Personalized Treatment Strategies via Integration of Gene Expression Biomarkers in Molecular Profiling of Laryngeal Cancer
Abstract
:1. Introduction
2. Materials and Methods
Literature Search and Research Question
3. Genetic Landscape of Laryngeal Cancer
4. Epigenetic Factors Influencing Laryngeal Cancer
5. Transcriptomic Profiling and Gene Expression Signatures
6. Biomarkers of Tumor Microenvironment and Immune Response
7. Cancer Stem Cell Markers in Laryngeal Cancer
8. Integration of Molecular Data with Clinicopathological Factors
9. Challenges and Future Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Steuer, C.E.; El-Deiry, M.; Parks, J.R.; Higgins, K.A.; Saba, N.F. An Update on Larynx Cancer. CA Cancer J. Clin. 2017, 67, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Shield, K.D.; Ferlay, J.; Jemal, A.; Sankaranarayanan, R.; Chaturvedi, A.K.; Bray, F.; Soerjomataram, I. The Global Incidence of Lip, Oral Cavity, and Pharyngeal Cancers by Subsite in 2012. CA Cancer J. Clin. 2017, 67, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.M.; Dias, J.; André, T.; Joaquim, A.; Fernandes, R.; Magalhães, J.; Marreiros, L.; Pinto, L.; Ribeiro, L.; Nogueira, M.; et al. Real-World Healthcare Resource Use Associated with Recurrent or Metastatic Head and Neck Cancer Patients Care in Portugal—TRACE Study. Curr. Oncol. 2024, 31, 4270–4283. [Google Scholar] [CrossRef]
- Gormley, M.; Creaney, G.; Schache, A.; Ingarfield, K.; Conway, D.I. Reviewing the Epidemiology of Head and Neck Cancer: Definitions, Trends and Risk Factors. Br. Dent. J. 2022, 233, 780–786. [Google Scholar] [CrossRef]
- Liberale, C.; Soloperto, D.; Marchioni, A.; Monzani, D.; Sacchetto, L. Updates on Larynx Cancer: Risk Factors and Oncogenesis. Int. J. Mol. Sci. 2023, 24, 12913. [Google Scholar] [CrossRef]
- Huang, J.; Chan, S.C.; Ko, S.; Lok, V.; Zhang, L.; Lin, X.; Lucero-Prisno, D.E.; Xu, W.; Zheng, Z.-J.; Elcarte, E.; et al. Updated Disease Distributions, Risk Factors, and Trends of Laryngeal Cancer: A Global Analysis of Cancer Registries. Int. J. Surg. 2024, 110, 810–819. [Google Scholar] [CrossRef]
- Patel, T.D.; Echanique, K.A.; Yip, C.; Hsueh, W.D.; Baredes, S.; Park, R.C.W.; Eloy, J.A. Supraglottic Squamous Cell Carcinoma: A Population-Based Study of 22,675 Cases. Laryngoscope 2019, 129, 1822–1827. [Google Scholar] [CrossRef]
- Nikkilä, R.; Haapaniemi, A.; Carpén, T.; Pukkala, E.; Mäkitie, A. Laryngeal Cancer Relative Survival Trends from 1972 to 2021 in the Nordic Countries. Acta Oncol. 2024, 63, 612–619. [Google Scholar] [CrossRef]
- Obid, R.; Redlich, M.; Tomeh, C. The Treatment of Laryngeal Cancer. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 1–11. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Fountzilas, E.; Nikanjam, M.; Kurzrock, R. Review of Precision Cancer Medicine: Evolution of the Treatment Paradigm. Cancer Treat. Rev. 2020, 86, 102019. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.E.; Kulkarni, A.; Birkeland, A.C.; Kafelghazal, J.; Eisenberg, J.; Jewell, B.M.; Ludwig, M.L.; Spector, M.E.; Jiang, H.; Carey, T.E.; et al. The Molecular Landscape of the University of Michigan Laryngeal Squamous Cell Carcinoma Cell Line Panel. Head Neck 2019, 41, 3114–3124. [Google Scholar] [CrossRef] [PubMed]
- Garralda, E.; Dienstmann, R.; Piris-Giménez, A.; Braña, I.; Rodon, J.; Tabernero, J. New Clinical Trial Designs in the Era of Precision Medicine. Mol. Oncol. 2019, 13, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, N.; Wen, Y.; Wen, J. Head and Neck Cancer: Pathogenesis and Targeted Therapy. MedComm 2024, 5, e702. [Google Scholar] [CrossRef] [PubMed]
- Popov, T.M.; Giragosyan, S.; Petkova, V.; Stancheva, G.; Marinov, T.; Belitova, M.; Rangachev, J.; Popova, D.; Kaneva, R.P. Proangiogenic Signature in Advanced Laryngeal Carcinoma after microRNA Expression Profiling. Mol. Biol. Rep. 2020, 47, 5651–5655. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.; Liu, S.; He, Y.; Lyu, L.; Jiang, L. Clinical Value Screening, Prognostic Significance, and Key Gene Identification of TrkB in Laryngeal Carcinoma. Dis. Markers 2022, 2022, 1354005. [Google Scholar] [CrossRef]
- Bayır, Ö.; Aşık, M.; Saylam, G.; Pınarlı, F.; Tatar, E.; Han, Ü.; Şїmşek, E.; Korkmaz, M. Differentially Expressed Genes Related to Lymph Node Metastasis in Advanced Laryngeal Squamous Cell Cancers. Oncol. Lett. 2022, 24, 409. [Google Scholar] [CrossRef]
- Mes, S.W.; Leemans, C.R.; Brakenhoff, R.H. Applications of Molecular Diagnostics for Personalized Treatment of Head and Neck Cancer: State of the Art. Expert Rev. Mol. Diagn. 2016, 16, 205–221. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Shaw, A.T. Tumour Heterogeneity and Resistance to Cancer Therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef]
- Kamps, R.; Brandão, R.; Bosch, B.; Paulussen, A.; Xanthoulea, S.; Blok, M.; Romano, A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int. J. Mol. Sci. 2017, 18, 308. [Google Scholar] [CrossRef]
