the androgenic and estrogenic properties of progestins used in contraception and hormone therapy. Biochem. Biophys. Res. Commun. 2017, 491, 140–146. [Google Scholar] [CrossRef]
- Dinehart, E.; Lathi, R.B.; Aghajanova, L. Levonorgestrel IUD: Is there a long-lasting effect on return to fertility? J. Assist. Reprod. Genet. 2020, 37, 45–52. [Google Scholar] [CrossRef]
- Brough, K.R.; Torgerson, R.R. Hormonal therapy in female pattern hair loss. Int. J. Womens Dermatol. 2017, 3, 53–57. [Google Scholar] [CrossRef]
- Scheinfeld, N. A review of hormonal therapy for female pattern (androgenic) alopecia. Dermatol. Online J. 2008, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Graves, K.Y.; Smith, B.J.; Nuccio, B.C. Alopecia due to high androgen index contraceptives. JAAPA 2018, 31, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Gómez Vázquez, M.; Navarra Amayuelas, R.; Lamarca, M.; Baquedano, L.; Romero Ruiz, S.; Vilar-Checa, E.; Iniesta, M.D. Ethinylestradiol/Chlormadinone Acetate for Use in Dermatological Disorders. Am. J. Clin. Dermatol. 2011, 12, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Paterson, H.; Clifton, J.; Miller, D.; Ashton, J.; Harrison-Woolrych, M. Hair loss with use of the levonorgestrel intrauterine device. Contraception 2007, 76, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.M.; Randolph, M.; Rajabi-Estarabadi, A.; Keri, J.; Tosti, A. Hormonal Contraceptives and Dermatology. Am. J. Clin. Dermatol. 2021, 22, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.-Y.; Hwang, K.-A.; Choi, K.-C. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J. Steroid Biochem. Mol. Biol. 2016, 158, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Subramani, R.; Nandy, S.B.; Pedroza, D.A.; Lakshmanaswamy, R. Role of Growth Hormone in Breast Cancer. Endocrinology 2017, 158, 1543–1555. [Google Scholar] [CrossRef]
- McHann, M.C.; Blanton, H.L.; Guindon, J. Role of sex hormones in modulating breast and ovarian cancer associated pain. Mol. Cell Endocrinol. 2021, 533, 111320. [Google Scholar] [CrossRef]
- Shagufta; Ahmad, I. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. Eur. J. Med. Chem. 2018, 143, 515–531. [Google Scholar] [CrossRef]
- O’Regan, R.M.; Jordan, V.C. Tamoxifen to raloxifene and beyond. Semin. Oncol. 2001, 28, asonc0280260. [Google Scholar] [CrossRef]
- Craig Jordan, V. The role of tamoxifen in the treatment and prevention of breast cancer. Curr. Probl. Cancer. 1992, 16, 134–176. [Google Scholar] [CrossRef] [PubMed]
- Georgala, S.; Katoulis, A.C.; Befon, A.; Danopoulou, I.; Georgala, C. Treatment of postmenopausal frontal fibrosing alopecia with oral dutasteride. J. Am. Acad. Dermatol. 2009, 61, 157–158. [Google Scholar] [CrossRef] [PubMed]
- Photiou, L.; Nixon, R.L.; Tam, M.; Green, J.; Yip, L. An update of the pathogenesis of frontal fibrosing alopecia: What does the current evidence tell us? Australas. J. Dermatol. 2019, 60, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Fertig, R.; Tosti, A. Frontal fibrosing alopecia treatment options. Intractable Rare Dis. Res. 2016, 5, 314–315. [Google Scholar] [CrossRef]
