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Abstract: Artificial intelligence (AI) techniques offer great potential to advance point-of-care testing
(POCT) and wearable sensors for personalized medicine applications. This review explores the
recent advances and the transformative potential of the use of AI in improving wearables and POCT.
The integration of AI significantly contributes to empowering these tools and enables continuous
monitoring, real-time analysis, and rapid diagnostics, thus enhancing patient outcomes and healthcare
efficiency. Wearable sensors powered by AI models offer tremendous opportunities for precise and
non-invasive tracking of physiological conditions that are essential for early disease detection and
personalized treatments. AI-empowered POCT facilitates rapid, accurate diagnostics, making these
medical testing kits accessible and available even in resource-limited settings. This review discusses
the key advances in AI applications for data processing, sensor fusion, and multivariate analytics,
highlighting case examples that exhibit their impact in different medical scenarios. In addition, the
challenges associated with data privacy, regulatory approvals, and technology integrations into the
existing healthcare system have been overviewed. The outlook emphasizes the urgent need for
continued innovation in AI-driven health technologies to overcome these challenges and to fully
achieve the potential of these techniques to revolutionize personalized medicine.

Keywords: artificial intelligence; wearable sensors; point-of-care testing; deep learning; personalized
medicine; biosensors

1. Introduction

The timely and accurate diagnosis of health conditions is of high importance within
any healthcare system for effective disease management. This helps to accurately monitor
disease progression and alleviates the financial, psychological, and social stress experienced
by patients [1,2]. In this context, early detection of health conditions is crucial as it greatly
affects the selected treatment plan and, as a result, improves health outcomes. Personalized
and precision medicine relies mainly on the continuous monitoring of health conditions
by obtaining a rapid and fast diagnosis using point-of-care (PoC) [3]. Wearable biosensor
devices have recently evolved as emerging analytical-tool technologies used for rapid
in vitro diagnostics testing and have the potential to ensure more timely and customized
medical care [4,5]. Despite the great progress that has been made so far in these biosensor
technologies, there is still a need to boost the analytical capabilities of these devices [6]. To
do so, artificial intelligence (AI) techniques offer a plethora of opportunities and a promise
toward the reinforcement of wearable sensing and PoC testing to meet the increasing
demands for personalized and precision medicine [7,8].

Recently, huge interest has been exponentially growing in favor of integrating AI
techniques, such as machine learning (ML) and deep neural networks with wearable
devices, as well as PoC-based diagnostic tools [9,10]. This allows for many advantages, such
as the capturing of multivariate data with the on-body sensors and POCT devices. Beyond
simply aggregating data, AI techniques can help to reduce the number of experiments
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needed to prepare the sensor and help to predict the best conditions for sensor preparation
for a certain disease [11,12]. Such smart and intelligent sensing devices can track health
status in real time while minimizing discomfort, allowing for early intervention in case of a
medical emergency. This can also facilitate remote monitoring and telemedicine, which is
becoming increasingly needed and relevant, especially in recent years [13].

AI innovations can serve to improve diagnostic testing rapidly at the level of PoC
by making sample analysis more automated, thus providing faster and more accurate
analysis outside of traditional laboratories [14]. A great and successful example of this
is the intelligent readers and assays powered by AI that can be used to detect cell and
biomarker morphologies in minutes [15]. These technologies are making sophisticated
testing accessible in low-resource settings and enable molecular diagnostics at the site of
care. Efforts to combine AI with wearable sensors and PoC diagnostics greatly correlate
with the objectives of personalized medicine. Smart biosensors allow for continuous
physiological monitoring to detect medical needs as they emerge based on an individual’s
unique biology. Meanwhile, rapid diagnostic insights at the PoC facilitate the timely
application of precision therapies. However, while promising, AI-reinforced wearable and
PoC technologies remain in their infancy and early development. The key challenges could
include different aspects, such as the validation of AI-based models, the integration of
the AI techniques into reusable medical devices, and regulatory approval by government
agencies, as well as the adoption of these technologies by the medical community [16].

