Machine Learning Approaches for the Prediction of Postoperative Major Complications in Patients Undergoing Surgery for Bowel Obstruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Population and Data
2.3. Machine Learning Methodology
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Catena, F.; De Simone, B.; Coccolini, F.; Di Saverio, S.; Sartelli, M.; Ansaloni, L. Bowel obstruction: A narrative review for all physicians. World J. Emerg. Surg. 2019, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Frago, R.; Ramirez, E.; Millan, M.; Kreisler, E.; del Valle, E.; Biondo, S. Current management of acute malignant large bowel obstruction: A systematic review. Am. J. Surg. 2014, 207, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Richard, P.G.; Issa, Y.; van Santbrink, E.J.; Bouvy, N.D.; Kruitwagen, R.F.; Jeekel, J.; Bakkum, E.A.; Rovers, M.M.; van Goor, H. Burden of adhesions in abdominal and pelvic surgery: Systematic review and met-analysis. BMJ 2013, 347, f5588. [Google Scholar]
- Behman, R.; Nathens, A.B.; Haas, B.; Hong, N.L.; Pechlivanoglou, P.; Karanicolas, P. Population-based study of the impact of small bowel obstruction due to adhesions on short- and medium-term mortality. Br. J. Surg. 2019, 106, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, E.J.M.M.; Wirtalla, C.J.B.; Keele, L.J.; Neuman, M.D.; Rosen, C.B.; Syvyk, S.B.; Hatchimonji, J.; Ginzberg, S.; Friedman, A.; Roberts, S.E.; et al. Costs of Care for Operative and Nonoperative Management of Emergency General Surgery Conditions. Ann. Surg. 2024, 279, 684–691. [Google Scholar] [CrossRef]
- Taghavifar, S.; Joyce, P.; Salehi, S.; Khosa, F.; Shin, H.; Gholamrezanezhad, A.; Shah, S. Computed Tomography in Emergency Diagnosis and Management Considerations of Small Bowel Obstruction for Surgical vs. Non-surgical Approach. Curr. Med. Imaging Former. Curr. Med. Imaging Rev. 2022, 18, 275–284. [Google Scholar] [CrossRef]
- Cosse, C.; Regimbeau, J.M.; Fuks, D.; Mauvais, F.; Scotte, M. Serum procalcitonin for predicting the failure of conservative management and the need for bowel resection in patients with small bowel obstruction. J. Am. Coll. Surg. 2013, 216, 997–1004. [Google Scholar] [CrossRef]
- Wassmer, C.-H.M.-P.; Revol, R.; Uhe, I.; Chevallay, M.; Toso, C.; Gervaz, P.; Morel, P.; Poletti, P.-A.; Platon, A.; Ris, F.; et al. A new clinical severity score for the management of acute small bowel obstruction in predicting bowel ischemia: A cohort study. Int. J. Surg. 2023, 109, 1620–1628. [Google Scholar] [CrossRef]
- Scrima, A.; Lubner, M.G.; King, S.; Pankratz, J.; Kennedy, G.; Pickhardt, P.J. Value of MDCT and Clinical and Laboratory Data for Predicting the Need for Surgical Intervention in Suspected Small-Bowel Obstruction. AJR Am. J. Roentgenol. 2017, 208, 785–793. [Google Scholar] [CrossRef]
- Zielinski, M.D.; Eiken, P.W.; Bannon, M.P.; Heller, S.F.; Lohse, C.M.; Huebner, M.; Sarr, M.G. Small bowel obstruction-who needs an operation? A multivariate prediction model. World J. Surg. 2010, 34, 910–919. [Google Scholar] [CrossRef]