- Rácz, E.; Gho, C.; Moorman, P.W.; Noordhoek Hegt, V.; Neumann, H.A.M. Treatment of frontal fibrosing alopecia and lichen planopilaris: A systematic review. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Saceda-Corralo, D.; Ortega-Quijano, D.; Muñoz-Martín, G.; Moreno-Arrones, M.; Pindado-Ortega, C.; Rayinda, T.; Melián-Olivera, A.; Azcárraga-Llobet, C.; Burgos-Blasco, P.; Castañeda-Bermúdez, M.E.; et al. Genotyping of the rs1800440 Polymorphism in CYP1B1 Gene and the rs9258883 Polymorphism in HLA-B Gene in a Spanish Cohort of 223 Patients with Frontal Fibrosing Alopecia. Acta Derm. Venereol. 2023, 103, adv9604. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Nakajima, M.; Yokoi, T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005, 227, 115–124. [Google Scholar] [CrossRef]
- Kamp, E.; Ashraf, M.; Musbahi, E.; DeGiovanni, C. Menopause, skin and common dermatoses. Part 1: Hair disorders. Clin. Exp. Dermatol. 2022, 47, 2110. [Google Scholar] [CrossRef]
- Dolinko, A.V.; Ginsburg, E.S. Hyperandrogenism in menopause: A case report and literature review. Fertil. Res. Pract. 2015, 1, 7. [Google Scholar] [CrossRef]
- Grymowicz, M.; Rudnicka, E.; Podfigurna, A.; Napierala, P.; Smolarczyk, R.; Smolarczyk, K.; Meczekalski, B. Hormonal Effects on Hair Follicles. Int. J. Mol. Sci. 2020, 21, 5342. [Google Scholar] [CrossRef]
- Mirmirani, P. Hormonal changes in menopause: Do they contribute to a ‘midlife hair crisis’ in women? Br. J. Dermatol. 2011, 165, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Datta, D.; Madke, B.; Das, A. Skin as an endocrine organ: A narrative review. Indian. J. Dermatol. Venereol. Leprol. 2022, 88, 590. [Google Scholar] [CrossRef] [PubMed]
- Lobato-Berezo, A.; Iglesias-Sancho, M.; Rodríguez-Lomba, E.; Mir-Bonafé, J.F.; Velasco-Tamariz, V.; Porriño-Bustamante, M.L.; Grimalt, R.; Figueras-Nart, I.; Combalia, A.; Pujol, R.M. Frontal fibrosing alopecia in men: A multicenter study of 39 patients. J. Am. Acad. Dermatol. 2022, 86, 481–484. [Google Scholar] [CrossRef] [PubMed]
First Author, Year | Type of Study | Studied Population | Gynecologic Surgery |
---|---|---|---|
Buendía-Castaño 2018 [54] | Case-control study | N1 = 104 female ffa patients N2 = 208 age-matched controls | N1 = 30 (28.8%) FFA patients with hysterectomy N2 = 28 (13.5%) controls with hysterectomy OR 2.14 [95% CI 1.35–3.39], p = 0.002) |
Panchaprateep 2020 [57] | Retro-prospective cohort study | N = 58 patients with FFA | N1 = 20 (34.5%) Hysterectomy |
Imhof 2018 [50] | Retrospective study | N = 148 female ffa patients | N1 = 55 (39.6%) hysterectomy, of the patients 139 who disclosed hysterectomy status N2 = 26 (18.7%) premenopausal total hysterectomy N3 = 18 (13%) premenopausal oophorectomy |
Tan 2009 [58] | Retrospective study | N1 = 18 patients with FFA | N1 = 2 had hysterectomies |
Vañó-Galván 2013 [55] | Retrospective study | N = 355 patients with FFA N1 = 343 women with FFA N2 = 12 men with FFA | N1 = 46 (13%) hysterectomy N2 = 31 premenopausal hysterectomies N3 = 15 postmenopausal hysterectomies |
Moreno-Arrones 2019 [14] | Case-Control study | N1 = 578 women N2 = 289 women with FFA N3 = 289 female controls N4 = 77 men N5 = 19 men with FFA N6 = 58 male controls | N1 = 36 (12.5%) controls with Hysterectomy N2 = 36 (12.5%) cases with Hysterectomy p = 1.00 N3 = 22 (7.6%) controls with oophorectomy N4 = 32 (11.1%) cases with oophorectomy p = 0.15 |