- Kobayashi, K.; Yoshimoto, S.; Ando, M.; Matsumoto, F.; Murakami, N.; Omura, G.; Honma, Y.; Matsumoto, Y.; Ikeda, A.; Sakai, A.; et al. Full-Coverage TP53 Deep Sequencing of Recurrent Head and Neck Squamous Cell Carcinoma Facilitates Prognostic Assessment after Recurrence. Oral Oncol. 2021, 113, 105091. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Mateos, J.; Pérez-García, J.; Seijas-Tamayo, R.; Mesía, R.; Rubió-Casadevall, J.; García-Girón, C.; Iglesias, L.; Carral Maseda, A.; Adansa Klain, J.C.; Taberna, M.; et al. Oncogenic Driver Mutations Predict Outcome in a Cohort of Head and Neck Squamous Cell Carcinoma (HNSCC) Patients within a Clinical Trial. Sci. Rep. 2020, 10, 16634. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Zhu, Y.; Wang, H.; Gong, X.; Yue, Z.; Lv, A.; Zhou, X. Network Pharmacology Reveals the Potential Mechanism of Baiying Qinghou Decoction in Treating Laryngeal Squamous Cell Carcinoma. Aging 2021, 13, 26003–26021. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Chen, H.; Zhang, L.; Chen, D.; Li, W.; Chen, D.; Xu, J.; Zhou, H.; Zhao, L.; Song, Y.; et al. NOTCH1 Mutation Associates with Impaired Immune Response and Decreased Relapse-Free Survival in Patients with Resected T1-2N0 Laryngeal Cancer. Front. Immunol. 2022, 13, 920253. [Google Scholar] [CrossRef]
- Moura, A.C.D.; Assad, D.X.; Amorim Dos Santos, J.; Porto De Toledo, I.; Barra, G.B.; Castilho, R.M.; Squarize, C.H.; Guerra, E.N.S. Worldwide Prevalence of PI3K-AKT-mTOR Pathway Mutations in Head and Neck Cancer: A Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2021, 160, 103284. [Google Scholar] [CrossRef]
- Janku, F.; Yap, T.A.; Meric-Bernstam, F. Targeting the PI3K Pathway in Cancer: Are We Making Headway? Nat. Rev. Clin. Oncol. 2018, 15, 273–291. [Google Scholar] [CrossRef]
- Smith, J.D.; Birkeland, A.C.; Rosko, A.J.; Hoesli, R.C.; Foltin, S.K.; Swiecicki, P.; Mierzwa, M.; Chinn, S.B.; Shuman, A.G.; Malloy, K.M.; et al. Mutational Profiles of Persistent/Recurrent Laryngeal Squamous Cell Carcinoma. Head Neck 2019, 41, 423–428. [Google Scholar] [CrossRef]
- Shirima, C.; Bleotu, C.; Spandidos, D.; El-Naggar, A.; Gradisteanu Pircalabioru, G.; Michalopoulos, I. Epithelial-derived Head and Neck Squamous Tumourigenesis (Review). Oncol. Rep. 2024, 52, 141. [Google Scholar] [CrossRef]
- Kaur, G.; Phogat, D.; Manu, V.; Salla, M.R.; Magalhães, A.A.B.; Guimarães, T.M.H.; Pereira, C.E. Study of EGFR Mutations in Head and Neck Squamous Cell Carcinomas. Autopsy Case Rep. 2021, 11, e2021251. [Google Scholar] [CrossRef]
- Mastronikolis, N.; Ragos, V.; Kyrodimos, E.; Chrysovergis, A.; Papanikolaou, V.; Mastronikolis, S.; Stamatelopoulos, A.; Tsiambas, E. Mechanisms of C-Myc Oncogenic Activity in Head and Neck Squamous Cell Carcinoma. J. BUON Off. J. Balk. Union Oncol. 2019, 24, 2242–2244. [Google Scholar]
- Leemans, C.R.; Snijders, P.J.F.; Brakenhoff, R.H. The Molecular Landscape of Head and Neck Cancer. Nat. Rev. Cancer 2018, 18, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.-Y.; Ko, Y.-C.; Chen, Y.-L.; Lin, S.-F. The Way to Malignant Transformation: Can Epigenetic Alterations Be Used to Diagnose Early-Stage Head and Neck Cancer? Biomedicines 2023, 11, 1717. [Google Scholar] [CrossRef] [PubMed]
- Politi, A.; Tsiambas, E.; Mastronikolis, N.S.; Peschos, D.; Asproudis, I.; Kyrodimos, E.; Armata, I.E.; Chrysovergis, A.; Asimakopoulos, A.; Papanikolaou, V.S.; et al. Combined EGFR/ALK Expression Analysis in Laryngeal Squamous Cell Carcinoma. In Vivo 2019, 33, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Marijić, B.; Braut, T.; Babarović, E.; Krstulja, M.; Maržić, D.; Avirović, M.; Kujundžić, M.; Hadžisejdić, I. Nuclear EGFR Expression Is Associated With Poor Survival in Laryngeal Carcinoma. Appl. Immunohistochem. Mol. Morphol. 2021, 29, 576–584. [Google Scholar] [CrossRef] [PubMed]
- South, A.P.; Den Breems, N.Y.; Richa, T.; Nwagu, U.; Zhan, T.; Poojan, S.; Martinez-Outschoorn, U.; Johnson, J.M.; Luginbuhl, A.J.; Curry, J.M. Mutation Signature Analysis Identifies Increased Mutation Caused by Tobacco Smoke Associated DNA Adducts in Larynx Squamous Cell Carcinoma Compared with Oral Cavity and Oropharynx. Sci. Rep. 2019, 9, 19256. [Google Scholar] [CrossRef]
- Burcher, K.M.; Lantz, J.W.; Gavrila, E.; Abreu, A.; Burcher, J.T.; Faucheux, A.T.; Xie, A.; Jackson, C.; Song, A.H.; Hughes, R.T.; et al. Relationship between Tumor Mutational Burden, PD-L1, Patient Characteristics, and Response to Immune Checkpoint Inhibitors in Head and Neck Squamous Cell Carcinoma. Cancers 2021, 13, 5733. [Google Scholar] [CrossRef]
- Hsueh, C.; Lau, H.; Huang, Q.; Gong, H.; Sun, J.; Cao, P.; Hu, C.; Zhang, M.; Tao, L.; Zhou, L. Fusobacterium Nucleatum Impairs DNA Mismatch Repair and Stability in Patients with Squamous Cell Carcinoma of the Head and Neck. Cancer 2022, 128, 3170–3184. [Google Scholar] [CrossRef]
- Deneuve, S.; Fervers, B.; Senkin, S.; Bouaoun, L.; Pérol, O.; Chavanel, B.; Lu, L.; Coste, I.; Renno, T.; Zavadil, J.; et al. Molecular Landscapes of Oral Cancers of Unknown Etiology. medRxiv 2023. [Google Scholar] [CrossRef]
- Yerukala Sathipati, S.; Ho, S.-Y. Survival Associated miRNA Signature in Patients with Head and Neck Carcinomas. Heliyon 2023, 9, e17218. [Google Scholar] [CrossRef]