There have been many review papers that cover the topic of AI and smart wearable
sensors in recent years [17–19]. This shows that this field is trending and is one of the
hot topics in the research field. However, there is still a need for a comprehensive review
manuscript that incorporates smart wearable biosensors and PoC devices. While the recent
literature has extensively covered various aspects of AI in healthcare, wearable sensors, and
POCT (Table 1), our proposed review uniquely focuses on the intersection and synergy of
these technologies. Unlike previous reviews that often address these topics separately, we
aim to provide a comprehensive analysis of AI-reinforced wearable sensors and intelligent
POCT. This integrated approach not only bridges the gap in the current literature but also
offers a more forward-looking perspective on how AI enhances both wearable sensors and
PoC diagnostics.

Table 1. The key review papers published recently in the field of biomedical research and AI.

Title Main Points Discussed in the Published Review Ref.

Revolutionary Point-of-Care Wearable
Diagnostics for Early
Disease Detection and Biomarker
Discovery through
Intelligent Technologies

• Examines PoC systems and wearables for early disease detection and
monitoring

• Discusses smart technology trends in clinical settings and biological
assays

• Explores PoC systems and smart platforms for biomarker discovery
• Addresses technology translation from labs to broader applications
• Analyzes risks, biases, and challenges of AI integration in diagnostics
• Outlines prospects, challenges, and opportunities in the field

[20]

AI and the Internet of Medical Things
(IoMT) Assisted Biomedical Systems for
Intelligent Healthcare

• Discusses AI’s role in enhancing IoMT and PoC devices for healthcare
• Covers AI applications in cardiac, cancer, and diabetes care
• Examines AI’s support in advanced robotic surgeries
• Analyze AI’s impact on IoMT device functionality and accuracy
• Addresses risk assessment in AI-powered medical devices
• Explores challenges and prospects of AI-integrated personalized

IoMT
• Considers future directions for intelligent healthcare systems

[21]
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Table 1. Cont.

Title Main Points Discussed in the Published Review Ref.

Wearable AI biosensor networks

• Reviews AI-assisted wearable biosensors for disease and fatigue
monitoring

• Highlights the trend towards personalized, efficient, and accurate
PoC diagnosis

• Notes need for further research on adaptive learning, synthetic data,
and data privacy

• Discusses smartphone integration in biosensing systems
• Covers smartphone roles in sensor readout, data transfer, processing,

storage, and display
• Emphasizes promising future due to increasing data capabilities and

diverse functionalities

[22]

The Effectiveness of Wearable Devices
Using AI
for Blood Glucose Level Forecasting or
Prediction: Systematic
Review

• Wearable devices with AI effectively forecast and predict BG in
diabetics

• Studies reviewed were high quality but lacked diverse patient
selection

• ML techniques, especially ensemble-boosted trees, show promise in
BG forecasting

• Some studies reported high accuracy (e.g., 97% with support vector
machines)

• Need for clearer distinction between “forecasting” and “prediction”
in the literature

• Authors recommend further validation of commercial devices
• Wearable devices may potentially replace invasive glucose

monitoring in future
• Review serves as key resource for advancing non-invasive diabetes

management research

[23]

Recent Advances in AI and Wearable
Sensors in Healthcare Delivery

• AI and wearables transform healthcare into personalized, portable
solutions

• Vital signs data analyzed with ML techniques
• Benefits: improved patient care, cost reduction, and enhanced clinical

decisions
• Challenges: privacy, ethics, and AI model interpretation
• Identifies research gaps and future opportunities
• Emphasizes need for structured clinical data to avoid AI biases

[24]

Unlocking Tomorrow’s Health Care:
Expanding the Clinical Scope of
Wearables by Applying AI

• Reviews AI-enabled wearables in cardiovascular medicine
• Covers smart watches, ECG patches, and smart textiles for various

heart conditions
• Examines ML algorithm evolution in wearables
• Discusses validation frameworks and AI integration challenges
• Addresses fairness, equity, and user perspectives in development

