Identifying Patients at Increased Risk for Poor Outcomes Among Poor-Grade Aneurysmal Subarachnoid Hemorrhage Patients: The IPOGRO Risk Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Evaluations
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lovelock, C.E.; Rinkel, G.J.; Rothwell, P.M. Time trends in outcome of subarachnoid hemorrhage: Population-based study and systematic review. Neurology 2010, 74, 1494–1501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nieuwkamp, D.J.; Setz, L.E.; Algra, A.; Linn, F.H.; de Rooij, N.K.; Rinkel, G.J. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: A meta-analysis. Lancet Neurol. 2009, 8, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, G.M.; Drake, C.G.; Hunt, W.; Kassell, N.; Sano, K.; Pertuiset, B.; De Villiers, J.C. A universal subarachnoid hemorrhage scale: Report of a committee of the World Federation of Neurosurgical Societies. J. Neurol. Neurosurg. Psychiatry 1988, 51, 1457. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosengart, A.J.; Schultheiss, K.E.; Tolentino, J.; Macdonald, R.L. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke 2007, 38, 2315–2321. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Manoel, A.L.; Mansur, A.; Silva, G.S.; Germans, M.R.; Jaja, B.N.; Kouzmina, E.; Marotta, T.R.; Abrahamson, S.; Schweizer, T.A.; Spears, J.; et al. Functional Outcome After Poor-Grade Subarachnoid Hemorrhage: A Single-Center Study and Systematic Literature Review. Neurocrit. Care 2016, 25, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Panni, P.; Colombo, E.; Donofrio, C.A.; Barzaghi, L.R.; Albano, L.; Righi, C.; Scomazzoni, F.; Simionato, F.; Mortini, P.; Falini, A.; et al. Hemorrhagic burden in poor-grade aneurysmal subarachnoid hemorrhage: A volumetric analysis of different bleeding distributions. Acta Neurochir. 2019, 161, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, P.D.; Elliott, J.P.; Newell, D.W.; Grady, M.S.; Winn, H.R. Predicting outcome in poor-grade patients with subarachnoid hemorrhage: A retrospective review of 159 aggressively managed cases. J. Neurosurg. 1996, 85, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Risselada, R.; Lingsma, H.F.; Bauer-Mehren, A.; Friedrich, C.M.; Molyneux, A.J.; Kerr, R.S.; Yarnold, J.; Sneade, M.; Steyerberg, E.W.; Sturkenboom, M.C. Prediction of 60 day case-fatality after aneurysmal subarachnoid haemorrhage: Results from the International Subarachnoid Aneurysm Trial (ISAT). Eur. J. Epidemiol. 2010, 25, 261–266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mascitelli, J.R.; Cole, T.; Yoon, S.; Nakaji, P.; Albuquerque, F.C.; McDougall, C.G.; Zabramski, J.M.; Lawton, M.T.; Spetzler, R.F. External Validation of the Subarachnoid Hemorrhage International Trialists (SAHIT) Predictive Model Using the Barrow Ruptured Aneurysm Trial (BRAT) Cohort. Neurosurgery 2020, 86, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Jaja, B.N.R.; Saposnik, G.; Lingsma, H.F.; Macdonald, E.; Thorpe, K.E.; Mamdani, M.; Steyerberg, E.W.; Molyneux, A.; Manoel, A.L.O.; Schatlo, B.; et al. Development and validation of outcome prediction models for aneurysmal subarachnoid haemorrhage: The SAHIT multinational cohort study. BMJ 2018, 360, j5745. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yu, J.; Huang, S.; Mungur, R.; Huang, K.; Pan, X.; Yu, G.; Xie, Z.; Zhou, L.; Liu, Z.; et al. Scoring Model to Predict Functional Outcome in Poor-Grade Aneurysmal Subarachnoid Hemorrhage. Front. Neurol. 