- Mazzotta, A.D.; Kawaguchi, Y.; Pantel, L.; Tribillon, E.; Bonnet, S.; Gayet, B.; Soubrane, O. Conditional cumulative incidence of postoperative complications stratified by complexity classification for laparoscopic liver resection: Optimization of in-hospital observation. Surgery 2022, 173, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Cascini, F.; Beccia, F.; Causio, F.A.; Melnyk, A.; Zaino, A.; Ricciardi, W. Scoping review of the current landscape of AI-based applications in clinical trials. Front. Public Health 2022, 10, 949377. [Google Scholar] [CrossRef] [PubMed]
- Causio, F.A.; Hoxhaj, I.; Beccia, F.; Di Marcantonio, M.; Strohäker, T.; Cadeddu, C.; Ricciardi, W.; Boccia, S. Big data and ICT solutions in the European Union and in China: A comparative analysis of policies in personalized medicine. Digit Health 2022, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Costa, G.; Fransvea, P.; Puccioni, C.; Giovinazzo, F.; Carannante, F.; Bianco, G.; Catamero, A.; Masciana, G.; Miacci, V.; Caricato, M.; et al. Gastro-intestinal emergency surgery: Evaluation of morbidity and mortality. Protocol of a prospective, multicenter study in Italy for evaluating the burden of abdominal emergency surgery in different age groups. (The GESEMM study). Front. Surg. 2022, 9, 927044. [Google Scholar] [CrossRef]
- ERASO (Elderly Risk Assessment for Surgical Outcome) Collaborative Study Group; Costa, G.; Massa, G. Frailty and emergency surgery in the elderly: Protocol of a prospective, multicenter study in Italy for evaluating perioperative outcome (The FRAILESEL Study). Updat. Surg. 2018, 70, 97–104. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Falola, A.F.; Dada, O.S.; Ndong, A.; Akande, D.G. Etiology and management outcomes of adult mechanical bowel obstruction in Nigeria: A systematic review and meta-analysis. World J. Surg. 2024, 48, 29–39. [Google Scholar] [CrossRef]
- Xu, N.; Sun, B.J.; Yue, T.M.; Lee, B. Factors Predicting Readmission and Mortality in Patients Admitted for Malignant Bowel Obstruction. Am. Surg.TM 2024, 90, 2570–2576. [Google Scholar] [CrossRef]
- Bhatti, U.F.; Shen, A.S.; Melo, N.; Barmparas, G.; Wang, A.S.; Margulies, D.R.; Alban, R.F. Don’t Let the Sun Rise on Small Bowel Obstruction Without Surgical Consultation-Redefining Nonoperative Management Pathways. Am. Surg. 2024, 90, 2442–2446. [Google Scholar] [CrossRef] [PubMed]
- Hoi, H.; Grünbart, M.; Paal, P.; de Cillia, M.; Hell, T.; Weiss, H.; Mittermair, C. Surgeon and patient-specific factors influencing the decision for minimally invasive or open surgery in acute bowel obstruction: A retrospective single-center analysis. Langenbeck’s Arch. Surg. 2022, 407, 3747–3754. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Yim, H.W.; Park, C.H.; Song, K.Y. C-reactive protein can be an early predictor of postoperative complications after gastrectomy for gastric cancer. Surg. Endosc. 2017, 31, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Litvin, A.; Korenev, S.; Rumovskaya, S.; Sartelli, M.; Baiocchi, G.; Biffl, W.L.; Coccolini, F.; Di Saverio, S.; Kelly, M.D.; Kluger, Y.; et al. WSES project on decision support systems based on artificial neural networks in emergency surgery. World J. Emerg. Surg. 2021, 16, 50. [Google Scholar] [CrossRef] [PubMed]