[25]

A Systematic Review on the Advanced
Techniques of wearable
Point-of-Care Devices and Their
Futuristic Applications

• Review covers importance, design, and types of wearable sensors for
POCT

• Highlights current breakthroughs in wearable integrated POCT
devices

• Discusses present obstacles in the field
• Explores future potential, including IoT, for self-healthcare using

wearable POCT

[26]

Where AI stands in the development of
electrochemical sensors for
healthcare applications: A review

• Critical analysis of AI-assisted sensors and their specific tasks
• Data flow presentation: concept design to results for E-sensors
• Review of AI in wearable biomedical sensors
• Exploration of limitations in AI-assisted biomedical sensors
• Examination of the “promising” label in this context

[27]
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In this review paper, we discussed the use of AI-enabled biosensors and intelligent
rapid diagnostic devices for personalized medicine applications. Technical approaches,
advantages, and limitations of this field have been discussed and analyzed. In the end, we
identified future opportunities and current challenges for further advancing AI-reinforced
wearable sensors and PoC diagnostics.

2. Wearable Sensors for Personalized Health Monitoring

Wearable sensors and biosensors have become powerful tools used to continuously
monitor physiological signals, thus empowering the personalized medicine field. Pro-
cessing smart data that is acquired by these sensors using AI technology can provide a
clear and deep understanding of an individual’s health and serve to make suitable clinical
decisions. This section of the manuscript overviews the key technologies in AI methods
used in wearable sensors for personalized health monitoring.

2.1. Biosensor Technologies for Continuous Physiological Monitoring

Biosensors are analytical devices that are crucial for continuous physiological mon-
itoring, integrating a bioreceptor for target analyte recognition, a transducer for signal
conversion, electronics for processing, and a display unit for data presentation [28,29]. This
field has seen significant interest due to wearable technology advancements that enable
non-invasive biomarker monitoring in real time [30].

Wearable biosensors, particularly sweat and tear-based ones, offer personalized POCT
by instantly quantifying the biomarkers in bodily fluids [20,31]. Body-based biomolecular
sensors, including wearables, implants, and consumables, allow for comprehensive health
monitoring, with glucose sensors leading the way and advancements enabling the sens-
ing of various analytes [32]. Integrating biosensors with wireless systems and big data
analytics has enhanced personalized healthcare, offering efficient and tailored monitoring
of physiological parameters for improved well-being [33]. Biosensors, those remarkable
devices that bridge the gap between biology and technology, are present in many different
forms (Figure 1). Electrochemical biosensors measure electrical changes resulting from
biochemical reactions, such as glucose monitoring. Optical biosensors rely on light-based
detection methods, while piezoelectric biosensors use materials that generate an electrical
charge when subjected to mechanical stress. Finally, thermal biosensors detect temperature
changes due to binding events.
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These biosensors play an essential role in fields ranging from medical diagnostics
to environmental monitoring, making them indispensable tools for scientific and clinical
research [35]. They are transforming the diagnosis of disease in healthcare by offering
rapid and accurate detection of specific biomarkers with high sensitivity and specificity,
thus improving the accuracy, sustainability, and efficiency of diagnostic tools [36]. These
devices, which convert molecular recognition of target analytes into measurable signals,
have evolved to be compact, user-friendly, and cost-effective for PoC testing, enhancing
the speed and reliability of disease diagnosis [37,38]. They utilize various technologies,
such as enzyme-based sensors, immunoassays, photo-biosensors, tissue-based sensors,
DNA biosensors, and nano-biosensors, to detect biological markers and provide real-time
insights into health conditions [39,40]. Furthermore, wearable biosensors play a crucial role
in continuous health monitoring, enabling personalized medicine, early disease detection,
and improved health outcomes by integrating advanced technologies like AI, ML, and
microfluidics [41,42]. These advancements in biosensor technology, coupled with the
development of novel molecular markers, offer a promising avenue for enhancing disease
diagnosis and patient care in healthcare [43].