2021, 12, 601996. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Scibilia, A.; Rustici, A.; Linari, M.; Zenesini, C.; Belotti, L.M.B.; Dall’Olio, M.; Princiotta, C.; Cuoci, A.; Aspide, R.; Migliorino, E.; et al. Factors affecting 30-day mortality in poor-grade aneurysmal subarachnoid hemorrhage: A 10-year single-center experience. Front. Neurol. 2024, 15, 1286862. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- ARDS Definition Task Force; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef] [PubMed]
- Ziya, A. Determination of bleeding time by hounsfield unit values in computed tomography scans of patients diagnosed with intracranial hemorrhage: Evaluation results of computed tomography scans of 666 patients. Clin. Neurol. Neurosurg. 2022, 217, 107258. [Google Scholar] [CrossRef] [PubMed]
- Sorteberg, A.; Lashkarivand, A.; Western, E. Return to work after aneurysmal subarachnoid hemorrhage. Front. Neurol. 2024, 15, 1401493. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmidbauer, M.L.; Läufer, S.; Maskos, A.; Dimitriadis, K. Risk factors and outcomes after interruption of sedation in subarachnoid hemorrhage (ROUTINE-SAH)-a retrospective cohort study. Front. Neurol. 2024, 15, 1363107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Panni, P.; Riccio, L.; Cao, R.; Pedicelli, A.; Marchese, E.; Caricato, A.; Feletti, A.; Testa, M.; Zanatta, P.; Gitti, N.; et al. Clinical Impact and Predictors of Aneurysmal Rebleeding in Poor-Grade Subarachnoid Hemorrhage: Results from the National POGASH Registry. Neurosurgery 2023, 93, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Lenkeit, A.; Oppong, M.D.; Dinger, T.F.; Gümüs, M.; Rauschenbach, L.; Chihi, M.; Ahmadipour, Y.; Uerschels, A.K.; Dammann, P.; Deuschl, C.; et al. Risk factors for poor outcome after aneurysmal subarachnoid hemorrhage in patients with initial favorable neurological status. Acta Neurochir. 2024, 166, 93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, J.; Xiong, Y.; Zhong, M.; Yang, Y.; Guo, X.; Tan, X.; Zhao, B. Predicting Long-Term Outcomes After Poor-Grade Aneurysmal Subarachnoid Hemorrhage Using Decision Tree Modeling. Neurosurgery 2020, 87, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Lashkarivand, A.; Sorteberg, W.; Rosseland, L.A.; Sorteberg, A. Survival and outcome in patients with aneurysmal subarachnoid hemorrhage in Glasgow coma score 3-5. Acta Neurochir. 2020, 162, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Catapano, J.S.; Zeoli, T.; Frisoli, F.A.; Burk-Hardt, J.K.; Lawton, M.T. Long-Term Independence in Older Patients with Aneurysmal Subarachnoid Hemorrhage in the Barrow Ruptured Aneurysm Trial. World Neurosurg. 2021, 147, e98–e104. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Jiang, L.; Xu, Y.; Qu, X.; Wang, N.; Chen, W.; Cheng, W.; Wang, N. Risk Factors for Prognosis in Elderly Patients with Severe Aneurysmal Subarachnoid Hemorrhage: A Retrospective Study. Adv. Ther. 2021, 38, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, S.; Kamide, T.; Kikkawa, Y.; Suzuki, K.; Ikeda, T.; Kohyama, S.; Kurita, H. Long-Term Outcomes of Elderly Patients with Poor-Grade Aneurysmal Subarachnoid Hemorrhage. World Neurosurg. 2020, 144, e743–e749. [Google Scholar] [CrossRef] [PubMed]