Suchonwanit 2020 [62] | Retrospective study | N = 56 patients with FFA N1 = 54 (96.4%) women with FFA N2 = 2(3.6%) men with FFA N3 = 51 years–average age of disease onset (range 39–80 years) | N1 = 2 (3.7%) hysterectomy and oophorectomy and neither of these patients had a premenopausal onset of FFA |
Starace 2019 [52] | Case-control study | N1 = 65 females with FFA N2 = 62.5 years (range 42–87) mean age | N1 = 3 (4.6%) had hysterectomy |
First Author, Year | Type of Study | Studied Population | Hormone Replacement Therapy Use |
---|---|---|---|
Banka 2014 [49] | Retrospective study | N = 62 patients with FFA N1 = 1 male N2 = 61 females | N1 = 3 (5%) Hormone replacement therapy N2 = 4 (6%) Estrogen therapy (including one male patient, which does not constitute HRT) N3 = 2 (3%) Progesterone therapy |
Panchaprateep 2020 [57] | Retro-prospective cohort study | N = 58 patients with FFA | N1 = 7 (12.1%) Received hormone replacement therapy |
Imhof 2018 [50] | Retrospective study | N = 148 female FFA patients | N1 = 90 had hormone replacement therapy (HRT) (history documented in 90 patients) N2 = 57 (63.3%) history of HRT use in the form of systemic estrogen and/or systemic progesterone |
Mervis 2019 [59] | Retrospective study | N = 91 patients with FFA N1 = 87 women N2 = 4 men N3 = 59.6 years mean age | N1 = 11 (13%) women either using hormonal birth control or HRT at the time of FFA diagnosis |
Tosti 2005 [61] | Retrospective study | N = 14 women with FFA N1 = 62 years mean age (range 54 and 78 years) | N1 = 5 (35.7%) patients undergoing estrogen replacement therapy at debut |
Kanti 2019 [36] | Observational, cross-sectional study | N = 490 FFA patients N1 = 467 (95%) female FFA patients N2 = 23 (5%) male patients with FFA N3 = 60 years mean age of onset of symptoms (IQR 53–68 years) | N1 = 22% had hormonal replacement therapy |
Moreno-Arrones 2019 [14] | Case-control study | N1 = 578 women N2 = 289 women with FFA N3 = 289 female controls N4 = 77 men N5 = 19 men with FFA N6 = 58 male controls | N1 = 34 (11.8%) controls who used HRT N2 = 55 (19%) cases who used HRT p = 0.02 |
Suchonwanit 2020 [62] | Retrospective study | N = 56 patients with FFA N1 = 54 (96.4%) women with FFA N2 = 2 (3.6%) men with FFA N3 = 51 years–average age of disease onset (range, 39–80 years) | N1 = 7 (12.9%) received HRT |
Meinhard 2014 [56] | Retrospective study | N1 = 31 women with FFA N2 = 1 man with FFA | N1 = 10 (32.3%) had HRT |
First Author, Year | Type of Study | Studied Population | Contraceptive Method |
---|---|---|---|
Buendía-Castaño 2018 [54] | Case-control study | N1 = 104 female FFA patients N2 = 208 age-matched controls | N1 = 5 (4.8%) FFA patients with use of IUD N2 = 30 (14.4%) controls with use of IUD OR 0.22 [95% CI 0.06–0.84], p = 0.027 N3 = 104 (43.3%) patients who took oral contraceptives N4 = 103 (49.5%,) controls who took oral contraceptives |
Panchaprateep 2020 [57] | Retro-prospective cohort study | N = 58 patients with FFA | N1 = 16 (27.6%) history of taking oral contraceptive N2 = 3 (5.2%) history of intrauterine device |
Imhof 2018 [50] | Retrospective study | N = 148 female FFA patients | N1 = 26 [51%] history of oral contraceptive pill use |
Mervis 2019 [59] | Retrospective study | N = 91 patients with FFA N1 = 87 women N2 = 4 men N3 = 59.6 years mean age | N1 = 11 (13%) women either using hormonal birth control or HRT at the time of the FFA diagnosis |