The development of biosensors in healthcare faces several challenges and future di-
rections. Miniaturization and power consumption are crucial for implantable biosensors
to reduce discomfort and ensure reliable functionality. Biocompatibility and long-term
stability are essential for biosensors in the in vivo environment to minimize immune re-
sponses and ensure their sustained performance [44]. Data accuracy and reliability are
critical, particularly in whole blood analysis, where electrochemical sensors offer rapid,
sensitive, and specific detection capabilities [45]. Integration with technologies like the
Internet of Things (IoT) and AI presents a promising avenue, with advancements in wear-
able biosensing technologies utilizing AI for precise disease diagnosis and personalized
medicine [46]. Overcoming these challenges and focusing on improving sensitivity, selectiv-
ity, reproducibility, and stability will drive the future development of biosensors, opening
new possibilities for biomedical applications.

2.2. AI for Sensor and Biosensor Data Processing and Health Analysis

The integration of AI in processing sensors and biosensor data is increasingly vital
for health analysis due to the growing volume and complexity of data generated by
modern wearable devices and medical technologies. Recent advancements in AI have
enabled the effective analysis of vast datasets from various sources, including wearable
sensors and medical imaging, which are essential for personalized medicine and PoC
diagnostics [47,48]. AI techniques are pivotal in processing the data from sensors and
biosensors in various healthcare applications. ML and deep learning (DL) are extensively
used for analyzing medical images and wearable sensor data, thereby enhancing disease
diagnosis and prediction accuracy. Deep learning, as a subset of ML, leverages complex
neural networks to analyze data and solve intricate problems in healthcare. Key techniques
include Convolutional Networks (CNNs) for medical image analysis, Recurrent Neural
Networks (RNNs) for processing sequential health data, and Long Short-Term Memory
networks (LSTMs) for predicting patient outcomes [49–51].

ML techniques, such as neural networks and Support Vector Machines (SVMs), auto-
mate forecasting and diagnosis processes, while DL, particularly CNNs, excels in image
analysis without requiring expert feature extraction [52]. Natural Language Processing
(NLP) is increasingly being integrated into electronic medical records, improving clinical
data analysis and supporting clinical decision-making [24]. Additionally, Computer Vision
techniques are crucial in processing images from medical imaging devices, significantly
reducing diagnostic errors and improving efficiency [52]. Finally, RNNs and Long Short-
Term Memory (LSTM) networks are particularly effective for analyzing time-series data
generated by wearable sensors, which enable the monitoring of physiological signals and
disease progression over time [46]. These models excel in capturing temporal dependencies,
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which is essential for applications like continuous glucose monitoring and psychological
disorder detection [53,54].

As shown in Figure 2, AI/ML has been widely used recently in POCT devices as it
can help to make more accurate clinical decisions [2]. The flow from various sensor inputs,
including electrochemical, wearables, colorimetric, and lab-on-chip, through data process-
ing and ML, could lead to diagnosis, treatment, and safety. This approach demonstrates
how AI and ML can improve on-site medical testing.
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The integration of these AI techniques in sensor data processing is transforming
healthcare delivery, enabling personalized medicine and timely interventions [11,46]. Fur-
thermore, the shift towards real-time data collection and analysis through portable devices
allows for immediate health monitoring and intervention, bypassing traditional laboratory
methods [55]. As healthcare data continues to expand, the need for sophisticated AI algo-
rithms becomes critical to manage and derive actionable insights from this complex data,
which will ultimately revolutionize diagnostic practices and treatment strategies [55,56].