- Yeung, D.E.; Peterknecht, E.; Hajibandeh, S.; Torrance, A.W. C-reactive protein can predict anastomotic leak in colorectal surgery: A systematic review and meta-analysis. Int. J. Color. Dis. 2021, 36, 1147–1162. [Google Scholar] [CrossRef]
- Yamazaki, S.; Shimodaira, Y.; Kobayashi, A.; Takata, M.; Hayashibara, K.; Sakon, M.; Sekino, Y.; Okada, M.; Takahashi, Y.; Shimura, M.; et al. Predictive factors of perforated appendicitis: Impact of the C-reactive protein level. Surg. Open Sci. 2021, 6, 1–4. [Google Scholar] [CrossRef]
- Ng, H.J.; Ahmed, Z.; Khan, K.S.; Katbeh, T.; Nassar, A.H.M. C-reactive protein level as a predictor of difficult emergency laparoscopic cholecystectomy. BJS Open 2019, 3, 641–645. [Google Scholar] [CrossRef]
- Capona, R.; Hassab, T.; Sapci, I.; Aiello, A.; Liska, D.; Holubar, S.; Lightner, A.L.; Steele, S.R.; Valente, M.A. Surgical intervention for mechanical large bowel obstruction at a tertiary hospital: Which patients receive a stoma and how often are they reversed? Am. J. Surg. 2021, 221, 594–597. [Google Scholar] [CrossRef]
- Zimmermann, M.; Hoffmann, M.; Laubert, T.; Bruch, H.P.; Keck, T.; Benecke, C.; Schlöricke, E. Laparoscopy for bowel obstruction—A contradiction? Results of a multi-institutional survey in Germany. Int. J. Color. Dis. 2016, 31, 1011–1019. [Google Scholar] [CrossRef]
- Hackenberg, T.; Mentula, P.; Leppäniemi, A.; Sallinen, V. Laparoscopic versus Open Surgery for Acute Adhesive Small-Bowel Obstruction: A Propensity Score–Matched Analysis. Scand. J. Surg. 2017, 106, 28–33. [Google Scholar] [CrossRef]
- Darbyshire, A.; Kostakis, I.; Pucher, P.; Toh, S.; Mercer, S. The impact of laparoscopy on emergency surgery for adhesional small bowel obstruction: Prospective single centre cohort study. Ann. R. Coll. Surg. Engl. 2021, 103, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, P.; Maharjan, S. Adhesive Small Bowel Obstruction: A Review. JNMA J. Nepal Med. Assoc. 2023, 61, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.H.; Tavares, K.; Chinn, A.; Russell, D.; Gillern, S.; Yheulon, C. Is Laparoscopy Underutilized for Sigmoid Volvulus? Surg. Laparosc. Endosc. Percutaneous Tech. 2022, 32, 564–570. [Google Scholar] [CrossRef] [PubMed]
Total n = 99 | Benign n = 65 | Cancer n = 34 | p Value | |
---|---|---|---|---|
Age | 69 [58–79] | 69 [56–79] | 71 [57–78] | 0.60 |
Sex (M) | 52 (52.3) | 31 (47.7) | 21 (61.8) | 0.20 |
ASA > 2 | 66 (66) | 39 (97.5) | 96.4 (27) | 0.80 |
BMI | 23.6 [20.7–27.6] | 23.4 [20.6–28.1] | 24.0 [20.8–26.7] | 0.90 |
Lung comorbidity | 6 (6.1) | 6 (9) | 0 (0) | 0.07 |
CV comorbidity | 45 (45.5) | 29 (44.6) | 16 (47.1) | 0.80 |
Colon occlusion | 32 (32) | 8 (12.3) | 24 (70.6) | 0.005 |
Small Bowell occlusion | 63 (63.6) | 56 (86.2) | 7 (20.6) | 0.005 |
Previous surgery | 62 (62.6) | 44 (67.7) | 18 (52.9) | 0.15 |
CT sign of ischemia | 12 (12.2) | 12 (18.5) | 0 (0) | 0.005 |
Free peritoneal fluid | 58 (59.2) | 37 (56.9) | 21 (63.6) | 0.52 |
Hemoglobin | 14.1 [12.4–15.4] | 14.4 [12.8–15.4] | 13.05 [11.2–14.7] | 0.01 |