- Falco, M.; Tammaro, C.; Cossu, A.M.; Takeuchi, T.; Tufano, R.; Ceccarelli, M.; Scafuro, G.; Zappavigna, S.; Grimaldi, A.; Scrima, M.; et al. Identification and Bioinformatic Characterization of a Serum miRNA Signature for Early Detection of Laryngeal Squamous Cell Carcinoma. J. Transl. Med. 2024, 22, 647. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.Q.M. Head and Neck Cancer. N. Engl. J. Med. 2020, 382, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.L.; Blumenschein, G.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- McGranahan, N.; Swanton, C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 2017, 168, 613–628. [Google Scholar] [CrossRef]
- Liouta, G.; Adamaki, M.; Tsintarakis, A.; Zoumpourlis, P.; Liouta, A.; Agelaki, S.; Zoumpourlis, V. DNA Methylation as a Diagnostic, Prognostic, and Predictive Biomarker in Head and Neck Cancer. Int. J. Mol. Sci. 2023, 24, 2996. [Google Scholar] [CrossRef]
- Pierini, S.; Jordanov, S.H.; Mitkova, A.V.; Chalakov, I.J.; Melnicharov, M.B.; Kunev, K.V.; Mitev, V.I.; Kaneva, R.P.; Goranova, T.E. Promoter Hypermethylation of CDKN2A, MGMT, MLH1, and DAPK Genes in Laryngeal Squamous Cell Carcinoma and Their Associations with Clinical Profiles of the Patients. Head Neck 2014, 36, 1103–1108. [Google Scholar] [CrossRef]
- Kinslow, C.J.; Rae, A.I.; Taparra, K.; Kumar, P.; Siegelin, M.D.; Grinband, J.; Gill, B.J.A.; McKhann, G.M.; Sisti, M.B.; Bruce, J.N.; et al. MGMT Promoter Methylation Predicts Overall Survival after Chemotherapy for 1p/19q-Codeleted Gliomas. Clin. Cancer Res. 2023, 29, 4399–4407. [Google Scholar] [CrossRef]
- Herrlinger, U.; Tzaridis, T.; Mack, F.; Steinbach, J.P.; Schlegel, U.; Sabel, M.; Hau, P.; Kortmann, R.-D.; Krex, D.; Grauer, O.; et al. Lomustine-Temozolomide Combination Therapy versus Standard Temozolomide Therapy in Patients with Newly Diagnosed Glioblastoma with Methylated MGMT Promoter (CeTeG/NOA–09): A Randomised, Open-Label, Phase 3 Trial. Lancet 2019, 393, 678–688. [Google Scholar] [CrossRef]
- Falco, M.; Tammaro, C.; Takeuchi, T.; Cossu, A.M.; Scafuro, G.; Zappavigna, S.; Itro, A.; Addeo, R.; Scrima, M.; Lombardi, A.; et al. Overview on Molecular Biomarkers for Laryngeal Cancer: Looking for New Answers to an Old Problem. Cancers 2022, 14, 1716. [Google Scholar] [CrossRef]
- Soares-Lima, S.C.; Mehanna, H.; Camuzi, D.; De Souza-Santos, P.T.; Simão, T.D.A.; Nicolau-Neto, P.; Almeida Lopes, M.D.S.; Cuenin, C.; Talukdar, F.R.; Batis, N.; et al. Upper Aerodigestive Tract Squamous Cell Carcinomas Show Distinct Overall DNA Methylation Profiles and Different Molecular Mechanisms behind WNT Signaling Disruption. Cancers 2021, 13, 3014. [Google Scholar] [CrossRef]
- Neganova, M.E.; Klochkov, S.G.; Aleksandrova, Y.R.; Aliev, G. Histone Modifications in Epigenetic Regulation of Cancer: Perspectives and Achieved Progress. Semin. Cancer Biol. 2022, 83, 452–471. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Sun, Y.; Yue, S.; Wang, Y.; Lu, F. Histone Deacetylase Inhibitors in Cancer Therapy. Curr. Top. Med. Chem. 2019, 18, 2420–2428. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, W.; Xu, L.; Chen, X.; Zhao, R.; Guo, Y.; Ge, J.; Yang, Z.; Li, L.; Zhang, J.; et al. Chidamide, a Novel Histone Deacetylase Inhibitor, Inhibits Laryngeal Cancer Progression in Vitro and in Vivo. Int. J. Biochem. Cell Biol. 2023, 158, 106398. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, H.-T.; Ji, J.-F.; Wang, Z.-Y.; Shi, T.; Wu, M.-H.; Yu, P.-J. Epigenetic Network of EZH2/SFRP1/Wnt in the Epithelial-Mesenchymal Transition of Laryngeal Carcinoma Cells. Neoplasma 2022, 69, 680–690. [Google Scholar] [CrossRef]
- Sannigrahi, M.; Sharma, R.; Panda, N.; Khullar, M. Role of Non-coding RNA s in Head and Neck Squamous Cell Carcinoma: A Narrative Review. Oral Dis. 2018, 24, 1417–1427. [Google Scholar] [CrossRef]
- Hu, A.; Huang, J.-J.; Xu, W.-H.; Jin, X.-J.; Li, J.-P.; Tang, Y.-J.; Huang, X.-F.; Cui, H.-J.; Sun, G.-B. miR-21 and miR-375 microRNAs as Candidate Diagnostic Biomarkers in Squamous Cell Carcinoma of the Larynx: Association with Patient Survival. Am. J. Transl. Res. 2014, 6, 604–613. [Google Scholar]
- Luo, J.; Wu, J.; Li, Z.; Qin, H.; Wang, B.; Wong, T.-S.; Yang, W.; Fu, Q.-L.; Lei, W. miR-375 Suppresses IGF1R Expression and Contributes to Inhibition of Cell Progression in Laryngeal Squamous Cell Carcinoma. BioMed Res. Int. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Schmitt, A.M.; Chang, H.Y. Long Noncoding RNAs in Cancer Pathways. Cancer Cell 2016, 29, 452–463. [Google Scholar] [CrossRef]
- Lu, B.; Li, X.; Miao, W.; Liu, Q.; Li, R.; Cui, C.; Gao, Q.; Lian, R. LNCRNA ZFAS1 Promotes Laryngeal Cancer Progression through RBFOX2-mediated MENA Alternative Splicing. Environ. Toxicol. 2023, 38, 522–533. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Zhang, X.; Deng, J.; Zhang, J.; Xing, H. lncRNA DLX6-AS1 Promotes Proliferation of Laryngeal Cancer Cells by Targeting the miR-26a/TRPC3 Pathway. Cancer Manag. Res. 2020, 12, 2685–2695. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, Y.; Sun, H. Mechanism of miR-340-5p in Laryngeal Cancer Cell Proliferation and Invasion through the lncRNA NEAT1/MMP11 Axis. Pathol. Res. Pract. 2022, 236, 153912. [Google Scholar] [CrossRef] [PubMed]