As an example of the application of AI and biosensing technology in biomedical cases,
we identify novel approaches that combine electrochemical biosensors with AI to enhance
the detection of dopamine in complex biological samples, such as cerebrospinal fluid (CSF).
Traditional methods struggle with selectivity due to interference from other electroactive
species, like ascorbic acid (AA) and uric acid (UA), which can significantly affect dopamine
quantification. A study employed an embedded AI model, specifically TinyML, to analyze
square-wave voltammetry (SWV) data, allowing for the differentiation between dopamine
and its interfering compounds without the need for time-consuming surface modifications.
The results indicated that the AI-enhanced biosensor achieved an impressive accuracy of
98.1% in distinguishing between the contaminated and uncontaminated dopamine samples,
demonstrating the potential for real-time monitoring in clinical settings. This integration
not only improves the reliability of neurotransmitter detection but also paves the way for
the development of smart, portable diagnostic tools that can adapt and learn from new data
over time, ultimately contributing to better screening for neurodegenerative diseases [57].
Another study presented a novel approach to prostate cancer (PCa) screening using a
urinary multimarker biosensor combined with AI analysis. This method leverages the
passive diffusion of biomarkers from prostate cancer cells into urine, allowing for noninva-
sive testing. The biosensor employs four pathophysiologically uncorrelated biomarkers,
PSMA, ENG, ERG, and ANXA3, measured through a dual-gate, field-effect transistor
biosensor with antibody conjugation for each biomarker. The results demonstrated that
single-biomarker analysis yielded an average accuracy of only 62.9%, missing nearly half
of the PCa cases. However, when ML algorithms, specifically Random Forest (RF) and
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Neural Networks (NNs), were applied to the multimarker data, the accuracy significantly
improved, achieving over 99% accuracy with the optimal combination of biomarkers. The
study highlighted that increasing the number of biomarkers generally enhanced screening
performance, although the inclusion of certain biomarkers, like ANXA3, could decrease
accuracy. Ultimately, the research indicates that this AI-assisted multimarker sensing plat-
form has the potential to revolutionize PCa screening by providing rapid, accurate results
using just a drop of urine, thus addressing the limitations of traditional serum PSA tests
and reducing unnecessary biopsies [58].

A study presented a novel fluorometric aptasensor combined with IA designed for
the simultaneous detection of lysozyme (LYS), which is considered a key biomarker for
identifying several diseases, such as sarcoidosis, monocytic or myelomonocytic leukemia,
and bronchopulmonary dysplasia, and adenosine triphosphate (ATP), and is considered
an indicator of cell viability and many diseases, such as Parkinson’s disease, malignant
tumors, and Alzheimer’s disease. This fluorometric aptasensor showcases the integration
of biosensors and AI in health applications. This dual-functional aptasensor utilizes cobalt
oxyhydroxide (CoOOH) nanosheets as a fluorescence quencher and carbon dots (CDs)
as fluorophores, enabling the effective monitoring of these biomarkers, which is crucial
for disease detection, particularly in cancer research. The method leverages fluorescence
resonance energy transfer, allowing for high selectivity and sensitivity in detecting small
molecules and proteins. However, the overlapping fluorescence spectra of the two types
of CDs posed a challenge for simultaneous analysis. To address this, the study employed
least squared support vector machine (LS-SVM) techniques, a form of AI, to deconvolute
the overlapping spectra, enhancing the accuracy of the detection process. The results
demonstrated that, under optimal conditions, the detection limits for ATP and LYS were
4.0 and 1.8 nmol L, respectively, indicating the method’s effectiveness in biological sample
monitoring. This innovative approach not only highlights the potential of biosensors
in health diagnostics but also emphasizes the role of AI in resolving complex analytical
challenges, paving the way for advanced disease detection methodologies [59].