WBC | 10.3 [7.7–14] | 10.5 [7.7–13.4] | 10.2 [7.3–15.1] | 0.72 |
CRP | 1.0 [0.3–5.3] | 1.0 [0.3–4.6] | 1.49 [0.3–5.5] | 0.63 |
Total n = 99 | Benign n = 65 | Cancer n = 34 | p Value | |
---|---|---|---|---|
Operative time | 105 [80–175] | 95 [75–141] | 150 [95–205] | 0.001 |
Intestinal resection | 43 (43.4) | 20 (30.8) | 23 (67.6) | 0.005 |
Stoma | 20 (20.6) | 6 (9.4) | 14 (42.4) | 0.005 |
Major complications | 27 (27.3) | 13 (20) | 14 (41) | 0.03 |
Kidney failure | 4 (4.3) | 3 (4.9) | 1 (3.2) | 0.70 |
Surgical site infection | 5 (5.4) | 2 (3.3) | 3 (9.7) | 0.20 |
Hospital stay length | 10 [7.5–18] | 9 [6–14] | 15.5 [8.7–21] | 0.001 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
OR | CI | p Value | OR | CI | p Value | |
ASA > 2 | 0.60 | 0.03–9.5 | 0.70 | |||
Age | 1.04 | 1.0–1.18 | 0.01 | 1.03 | 0.98–1.08 | 0.19 |
BMI > 25 | 0.08 | 0.34–2.25 | 0.80 | |||
Previous surgery | 0.70 | 0.27–1.60 | 0.37 | |||
Small bowel occlusion | 0.44 | 0.18–1.09 | 0.08 | |||
Colon occlusion | 1.5 | 0.61–3.80 | 0.35 | |||
Cancer-related occlusion | 2.8 | 1.12–6.98 | 0.03 | 4.2 | 1.2–14.0 | 0.02 |
CV comorbidity | 1.42 | 0.58–3.4 | 0.43 | |||
Lung comorbidity | 2.8 | 0.54–15.2 | 0.21 | |||
WBC | 1.13 | 1.03–1.22 | 0.01 | 1.11 | 0.97–1.2 | 0.11 |
CRP | 1.18 | 1.0–1.3 | 0.002 | 1.18 | 1.05–1.3 | 0.003 |
CT free peritoneal fluid | 1.01 | 0.40–2.4 | 0.90 | |||
CT ischemia | 0.86 | 0.21–3.4 | 0.80 | |||
Operative time (>105 min) | 2.23 | 0.88–5.6 | 0.08 | |||
Intestinal resection | 1.3 | 0.53–3.16 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzotta, A.D.; Burti, E.; Causio, F.A.; Orlandi, A.; Martinelli, S.; Longaroni, M.; Pinciroli, T.; Debs, T.; Costa, G.; Miccini, M.; et al. Machine Learning Approaches for the Prediction of Postoperative Major Complications in Patients Undergoing Surgery for Bowel Obstruction. J. Pers. Med. 2024, 14, 1043. https://doi.org/10.3390/jpm14101043
Mazzotta AD, Burti E, Causio FA, Orlandi A, Martinelli S, Longaroni M, Pinciroli T, Debs T, Costa G, Miccini M, et al. Machine Learning Approaches for the Prediction of Postoperative Major Complications in Patients Undergoing Surgery for Bowel Obstruction. Journal of Personalized Medicine. 2024; 14(10):1043. https://doi.org/10.3390/jpm14101043
Chicago/Turabian StyleMazzotta, Alessandro D., Elisa Burti, Francesco Andrea Causio, Alex Orlandi, Silvia Martinelli, Mattia Longaroni, Tiziana Pinciroli, Tarek Debs, Gianluca Costa, Michelangelo Miccini, and et al. 2024. "Machine Learning Approaches for the Prediction of Postoperative Major Complications in Patients Undergoing Surgery for Bowel Obstruction" Journal of Personalized Medicine 14, no. 10: 1043. https://doi.org/10.3390/jpm14101043
APA StyleMazzotta, A. D., Burti, E., Causio, F. A., Orlandi, A., Martinelli, S., Longaroni, M., Pinciroli, T., Debs, T., Costa, G., Miccini, M., Aurello, P., & Petrucciani, N. (2024). Machine Learning Approaches for the Prediction of Postoperative Major Complications in Patients Undergoing Surgery for Bowel Obstruction. Journal of Personalized Medicine, 14(10), 1043. https://doi.org/10.3390/jpm14101043