- Gruber, J.J.; Chen, J.; Geller, B.; Jäger, N.; Lipchik, A.M.; Wang, G.; Kurian, A.W.; Ford, J.M.; Snyder, M.P. Chromatin Remodeling in Response to BRCA2-Crisis. Cell Rep. 2019, 28, 2182–2193.e6. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, Z.; Ding, Y.; Wang, L.; Wang, S.; Wang, H.; Qin, Y. DNA Methylation: From Cancer Biology to Clinical Perspectives. Front. Biosci.-Landmark 2022, 27, 326. [Google Scholar] [CrossRef] [PubMed]
- Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone Deacetylase Inhibitors as Anticancer Drugs. Int. J. Mol. Sci. 2017, 18, 1414. [Google Scholar] [CrossRef]
- Meng, W.; Cui, W.; Zhao, L.; Chi, W.; Cao, H.; Wang, B. Aberrant Methylation and Downregulation of ZNF667-AS1 and ZNF667 Promote the Malignant Progression of Laryngeal Squamous Cell Carcinoma. J. Biomed. Sci. 2019, 26, 13. [Google Scholar] [CrossRef]
- Ekmekci, C.G.; Coskunpinar, E.; Avci, H.; Farooqi, A.A.; Orhan, K.S.; Akbas, F. Integrative Analysis of mRNA and microRNA Expression Profiles in Laryngeal Squamous Cell Carcinoma. J. Cell. Biochem. 2019, 120, 3415–3422. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Yang, Y.-F.; Shiue, Y.-L. Multi-Omics Analyses to Identify FCGBP as a Potential Predictor in Head and Neck Squamous Cell Carcinoma. Diagnostics 2022, 12, 1178. [Google Scholar] [CrossRef]
- Zhang, G.; Fan, E.; Yue, G.; Zhong, Q.; Shuai, Y.; Wu, M.; Feng, G.; Chen, Q.; Gou, X. Five Genes as a Novel Signature for Predicting the Prognosis of Patients with Laryngeal Cancer. J. Cell. Biochem. 2020, 121, 3804–3813. [Google Scholar] [CrossRef]
- Zang, Y.; Li, J.; Wan, B.; Tai, Y. circRNA circ-CCND1 Promotes the Proliferation of Laryngeal Squamous Cell Carcinoma through Elevating CCND1 Expression via Interacting with HuR and miR-646. J. Cell. Mol. Med. 2020, 24, 2423–2433. [Google Scholar] [CrossRef]
- Kowalczyk, M.M.; Barańska, M.; Fendler, W.; Borkowska, E.M.; Kobos, J.; Borowiec, M.; Pietruszewska, W. G870A Polymorphic Variants of CCND1 Gene and Cyclin D1 Protein Expression as Prognostic Markers in Laryngeal Lesions. Diagnostics 2022, 12, 1059. [Google Scholar] [CrossRef]
- Ren, K.; Wang, B.; Qi, Q. Development of a New EGFR Antibody Antagonist Which Exhibits Potential Biological Effects against Laryngeal Cancer. Ann. Transl. Med. 2021, 9, 964. [Google Scholar] [CrossRef] [PubMed]
- Kontić, M.; Čolović, Z.; Paladin, I.; Gabelica, M.; Barić, A.; Pešutić-Pisac, V. Association between EGFR Expression and Clinical Outcome of Laryngeal HPV Squamous Cell Carcinoma. Acta Otolaryngol. 2019, 139, 913–917. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Network. Comprehensive Genomic Characterization of Head and Neck Squamous Cell Carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Naumov, S.S.; Kulbakin, D.E.; Krakhmal, N.V.; Vtorushin, S.V. Molecular and Biological Factors in the Prognosis of Head and Neck Squamous Cell Cancer. Mol. Biol. Rep. 2023, 50, 7839–7849. [Google Scholar] [CrossRef]
- Zaryouh, H.; De Pauw, I.; Baysal, H.; Peeters, M.; Vermorken, J.B.; Lardon, F.; Wouters, A. Recent Insights in the PI3K/Akt Pathway as a Promising Therapeutic Target in Combination with EGFR-targeting Agents to Treat Head and Neck Squamous Cell Carcinoma. Med. Res. Rev. 2022, 42, 112–155. [Google Scholar] [CrossRef]
- Novoplansky, O.; Shnerb, A.B.; Marripati, D.; Jagadeeshan, S.; Abu Shareb, R.; Conde-López, C.; Zorea, J.; Prasad, M.; Ben Lulu, T.; Yegodayev, K.M.; et al. Activation of the EGFR/PI3K/AKT Pathway Limits the Efficacy of Trametinib Treatment in Head and Neck Cancer. Mol. Oncol. 2023, 17, 2618–2636. [Google Scholar] [CrossRef]
- Zhang, F.; Cao, H. MicroRNA-143-3p Suppresses Cell Growth and Invasion in Laryngeal Squamous Cell Carcinoma via Targeting the k-Ras/Raf/MEK/ERK Signaling Pathway. Int. J. Oncol. 2018, 54, 689–701. [Google Scholar] [CrossRef]
- Franz, L.; Nicolè, L.; Frigo, A.C.; Ottaviano, G.; Gaudioso, P.; Saccardo, T.; Visconti, F.; Cappellesso, R.; Blandamura, S.; Fassina, A.; et al. Epithelial-to-Mesenchymal Transition and Neoangiogenesis in Laryngeal Squamous Cell Carcinoma. Cancers 2021, 13, 3339. [Google Scholar] [CrossRef]
- Chen, L.; Sun, D.-Z.; Fu, Y.-G.; Yang, P.-Z.; Lv, H.-Q.; Gao, Y.; Zhang, X.-Y. Upregulation of microRNA-141 Suppresses Epithelial-Mesenchymal Transition and Lymph Node Metastasis in Laryngeal Cancer through HOXC6-Dependent TGF-β Signaling Pathway. Cell. Signal. 2020, 66, 109444. [Google Scholar] [CrossRef]
- Song, D.; Wang, L.; Su, K.; Wu, H.; Li, J. WISP1 Aggravates Cell Metastatic Potential by Abrogating TGF- β -Smad2/3-Dependent Epithelial-to-Mesenchymal Transition in Laryngeal Squamous Cell Carcinoma. Exp. Biol. Med. 2021, 246, 1244–1252. [Google Scholar] [CrossRef]