In a separate study, a novel noninvasive sensor for detecting glucose and fructose
levels was developed using surface-enhanced infrared absorption (SEIRA) spectroscopy
combined with principal component analysis (PCA) as an ML algorithm for data evaluation.
The sensor employs linear gold nanoantennas fabricated on IR-transparent substrates that
are designed to resonate at the molecular vibrations of glucose and fructose. This allows
for the reliable detection of concentrations as low as 10 g/L (55 mM), which is relevant
for monitoring blood glucose levels in patients with diabetes. The results demonstrated
that the sensor can effectively distinguish between glucose and fructose in mixed solutions,
overcoming challenges related to crosstalk from other chemical species. The integration of
PCA enhances the analysis by autonomously identifying patterns in the vibrational data,
making it suitable for real-time monitoring of physiological glucose levels in bodily fluids,
such as interstitial fluid or teardrops. This innovative approach not only improves the sensi-
tivity and specificity of glucose detection but also paves the way for future advancements in
noninvasive biosensing technologies, potentially transforming diabetes management and
other health monitoring applications [60]. In other studies, leveraged sensors and AI were
employed to advance biomedical diagnostics for early-stage lung cancer. Surface-enhanced
Raman spectroscopy (SERS) sensors were used to capture signals from exosomes in the
blood, which are small vesicles associated with cancer biomarkers. Deep learning was used
to analyze these SERS signals and to train a model to distinguish between normal and lung
cancer cell exosomes with 95% accuracy. When tested on 43 patients, the model identified a
high similarity between plasma exosomes from 90.7% of cancer patients and lung cancer
cell exosomes, with the similarity correlating with cancer progression. The combination of
SERS sensors and AI offers a promising method for noninvasive early-stage lung cancer
diagnosis, as evidenced by the model’s high accuracy and area under the curve (AUC)
scores of 0.912 for the entire cohort and 0.910 for stage I patients [61].
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AI-based techniques are revolutionizing mental health support and psychological
well-being in several key ways. Virtual counseling, powered by ML and NLP, is making
mental health support more accessible and affordable, reaching individuals who might
otherwise avoid traditional therapy due to stigma or cost. Precision therapy, utilizing data
from wearable devices and smartphones, enables the creation of personalized treatment
plans tailored to everyone’s unique needs [62]. Moreover, AI-driven diagnostic systems
are enhancing therapeutic interventions by providing mental health professionals with
valuable insights derived from user data. Studies have shown impressive accuracy rates in
predicting and classifying mental health conditions, such as depression and schizophrenia,
with ML techniques achieving accuracies ranging from the low 60s to the high 90s. This
improved diagnostic capability allows for earlier identification and intervention, which is
crucial for effective treatment [63].

In addition to these advancements, smart devices and wearable technologies are
playing an increasingly important role in monitoring mental health conditions. For example,
the Q-sensor demonstrated an accuracy of 87% in detecting poor mental health and 78.3%
for depression. These noninvasive, portable devices can seamlessly integrate into users’
daily lives, overcoming the resistance often faced by more traditional, invasive methods [64].
Furthermore, AI techniques are also advancing the detection and diagnosis of depression by
leveraging various data sources, including audio, video, text, and physiological signals (4).
This approach provides a more objective and accurate diagnosis compared to traditional
subjective assessments. The integration of wearable devices enables the collection of large-
scale psychophysiological data at a low cost, which is essential for training AI models (4).
Ensemble methods have demonstrated significant improvements in detection accuracy over
baseline methods, highlighting the potential of AI to reduce reliance on human subjectivity
and enhance the overall effectiveness of depression detection [65].

2.3. Sensor Fusion and Multivariate Analytics

Combining data from diverse wearable sensors, also known as sensor fusion, allows
even broader personalized health insights. Sensor fusion and multivariate analytics are
crucial for enhancing the capabilities of AI-based sensors and biosensors in health analysis.
By integrating data from multiple sensor sources, such as wearable devices and medical
imaging, sensor fusion improves the accuracy and reliability of health monitoring systems,
enabling more comprehensive insights than single-sensor data alone [66,67]. The applica-
tion of AI algorithms significantly enhances the processing of this data, facilitating early
disease prediction and timely clinical decision-making [11,46]. Moreover, frameworks like
the AI-Based Body Sensor Network Framework (AIBSNF) propose systematic approaches
to collect and analyze multivariate data, combining physiological signals with real-time
location data for improved health outcomes [68]. However, challenges remain, including
the need for organized data collection and the integration of diverse data modalities, which
can complicate the analysis process [46]. The synergy between sensor fusion and AI analyt-
ics holds great promise for advancing personalized medicine and, as a result, improving
healthcare delivery.