Kanti 2019 [36] | Observational, cross-sectional study | N = 490 FFA patients N1 = 467 (95%) female FFA patients N2 = 23 (5%) male FFA patients N3 = 60 years mean age of onset of symptoms (IQR 53–68 years) | N1 = 21% hormonal contraception |
Moreno-Arrones 2019 [14] | Case-control study | N1 = 578 women N2 = 289 women with FFA N3 = 289 female controls N4 = 77 men (FFA + controls) | N1 = 143 (49.5%) controls who took oral contraceptives N2 = 141 (48.8%) cases who took oral contraceptives p = 0.86 |
Meinhard 2014 [56] | Retrospective study | N1 = 31 women with FFA N2 = 1 man with FFA | N1 = 1 (3.2%) took oral contraceptives |
First Author, Year | Type of Study | Studied Population | Gynecologic Neoplasia and Antiestrogenic Therapies |
---|---|---|---|
Banka 2014 [49] | Retrospective study | N = 62 patients with FFA N1 = 1 male N2 = 61 females | N1 = 2 (3%) received Tamoxifen |
Buendía-Castaño 2018 [54] | Case-control study | N1 = 104 female FFA patients N2 = 208 age-matched controls | N1 = 8 (7.7%) FFA patients with breast cancer N2 = 5 (2,4%) controls with breast cancer OR 3.20 [95% CI 1.07–9.54], p = 0.028) N3 = 7 (6.7%) FFA patients with use of tamoxifen N4 = 2 (0.1%) controls with use of tamoxifen OR 14.89 [95% CI 2.42–91.68], p = 0.004 |
Imhof 2018 [50] | Retrospective study | N = 148 female FFA patients | N1 = 6 (4.1%) had history of Tamoxifen use for breast cancer |
Moreno-Arrones 2019 [14] | Case-control study | N1 = 578 women N2 = 289 women with FFA N3 = 289 female controls N4 = 77 men N5 = 19 men with FFA N6 = 58 male controls | N1 = 13 (4.5%) controls with breast cancer N2 = 10 (3.5%) cases with breast cancer p = 0.52 N3 = 2 (0.7%) controls who had ovarian cancer N4 = 0 cases who had ovarian cancer p = 0.15 N5 = 5 (1.7%) controls who took Tamoxifen N6 = 6 (2.1%) cases who took Tamoxifen p = 0.76 N7 = 0 controls who took Raloxifen N8 = 6 (2.1%) cases who took Raloxifen p = 0.03 |
Heppt 2018 [47] | Retrospective study | N = 72 FFA patients N1 = 70 (97.2%) women N2 = 2 (2.8%) men | N1 = 3 (4.2%) history of breast cancer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, A.-M.; Petca, R.-C.; Dumitrașcu, M.C.; Petca, A.; Ionescu, A.-I.; Șandru, F. Frontal Fibrosing Alopecia and Reproductive Health: Assessing the Role of Sex Hormones in Disease Development. J. Pers. Med. 2024, 14, 72. https://doi.org/10.3390/jpm14010072
Roman A-M, Petca R-C, Dumitrașcu MC, Petca A, Ionescu A-I, Șandru F. Frontal Fibrosing Alopecia and Reproductive Health: Assessing the Role of Sex Hormones in Disease Development. Journal of Personalized Medicine. 2024; 14(1):72. https://doi.org/10.3390/jpm14010072
Chicago/Turabian StyleRoman, Alexandra-Maria, Răzvan-Cosmin Petca, Mihai Cristian Dumitrașcu, Aida Petca, Andreea-Iuliana Ionescu (Miron), and Florica Șandru. 2024. "Frontal Fibrosing Alopecia and Reproductive Health: Assessing the Role of Sex Hormones in Disease Development" Journal of Personalized Medicine 14, no. 1: 72. https://doi.org/10.3390/jpm14010072
APA StyleRoman, A. -M., Petca, R. -C., Dumitrașcu, M. C., Petca, A., Ionescu, A. -I., & Șandru, F. (2024). Frontal Fibrosing Alopecia and Reproductive Health: Assessing the Role of Sex Hormones in Disease Development. Journal of Personalized Medicine, 14(1), 72. https://doi.org/10.3390/jpm14010072