- Marioni, G.; Nicolè, L.; Cappellesso, R.; Marchese-Ragona, R.; Fasanaro, E.; Di Carlo, R.; La Torre, F.B.; Nardello, E.; Sanavia, T.; Ottaviano, G.; et al. β-Arrestin-1 Expression and Epithelial-to-Mesenchymal Transition in Laryngeal Carcinoma. Int. J. Biol. Markers 2019, 34, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Hou, J.; Wang, J.; Wang, J.; Gao, J.; Bai, Y. Brusatol Inhibits Laryngeal Cancer Cell Proliferation and Metastasis via Abrogating JAK2/STAT3 Signaling Mediated Epithelial-Mesenchymal Transition. Life Sci. 2021, 284, 119907. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhang, C.; Chen, D.; Chen, S.; Zheng, H. MicroRNA-98-HMGA2-POSTN Signal Pathway Reverses Epithelial-to-Mesenchymal Transition in Laryngeal Squamous Cell Carcinoma. Biomed. Pharmacother. 2019, 117, 108998. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yang, Z.; An, R.; Zhang, J.; Zhao, R.; Li, W.; Xu, L.; Sun, Y.; Liu, M.; Tian, L. lncRNA IGKJ2-MALLP2 Suppresses LSCC Proliferation, Migration, Invasion, and Angiogenesis by Sponging miR-1911-3p/P21. Cancer Sci. 2020, 111, 3245–3257. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, Q. Characterization of Macrophages in Head and Neck Squamous Cell Carcinoma and Development of MRG-Based Risk Signature. Sci. Rep. 2024, 14, 9914. [Google Scholar] [CrossRef]
- Long, Y.; Wu, Y.; Peng, J.; Song, J.; Li, N. Pyroptosis-Related Gene Signatures Are Associated with Prognosis and Tumor Microenvironment Infiltration in Head and Neck Cancer. Health Sci. Rep. 2023, 6, e1622. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Wang, J.; Ji, W. Development and Validation of an Immune-Related Signature for the Prediction of Recurrence Risk of Patients With Laryngeal Cancer. Front. Oncol. 2021, 11, 683915. [Google Scholar] [CrossRef]
- Smyth, E.C.; Nyamundanda, G.; Cunningham, D.; Fontana, E.; Ragulan, C.; Tan, I.B.; Lin, S.J.; Wotherspoon, A.; Nankivell, M.; Fassan, M.; et al. A Seven-Gene Signature Assay Improves Prognostic Risk Stratification of Perioperative Chemotherapy Treated Gastroesophageal Cancer Patients from the MAGIC Trial. Ann. Oncol. 2018, 29, 2356–2362. [Google Scholar] [CrossRef]
- Huang, C.; Liang, Y.; Dong, Y.; Huang, L.; Li, A.; Du, R.; Huang, H. Novel Prognostic Matrisome-Related Gene Signature of Head and Neck Squamous Cell Carcinoma. Front. Cell Dev. Biol. 2022, 10, 884590. [Google Scholar] [CrossRef]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-γ–Related mRNA Profile Predicts Clinical Response to PD-1 Blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
- Mahajan, A.; Kania, V.; Agarwal, U.; Ashtekar, R.; Shukla, S.; Patil, V.M.; Noronha, V.; Joshi, A.; Menon, N.; Kaushal, R.K.; et al. Deep-Learning-Based Predictive Imaging Biomarker Model for EGFR Mutation Status in Non-Small Cell Lung Cancer from CT Imaging. Cancers 2024, 16, 1130. [Google Scholar] [CrossRef] [PubMed]
- Puram, S.V.; Tirosh, I.; Parikh, A.S.; Patel, A.P.; Yizhak, K.; Gillespie, S.; Rodman, C.; Luo, C.L.; Mroz, E.A.; Emerick, K.S.; et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell 2017, 171, 1611–1624.e24. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, S.; Lu, Y.; Xu, Z.; Fu, W.; Yan, W. Single-Cell Transcriptomic Analyses of Tumor Microenvironment and Molecular Reprograming Landscape of Metastatic Laryngeal Squamous Cell Carcinoma. Commun. Biol. 2024, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-Omics Approaches to Disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Franz, L.; Alessandrini, L.; Calvanese, L.; Crosetta, G.; Frigo, A.C.; Marioni, G. Angiogenesis, Programmed Death Ligand 1 (PD-L1) and Immune Microenvironment Association in Laryngeal Carcinoma. Pathology 2021, 53, 844–851. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, J.; Wang, L.; Li, Z.; Wang, L.; Li, Z. Prognostic and Clinicopathological Significance of PD-L1 in Patients With Bladder Cancer: A Meta-Analysis. Front. Pharmacol. 2019, 10, 962. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, F.; Liu, L. Prognostic Significance of PD-L1 in Solid Tumor: An Updated Meta-Analysis. Medicine 2017, 96, e6369. [Google Scholar] [CrossRef]
- De Meulenaere, A.; Vermassen, T.; Aspeslagh, S.; Vandecasteele, K.; Rottey, S.; Ferdinande, L. TILs in Head and Neck Cancer: Ready for Clinical Implementation and Why (Not)? Head Neck Pathol. 2017, 11, 354–363. [Google Scholar] [CrossRef]
- Gkegka, A.G.; Koukourakis, M.I.; Katotomichelakis, M.; Giatromanolaki, A. Cancer Microenvironment Defines Tumor-Infiltrating Lymphocyte Density and Tertiary Lymphoid Structure Formation in Laryngeal Cancer. Head Neck Pathol. 2022, 17, 422–432. [Google Scholar] [CrossRef]
- Nguyen, N.; Bellile, E.; Thomas, D.; McHugh, J.; Rozek, L.; Virani, S.; Peterson, L.; Carey, T.E.; Walline, H.; Moyer, J.; et al. Tumor Infiltrating Lymphocytes and Survival in Patients with Head and Neck Squamous Cell Carcinoma: Tumor Infiltrating Lymphocytes. Head Neck 2016, 38, 1074–1084. [Google Scholar] [CrossRef]
- Xirou, V.; Moutafi, M.; Bai, Y.; Nwe Aung, T.; Burela, S.; Liu, M.; Kimple, R.J.; Shabbir Ahmed, F.; Schultz, B.; Flieder, D.; et al. An Algorithm for Standardization of Tumor Infiltrating Lymphocyte Evaluation in Head and Neck Cancers. Oral Oncol. 2024, 152, 106750. [Google Scholar] [CrossRef] [PubMed]