2.4. Case Examples of AI-Enabled Wearable Health Monitoring

Wearable sensors and biosensors integrated with ML have shown significant promise
in various medical applications. For instance, the DOCTOR framework utilizes a multi-
headed deep neural network to enable continual learning for multi-disease detection,
allowing for the simultaneous classification of various diseases based on wearable medical
sensor data and achieving superior accuracy compared to traditional methods [69]. Ad-
ditionally, a study focused on detecting mental stress employed wearable physiological
sensors (ECG, GSR, and skin temperature) and ML algorithms, demonstrating the potential
for real-time stress monitoring and personalized interventions [70]. Furthermore, human
activity recognition systems leverage wearable sensors and ML techniques, achieving clas-
sification accuracies of up to 95.78%, which is crucial for applications in elderly healthcare
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and smart homes [71]. Also, it should be noted that carbon nanotube-based biosensors
trained with ML algorithms have been developed for the sensitive detection of malignant
and nonmalignant cells, showcasing the versatility of ML in enhancing biosensor func-
tionality [72]. In a recent study, Oliveira Filho et al. reported on the use of TinyML to
remove background interference in complex solutions like cerebrospinal fluid. TinyML was
implemented in low-power, portable systems for electrochemical applications, achieving
high accuracy in discriminating between uric acid and ascorbic acid. The TinyML model
reached an overall accuracy of 98.1% for a 32-bit float point unit and 96.01% after 8-bit
quantization. These studies suggested that TinyML could enhance the reliability and real-
time data processing abilities of future medical devices [57]. These examples illustrate the
transformative impact of wearable sensors and ML in advancing healthcare monitoring
and disease detection.

Wearable sensors and biosensors utilizing deep learning have shown significant
promise in various medical applications. For instance, flexible wearable sensors have
been developed to detect freezing of gait (FoG) in patients with Parkinson’s disease, em-
ploying a deep learning model that processes multi-modal sensory inputs to alert users
and prevent falls [73]. In addition, a deep learning-enabled wearable device has been
introduced for tracking movement disorders, achieving a high prediction accuracy for
classifying different body postures, which is crucial for early diagnosis of neurological con-
ditions [74]. Moreover, advancements in human activity recognition (HAR) systems have
integrated deep learning techniques to monitor patient activities, aiding in the management
of healthcare services and conditions such as stroke and epilepsy [75]. These applications
highlight the transformative potential of wearable biosensors in enhancing patient care and
monitoring, although challenges such as data accuracy and sensor integration remain to be
addressed [76,77].

Wearable sensors and biosensors utilizing RNNs have shown significant promise
in various medical applications, enhancing patient monitoring and diagnostics. These
technologies leverage the ability of RNNs to process sequential data, making them ideal
for real-time health assessments. RNNs have been effectively utilized in various healthcare
applications. For example, wearable antennas and optimized recurrent neural networks
(ORNNs) were used to enhance the medical communication process. A study focused on
improving the quality of wireless communication in medical applications by investigating
antenna S11 variation (AS11V) with harmonic suppression1. The researchers used a belt
with a specific thickness and dielectric constants along with 3-short pin resonators to reduce
unnecessary harmonics1. The ORNN approach demonstrated an accuracy of 99.17% in
processing the collected data, making it highly effective for medical analysis [78].

Human healthcare from body sensor data and its practical applications in smart
healthcare systems include wearable-based behavior recognition for patient rehabilitation.
A study proposed a body sensor-based system for behavior recognition using deep RNNs,
a promising deep learning algorithm for sequential information. Data from multiple body
sensors, including an ECG, accelerometer, and magnetometer, was fused and enhanced
using kernel principal component analysis (KPCA). The robust features were then used to
train an activity RNN for behavior recognition. The system outperformed conventional
approaches on three publicly available datasets, demonstrating its effectiveness [79].