- Ozono, I.; Ikawa, F.; Hidaka, T.; Yoshiyama, M.; Matsuda, S.; Michihata, N.; Kobata, H.; Murayama, Y.; Sato, A.; Kato, Y.; et al. Risk Factor for Poor Outcome in Elderly Patients with Aneurysmal Subarachnoid Hemorrhage Based on Post Hoc Analysis of the Modified WFNS Scale Study. World Neurosurg. 2020, 141, e466–e473. [Google Scholar] [CrossRef] [PubMed]
- Kanamaru, H.; Kawakita, F.; Asada, R.; Miura, Y.; Shiba, M.; Toma, N.; Suzuki, H.; pSEED Group. Prognostic factors varying with age in patients with aneurysmal subarachnoid hemorrhage. J. Clin. Neurosci. 2020, 76, 118–125. [Google Scholar] [CrossRef] [PubMed]
mRS 1-2-3 | mRS 4-5 | mRS 6 | p-Value | |
---|---|---|---|---|
Age [years] | 58.7 ± 12.6 | 63.1 ± 10.8 | 60.2 ± 10.8 | 0.246 |
Female sex | 26 (72.2%) | 54 (73.0%) | 28 (71.8%) | 0.990 |
Seizures | 5 (13.9%) | 6 (8.1%) | 0 | >0.999 |
Mean GCS score | 7.0 ± 2.9 | 5.3 ± 2.5 | 4.6 ± 2.1 | 0.001 |
WFNS V | 16 (44.4%) | 57 (77.0%) | 29 (74.4%) | 0.002 |
Anticoagulant therapy | 0 | 2 (2.6%) | 1 (2.5%) | 0.613 |
Antiplatelet therapy | 4 (11.1%) | 16 (21.6%) | 8 (20.5%) | 0.395 |
Anisocoria | 5 (13.9%) | 22 (29.7%) | 6 (15.4%) | 0.085 |
Mydriasis | 1 (2.8%) | 8 (10.8%) | 5 (12.8%) | 0.278 |
Miosis | 9 (25.0%) | 19 (25.7%) | 17 (43.6%) | 0.106 |
Hematocrit [%] | 0.9 ± 0.3 | 1.5 ± 4.8 | 1.9 ± 5.5 | 0.772 |
Hemoglobin [g/dL] | 13.6 ± 1.8 | 13.2 ± 1.8 | 13.4 ± 1.9 | 0.702 |
RBC count [1012/L] | 4.6 ± 0.7 | 4.5 ± 0.7 | 4.6 ± 0.7 | 0.992 |
Leukocytosis [WBC ≥ 15 × 109/L] | 11 (30.6%) | 25 (33.8%) | 20 (52.6%) | 0.088 |
WBC count [109/L] | 12.9 ± 4.4 | 13.6 ± 4.8 | 16.9 ± 6.4 | 0.012 |
Platelet count [109/L] | 260.4 ± 72.7 | 243.5 ± 78.7 | 273.3 ± 93.9 | 0.173 |
Hyperglycemia [≥180 mg/dL] | 7 (19.4%) | 29 (39.7%) | 23 (59.0%) | 0.002 |
aPTT ratio | 0.9 ± 0.3 | 1.5 ± 4.8 | 1.9 ± 5.5 | 0.555 |
SBP ≥ 180 mmHg | 5 (13.9%) | 21 (28.4%) | 19 (48.7%) | 0.004 |
NE administration | 15 (41.7%) | 45 (60.8%) | 27 (71.1%) | 0.033 |
mRS 1-2-3 | mRS 4-5 | mRS 6 | p-Value | |
---|---|---|---|---|
m-FISHER 4 on CT | 25 (69.4%) | 64 (86.5%) | 37 (94.9%) | 0.008 |
N. of ventricles with blood | 2.2 ± 1.7 | 3.0 ± 1.5 | 3.3 ± 1.3 | 0.013 |
Intraventricular hemorrhage | 25 (69.4%) | 64 (86.5%) | 37 (94.9%) | 0.008 |
Hemorrhage in lateral ventricles | 21 (58.3%) | 62 (83.8%) | 35 (89.7%) | 0.001 |
Hemorrhage in the 3rd ventricle | 18 (50.0%) | 55 (74.3%) | 31 (79.5%) | 0.010 |
Hemorrhage in the 4th ventricle | 22 (61.1%) | 54 (73.0%) | 31 (79.5%) | 0.200 |
Intraventricular blood volume [mm3] | 18.9 ± 26.4 | 20.8 ± 26.9 | 19.2 ± 25.8 | 0.001 |
Hydrocephalus on admission | 27 (75.0%) | 54 (73.0%) | 30 (76.9%) | 0.898 |
Intraparenchimal hemorrhage | 23 (63.9%) | 55 (74.3%) | 29 (74.4%) | 0.479 |
Intraparenchimal blood volume [mm3] | 25.7 ± 23.3 | 18.2 ± 23.8 | 12.6 ± 22.4 | 0.021 |
Total volume of blood [mm3] | 5.7 ± 9.3 | 18.4 ± 26.2 | 26.1 ± 27.6 | 0.001 |
Median line shift [mm] | 2.6 ± 3.0 | 5.1 ± 5.3 | 3.7 ± 3.7 | 0.115 |
Subdural hemorrhage | 6 (16.7%) | 18 (24.3%) | 5 (12.8%) | 0.302 |
Cerebral herniation | 3 (8.3%) | 14 (18.9%) | 6 (15.4%) | 0.354 |
Vertebro-basilar aneurysm | 4 (11.1%) | 9 (12.2%) | 10 (25.6%) | 0.120 |
Spot sign | 0 | 3 (4.1%) | 3 (7.7%) | 0.329 |
Vessel involvement in aneurysmal neck | 11 (30.6%) | 16 (21.6%) | 8 (20.5%) | 0.513 |
Aneurysm’ re-bleeding | 1 (2.8%) | 7 (9.5%) | 8 (20.5%) | 0.041 |
m-FISHER 4 on CT | 25 (69.4%) | 64 (86.5%) | 37 (94.9%) | 0.008 |
mRS 1-2-3 | mRS 4-5 | mRS 6 | p-Value | |