- Tevetoğlu, F.; Çomunoğlu, N.; Yener, H.M. The Impact of the Tumor Immune Microenvironment and Tumor-Infiltrating Lymphocyte Subgroups on Laryngeal Cancer Prognosis. Sci. Prog. 2024, 107, 00368504241266087. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Yin, X.; Bian, Y. Oxaliplatin Induces Immunogenic Cell Death in Human and Murine Laryngeal Cancer. J. Oncol. 2022, 2022, 3760766. [Google Scholar] [CrossRef] [PubMed]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Hanna, G.J.; Lizotte, P.; Cavanaugh, M.; Kuo, F.C.; Shivdasani, P.; Frieden, A.; Chau, N.G.; Schoenfeld, J.D.; Lorch, J.H.; Uppaluri, R.; et al. Frameshift Events Predict Anti–PD-1/L1 Response in Head and Neck Cancer. JCI Insight 2018, 3, e98811. [Google Scholar] [CrossRef]
- Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; et al. Pan-Tumor Genomic Biomarkers for PD-1 Checkpoint Blockade–Based Immunotherapy. Science 2018, 362, eaar3593. [Google Scholar] [CrossRef]
- Cillo, A.R.; Kürten, C.H.L.; Tabib, T.; Qi, Z.; Onkar, S.; Wang, T.; Liu, A.; Duvvuri, U.; Kim, S.; Soose, R.J.; et al. Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer. Immunity 2020, 52, 183–199.e9. [Google Scholar] [CrossRef]
- Li, T.; Tian, L.; Cao, J.; Liu, M. Cancer-Associated Fibroblasts Secret Extracellular Vesicles to Support Cell Proliferation and Epithelial-Mesenchymal Transition in Laryngeal Squamous Cell Carcinoma. Mol. Cell. Probes 2023, 72, 101934. [Google Scholar] [CrossRef]
- Kumar, A.T.; Knops, A.; Swendseid, B.; Martinez-Outschoom, U.; Harshyne, L.; Philp, N.; Rodeck, U.; Luginbuhl, A.; Cognetti, D.; Johnson, J.; et al. Prognostic Significance of Tumor-Associated Macrophage Content in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis. Front. Oncol. 2019, 9, 656. [Google Scholar] [CrossRef]
- Kumar, H.A.; Desai, A.; Mohiddin, G.; Mishra, P.; Bhattacharyya, A.; Nishat, R. Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma. J. Pharm. Bioallied Sci. 2023, 15, S826–S830. [Google Scholar] [CrossRef]
- Maroni, G.; Krishnan, I.; Alfieri, R.; Maymi, V.A.; Pandell, N.; Csizmadia, E.; Zhang, J.; Weetall, M.; Branstrom, A.; Braccini, G.; et al. Tumor Microenvironment Landscapes Supporting EGFR-Mutant NSCLC Are Modulated at the Single-Cell Interaction Level by Unesbulin Treatment. Cancer Res. Commun. 2024, 4, 919–937. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Liu, X.; Li, T.; Zhang, Y.; Zhao, X.; Sun, W.; Li, Z. Silencing PLOD2 Attenuates Cancer Stem Cell-like Characteristics and Cisplatin-Resistant through Integrin Β1 in Laryngeal Cancer. Transl. Oncol. 2022, 22, 101460. [Google Scholar] [CrossRef] [PubMed]
- Puzzo, L.; Bianco, M.R.; Salvatorelli, L.; Tinnirello, G.; Occhiuzzi, F.; Latella, D.; Allegra, E. CD44, PDL1, and ATG7 Expression in Laryngeal Squamous Cell Carcinomas with Tissue Microarray (TMA) Technique: Evaluation of the Potential Prognostic and Predictive Roles. Cancers 2023, 15, 2461. [Google Scholar] [CrossRef] [PubMed]
- Dejaco, D.; Steinbichler, T.; Schartinger, V.H.; Fischer, N.; Anegg, M.; Dudas, J.; Posch, A.; Widmann, G.; Riechelmann, H. Specific Growth Rates Calculated from CTs in Patients with Head and Neck Squamous Cell Carcinoma: A Retrospective Study Performed in Austria. BMJ Open 2019, 9, e025359. [Google Scholar] [CrossRef]
- Xanthis, V.; Mantso, T.; Dimtsi, A.; Pappa, A.; Fadouloglou, V.E. Human Aldehyde Dehydrogenases: A Superfamily of Similar Yet Different Proteins Highly Related to Cancer. Cancers 2023, 15, 4419. [Google Scholar] [CrossRef]
- Szafarowski, T.; Sierdziński, J.; Ludwig, N.; Głuszko, A.; Filipowska, A.; Szczepański, M.J. Assessment of Cancer Stem Cell Marker Expression in Primary Head and Neck Squamous Cell Carcinoma Shows Prognostic Value for Aldehyde Dehydrogenase (ALDH1A1). Eur. J. Pharmacol. 2020, 867, 172837. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Niu, M.; Shi, Y.; Liu, H.; Yang, D.; Li, F.; Lu, Y.; Bo, Y.; Zhang, R.; et al. Whole-Transcriptome Analysis of CD133+CD144+ Cancer Stem Cells Derived from Human Laryngeal Squamous Cell Carcinoma Cells. Cell. Physiol. Biochem. 2018, 47, 1696–1710. [Google Scholar] [CrossRef]
- Yuan, L.; Tian, X.; Zhang, Y.; Huang, X.; Li, Q.; Li, W.; Li, S. LINC00319 Promotes Cancer Stem Cell-like Properties in Laryngeal Squamous Cell Carcinoma via E2F1-Mediated Upregulation of HMGB3. Exp. Mol. Med. 2021, 53, 1218–1228. [Google Scholar] [CrossRef]
- Qiu, H.; Wang, H.; Che, N.; Li, D.; Mao, Y.; Zeng, Q.; Ge, R. Identification and Characterization of CD133pos Subpopulation Cells From a Human Laryngeal Cancer Cell Line. Med. Sci. Monit. 2016, 22, 1146–1151. [Google Scholar] [CrossRef]
- Granda-Díaz, R.; Menéndez, S.T.; Pedregal Mallo, D.; Hermida-Prado, F.; Rodríguez, R.; Suárez-Fernández, L.; Vallina, A.; Sánchez-Canteli, M.; Rodríguez, A.; Fernández-García, M.S.; et al. The Novel Role of SOX2 as an Early Predictor of Cancer Risk in Patients with Laryngeal Precancerous Lesions. Cancers 2019, 11, 286. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Z.; Yu, G. microRNA-139-3p Inhibits Malignant Behaviors of Laryngeal Cancer Cells via the KDM5B/SOX2 Axis and the Wnt/β-Catenin Pathway. Cancer Manag. Res. 2020, 12, 9197–9209. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Yuan, S.; Cao, J. The Deubiquitinase USP34 Stabilizes SOX2 and Induces Cell Survival and Drug Resistance in Laryngeal Squamous Cell Carcinoma. Kaohsiung J. Med. Sci. 2020, 36, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Herzog, A.E.; Somayaji, R.; Nör, J.E. Bmi-1: A Master Regulator of Head and Neck Cancer Stemness. Front. Oral Health 2023, 4, 1080255. [Google Scholar] [CrossRef] [PubMed]
- Duz, M.B.; Karatas, O.F. Expression Profile of Stem Cell Markers and ABC Transporters in 5-Fluorouracil Resistant Hep-2 Cells. Mol. Biol. Rep. 2020, 47, 5431–5438. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Jin, B.; Li, D.-W.; Shen, B.; Cong, N.; Zhang, T.-Z.; Dong, P. ABCG2 Regulated by MAPK Pathways Is Associated with Cancer Progression in Laryngeal Squamous Cell Carcinoma. Am. J. Cancer Res. 2014, 4, 698–709. [Google Scholar]
- Fernandes, G.M.D.M.; Galbiatti-Dias, A.L.S.; Ferreira, L.A.M.; Serafim Junior, V.; Rodrigues-Fleming, G.H.; de Oliveira-Cucolo, J.G.; Biselli-Chicote, P.M.; Kawasaki-Oyama, R.S.; Maniglia, J.V.; Pavarino, É.C.; et al. Anti-EGFR Treatment Effects on Laryngeal Cancer Stem Cells. Am. J. Transl. Res. 2021, 13, 143–155. [Google Scholar]
- Nozaki, K.; Nakano, M.; Iwakami, C.; Fukami, T.; Nakajima, M. RNA Editing Enzymes Modulate the Expression of Hepatic CYP2B6, CYP2C8, and Other Cytochrome P450 Isoforms. Drug Metab. Dispos. 2019, 47, 639–647. [Google Scholar] [CrossRef]
- Mohammedsaleh, Z.M.; Moawadh, M.S.; Saleh, F.M.; Jalal, M.M.; Al-Otaibi, A.S.; Saeedi, N.H.; Baskaran, R.; Huang, C.-Y.; Kumar, V.B. Increased NOTCH1 Expression Is Associated with Low Survival in Moderate/ Poor Differentiated Human Oral Squamous Cell Carcinoma Patients. J. Cancer 2023, 14, 3023–3027. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, X.; Luo, H.; Meng, C.; Zhu, D. Cancer Stem Cells of Head and Neck Squamous Cell Carcinoma; Distance towards Clinical Application; a Systematic Review of Literature. Am. J. Cancer Res. 2023, 13, 4315–4345. [Google Scholar]
- MacLean, M.R.; Walker, O.L.; Arun, R.P.; Fernando, W.; Marcato, P. Informed by Cancer Stem Cells of Solid Tumors: Advances in Treatments Targeting Tumor-Promoting Factors and Pathways. Int. J. Mol. Sci. 2024, 25, 4102. [Google Scholar] [CrossRef]
- Batlle, E.; Clevers, H. Cancer Stem Cells Revisited. Nat. Med. 2017, 23, 1124–1134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, R.; Jin, R.; Fan, Y.; Li, T.; Shuai, Y.; Li, X.; Wang, X.; Luo, J. Integrating Clinical and Genetic Analysis of Perineural Invasion in Head and Neck Squamous Cell Carcinoma. Front. Oncol. 2019, 9, 434. [Google Scholar] [CrossRef] [PubMed]
- Wachters, J.E.; Kop, E.; Slagter-Menkema, L.; Mastik, M.; van der Wal, J.E.; van der Vegt, B.; de Bock, G.H.; van der Laan, B.F.A.M.; Schuuring, E. Distinct Biomarker Profiles and Clinical Characteristics in T1-T2 Glottic and Supraglottic Carcinomas. Laryngoscope 2020, 130, 2825–2832. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Guo, W.; Xu, X.; Su, F.; Wang, Y.; Zhang, Y.; Wang, Q.; Zhu, L. Melanoma Long Non-Coding RNA Signature Predicts Prognostic Survival and Directs Clinical Risk-Specific Treatments. J. Dermatol. Sci. 2017, 85, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Foy, J.-P.; Bazire, L.; Ortiz-Cuaran, S.; Deneuve, S.; Kielbassa, J.; Thomas, E.; Viari, A.; Puisieux, A.; Goudot, P.; Bertolus, C.; et al. A 13-Gene Expression-Based Radioresistance Score Highlights the Heterogeneity in the Response to Radiation Therapy across HPV-Negative HNSCC Molecular Subtypes. BMC Med. 2017, 15, 165. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Q.; Li, B.; Wang, D.; Wang, L.; Zhou, Y.L. m6A Regulator-Mediated Methylation Modification Patterns and Tumor Microenvironment Infiltration Characterization in Gastric Cancer. Mol. Cancer 2020, 19, 53. [Google Scholar] [CrossRef]
- Dietz, A.; Wichmann, G.; Kuhnt, T.; Pfreundner, L.; Hagen, R.; Scheich, M.; Kölbl, O.; Hautmann, M.G.; Strutz, J.; Schreiber, F.; et al. Induction Chemotherapy (IC) Followed by Radiotherapy (RT) versus Cetuximab plus IC and RT in Advanced Laryngeal/Hypopharyngeal Cancer Resectable Only by Total Laryngectomy—Final Results of the Larynx Organ Preservation Trial DeLOS-II. Ann. Oncol. 2018, 29, 2105–2114. [Google Scholar] [CrossRef]
- Senghore, T.; Wang, W.-C.; Chien, H.-T.; Chen, Y.-X.; Young, C.-K.; Huang, S.-F.; Yeh, C.-C. Polymorphisms of Mismatch Repair Pathway Genes Predict Clinical Outcomes in Oral Squamous Cell Carcinoma Patients Receiving Adjuvant Concurrent Chemoradiotherapy. Cancers 2019, 11, 598. [Google Scholar] [CrossRef]
- Bossi, P.; Resteghini, C.; Paielli, N.; Licitra, L.; Pilotti, S.; Perrone, F. Prognostic and Predictive Value of EGFR in Head and Neck Squamous Cell Carcinoma. Oncotarget 2016, 7, 74362–74379. [Google Scholar] [CrossRef]
- Mandal, R.; Şenbabaoğlu, Y.; Desrichard, A.; Havel, J.J.; Dalin, M.G.; Riaz, N.; Lee, K.-W.; Ganly, I.; Hakimi, A.A.; Chan, T.A.; et al. The Head and Neck Cancer Immune Landscape and Its Immunotherapeutic Implications. JCI Insight 2016, 1, e89829. [Google Scholar] [CrossRef]