---|---|---|---|---|
Decompressive craniotomy | 2 (5.6%) | 25 (33.8%) | 15 (38.5%) | 0.002 |
DCI | 12 (33.3%) | 29 (39.2%) | 18 (46.2) | 0.523 |
VP shunt | 13 (36.1%) | 35 (47.3%) | 3 (7.9%) | 0.001 |
PaO2/FIO2 ≤ 200 mmHg | 6 (16.7%) | 14 (18.9%) | 12 (30.8%) | 0.249 |
SAPS II score | 38.5 ± 12.7 | 50.0 ± 12.2 | 52.1 ± 12.8 | 0.001 |
PCT ≥ 0.1 ng/mL | 18 (50.0%) | 48 (64.9%) | 18 (47.4%) | 0.134 |
LA ≥ 1.5 mMol/L | 27 (75.0%) | 61 (82.4%) | 36 (97.3%) | 0.026 |
RRR | 95% CI | p-Value | ||
---|---|---|---|---|
mRS 1-2-3 | (reference) | |||
mRS 4-5 | GCS score = 3 | 0.87 | 0.25–2.95 | 0.820 |
WFNS score = V | 3.47 | 1.26–9.56 | 0.016 | |
SBP ≥ 180 mmHg | 2.68 | 0.80–8.92 | 0.109 | |
Hyperglycemia [≥180 mg/dL] | 1.79 | 0.63–5.07 | 0.276 | |
N. of ventricles with blood | 1.16 | 0.85–1.59 | 0.341 | |
Total volume of blood [mm3] | 1.03 | 0.99–1.08 | 0.119 | |
mRS 6 | GCS score = 3 | 3.64 | 0.83–15.98 | 0.086 |
WFNS score = V | 1.08 | 0.27–4.23 | 0.915 | |
SBP ≥ 180 mmHg | 6.99 | 1.86–26.28 | 0.004 | |
Hyperglycemia [≥180 mg/dL] | 2.75 | 0.83–9.06 | 0.097 | |
N. of ventricles with blood | 1.41 | 0.93–2.11 | 0.102 | |
Total volume of blood [mm3] | 1.04 | 0.99–1.09 | 0.068 |
RRR | 95% CI | p-Value | ||
---|---|---|---|---|
mRS 1-2-3 | (reference) | |||
mRS 4-5 | SBP ≥ 180 mmHg | 4.57 | 0.53–39.40 | 0.166 |
Hyperglycemia [≥180 mg/dL] | 1.95 | 0.51–7.51 | 0.329 | |
N. of ventricles with blood | 1.09 | 0.70–1.69 | 0.691 | |
Total volume of blood [mm3] | 1.03 | 0.98–1.08 | 0.253 | |
mRS 6 | SBP ≥ 180 mmHg | 14.16 | 1.51–132.72 | 0.020 |
Hyperglycemia [≥180 mg/dL] | 2.12 | 0.46–9.81 | 0.334 | |
N. of ventricles with blood | 1.14 | 0.66–1.94 | 0.642 | |
Total volume of blood [mm3] | 1.03 | 0.98–1.09 | 0.243 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arianna, R.; Antonino, S.; Marta, L.; Matteo, Z.; Corrado, Z.; Beatrice, B.L.M.; Carmelo, S.; Alfredo, C.; Raffaele, A.; Alberto, C.C.; et al. Identifying Patients at Increased Risk for Poor Outcomes Among Poor-Grade Aneurysmal Subarachnoid Hemorrhage Patients: The IPOGRO Risk Model. J. Pers. Med. 2024, 14, 1070. https://doi.org/10.3390/jpm14111070
Arianna R, Antonino S, Marta L, Matteo Z, Corrado Z, Beatrice BLM, Carmelo S, Alfredo C, Raffaele A, Alberto CC, et al. Identifying Patients at Increased Risk for Poor Outcomes Among Poor-Grade Aneurysmal Subarachnoid Hemorrhage Patients: The IPOGRO Risk Model. Journal of Personalized Medicine. 2024; 14(11):1070. https://doi.org/10.3390/jpm14111070
Chicago/Turabian StyleArianna, Rustici, Scibilia Antonino, Linari Marta, Zoli Matteo, Zenesini Corrado, Belotti Laura Maria Beatrice, Sturiale Carmelo, Conti Alfredo, Aspide Raffaele, Castioni Carlo Alberto, and et al. 2024. "Identifying Patients at Increased Risk for Poor Outcomes Among Poor-Grade Aneurysmal Subarachnoid Hemorrhage Patients: The IPOGRO Risk Model" Journal of Personalized Medicine 14, no. 11: 1070. https://doi.org/10.3390/jpm14111070
APA StyleArianna, R., Antonino, S., Marta, L., Matteo, Z., Corrado, Z., Beatrice, B. L. M., Carmelo, S., Alfredo, C., Raffaele, A., Alberto, C. C., Diego, M., Ciro, P., Massimo, D., Carlo, B., & Luigi, C. (2024). Identifying Patients at Increased Risk for Poor Outcomes Among Poor-Grade Aneurysmal Subarachnoid Hemorrhage Patients: The IPOGRO Risk Model. Journal of Personalized Medicine, 14(11), 1070. https://doi.org/10.3390/jpm14111070