- Yi, K.; Wang, X.; Filippov, S.K.; Zhang, H. Emerging ctDNA Detection Strategies in Clinical Cancer Theranostics. Smart Med. 2023, 2, e20230031. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.S.; Beadle, B.; Bishop, J.A.; Chernock, R.D.; Colasacco, C.; Lacchetti, C.; Moncur, J.T.; Rocco, J.W.; Schwartz, M.R.; Seethala, R.R.; et al. Human Papillomavirus Testing in Head and Neck Carcinomas: Guideline From the College of American Pathologists. Arch. Pathol. Lab. Med. 2018, 142, 559–597. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.-J.; Cha, H.-J.; Lee, H. Systematic Omics Analysis Identifies CCR6 as a Therapeutic Target to Overcome Cancer Resistance to EGFR Inhibitors. iScience 2024, 27, 109448. [Google Scholar] [CrossRef] [PubMed]
- Moncada, R.; Barkley, D.; Wagner, F.; Chiodin, M.; Devlin, J.C.; Baron, M.; Hajdu, C.H.; Simeone, D.M.; Yanai, I. Integrating Microarray-Based Spatial Transcriptomics and Single-Cell RNA-Seq Reveals Tissue Architecture in Pancreatic Ductal Adenocarcinomas. Nat. Biotechnol. 2020, 38, 333–342. [Google Scholar] [CrossRef]
- Ghiyasimoghaddam, N.; Shayan, N.; Mirkatuli, H.A.; Baghbani, M.; Ameli, N.; Ashari, Z.; Mohtasham, N. Does Circulating Tumor DNA Apply as a Reliable Biomarker for the Diagnosis and Prognosis of Head and Neck Squamous Cell Carcinoma? Discov. Oncol. 2024, 15, 427. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Guan, F.; Bronk, L.; Zhao, L. Multi-Omics Approaches for Biomarker Discovery in Predicting the Response of Esophageal Cancer to Neoadjuvant Therapy: A Multidimensional Perspective. Pharmacol. Ther. 2024, 254, 108591. [Google Scholar] [CrossRef]
- Kann, B.H.; Thompson, R.; Thomas, C.R.; Dicker, A.; Aneja, S. Artificial Intelligence in Oncology: Current Applications and Future Directions. Oncology 2019, 33, 46–53. [Google Scholar]
- Huang, H.-Y.; Li, K.-N.; Lau, H.-C.; Hsueh, C.-Y.; Cong, N.; Zhang, M. Dual Inhibition of Autophagy and PI3K/mTOR Pathway as a Potential Therapeutic Strategy against Laryngeal Squamous Cell Carcinoma. Transl. Cancer Res. 2022, 11, 1076–1088. [Google Scholar] [CrossRef]
- Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery Technologies for Cancer Immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196. [Google Scholar] [CrossRef]
- Chaudhuri, A.A.; Chabon, J.J.; Lovejoy, A.F.; Newman, A.M.; Stehr, H.; Azad, T.D.; Khodadoust, M.S.; Esfahani, M.S.; Liu, C.L.; Zhou, L.; et al. Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling. Cancer Discov. 2017, 7, 1394–1403. [Google Scholar] [CrossRef]
- Scott, J.G.; Berglund, A.; Schell, M.J.; Mihaylov, I.; Fulp, W.J.; Yue, B.; Welsh, E.; Caudell, J.J.; Ahmed, K.; Strom, T.S.; et al. A Genome-Based Model for Adjusting Radiotherapy Dose (GARD): A Retrospective, Cohort-Based Study. Lancet Oncol. 2017, 18, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Paya, L.; Rafat, A.; Talebi, M.; Aghbali, A.; Shahidi, N.; Nejati, B.; Emamverdizadeh, P.; Charoudeh, H.N. The Effect of Tumor Resection and Radiotherapy on the Expression of Stem Cell Markers (CD44 and CD133) in Patients with Squamous Cell Carcinoma. Int. J. Hematol.-Oncol. Stem Cell Res. 2024, 18, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Ahmad, D.; Wang, T.; Cui, G.; Li, W. Research Advances in the Use of Histone Deacetylase Inhibitors for Epigenetic Targeting of Cancer. Curr. Top. Med. Chem. 2019, 19, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, J.; LaVange, L.M. Master Protocols to Study Multiple Therapies, Multiple Diseases, or Both. N. Engl. J. Med. 2017, 377, 62–70. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniaci, A.; Giurdanella, G.; Chiesa Estomba, C.; Mauramati, S.; Bertolin, A.; Lionello, M.; Mayo-Yanez, M.; Rizzo, P.B.; Lechien, J.R.; Lentini, M. Personalized Treatment Strategies via Integration of Gene Expression Biomarkers in Molecular Profiling of Laryngeal Cancer. J. Pers. Med. 2024, 14, 1048. https://doi.org/10.3390/jpm14101048
Maniaci A, Giurdanella G, Chiesa Estomba C, Mauramati S, Bertolin A, Lionello M, Mayo-Yanez M, Rizzo PB, Lechien JR, Lentini M. Personalized Treatment Strategies via Integration of Gene Expression Biomarkers in Molecular Profiling of Laryngeal Cancer. Journal of Personalized Medicine. 2024; 14(10):1048. https://doi.org/10.3390/jpm14101048
Chicago/Turabian StyleManiaci, Antonino, Giovanni Giurdanella, Carlos Chiesa Estomba, Simone Mauramati, Andy Bertolin, Marco Lionello, Miguel Mayo-Yanez, Paolo Boscolo Rizzo, Jerome R. Lechien, and Mario Lentini. 2024. "Personalized Treatment Strategies via Integration of Gene Expression Biomarkers in Molecular Profiling of Laryngeal Cancer" Journal of Personalized Medicine 14, no. 10: 1048. https://doi.org/10.3390/jpm14101048
APA StyleManiaci, A., Giurdanella, G., Chiesa Estomba, C., Mauramati, S., Bertolin, A., Lionello, M., Mayo-Yanez, M., Rizzo, P. B., Lechien, J. R., & Lentini, M. (2024). Personalized Treatment Strategies via Integration of Gene Expression Biomarkers in Molecular Profiling of Laryngeal Cancer. Journal of Personalized Medicine, 14(10), 1048. https://doi.org/10.3390/jpm14101048