In another work, a novel monitoring system was investigated using wearable sen-
sors connected to a hospital database via IoT, with data classified by pre-convoluted fast
recurrent neural networks (P-FRNN). The classification detected abnormal health data
with improved accuracy and reduced time consumption and sent results to doctors when
abnormalities were found. The simulation results were optimized, showing that P-FRNN
achieved a comparable classification rate and low execution time [80]. Another interesting
approach has been introduced by Mirto Musci et al., who developed the design of a soft-
ware architecture based on RNNs for effective fall detection, running entirely on wearable
embedded sensors. This study demonstrated that architectural minimization and accurate
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hyperparameter selection led to a workable model that compared favorably with other
detection techniques [81].

Wearable sensors and biosensors utilizing Convolutional Neural Networks (CNNs)
are revolutionizing healthcare by enabling real-time monitoring and analysis of health
parameters. These technologies enhance patient care through various applications, demon-
strating their effectiveness in diverse healthcare scenarios. For example, a CNN-based
medical system that utilizes wearable sensors for the diagnosis of non-small cell lung cancer
(NSCLC) was developed. The system achieved an accuracy rate of 0.84 with a dataset of
8000 case samples, providing valuable decision-making support for physicians based on
patient data [82].

Moreover, a practical, wearable fall detection system that leverages Tiny Convolutional
Neural Networks (TinyCNNs) on inertial sensors was investigated. The proposed TinyCNN
achieved high accuracy and low latency in fall detection, making it suitable for real-life
applications. The developed wearable system provides a practical solution for accurate
and timely fall detection in everyday scenarios [83].

Wearable sensors and Long Short-Term Memory (LSTM) models are increasingly
utilized in medical applications, enhancing patient monitoring and diagnosis. These
technologies enable real-time health assessments and predictive analytics, significantly im-
proving healthcare delivery. A study aimed to estimate the in vivo muscle forces occurring
during human motion to understand motion control mechanisms and joint mechanics. It
combined the advantages of CNNs and LSTM to propose a novel muscle force estimation
method based on CNN–LSTM. A wearable sensor system collected kinematic data of
hip, knee, and ankle joints during walking, which served as input for the neural network
model. The CNN–LSTM model outperformed standard CNNs and LSTM in estimating
muscle forces at various walking speeds, showing good robustness and generalization.
This method provided a more convenient and efficient approach for clinical analysis and
engineering applications compared to the SO method in OpenSim [84].

Wearable sensors and biosensors integrated with NLP are transforming medical appli-
cations by enhancing patient monitoring and data analysis. These technologies facilitate
real-time health assessments and improve clinical decision-making through the interpreta-
tion of unstructured data. In some applications of NLP, we have a novel sensing system
with NLP algorithms that is developed to improve communication in healthcare. The
team designed CommSense to be used on mobile devices, like smartwatches, capturing
patient/clinician interactions and processing them to extract key communication mark-
ers. They identified feasible communication metrics through a literature review and from
consensus within the team. The software was developed using an existing Android smart-
watch platform, incorporating sensors for physiological, gesture, and voice data. The
pilot test involved simulated clinical scenarios to evaluate CommSense’s ability to extract
communication metrics accurately [85].

3. Intelligent Point-of-Care Diagnostics

Smart PoC Diagnostics represents significant progress in healthcare delivery, combin-
ing rapid on-site testing with AI to enhance diagnostic accuracy and testing speed. This
rapidly evolving field integrates state-of-the-art technologies for immediate sample analysis
with advanced AI algorithms, enabling healthcare providers to make informed decisions
quickly and with high efficiency. By leveraging ML and knowledge-based systems, these
POCTs are changing patient care across various medical settings, from ERs to telemedicine,
offering the potential for improved patient outcomes and more personalized treatment
approaches. This section spotlights the POCT technologies and concepts and automated
POCT, as well as some key cases that combine POCT with AI.

3.1. Point-of-Care Testing Technologies and Concepts

POCT technologies are transforming healthcare by enabling rapid diagnostics at or
near the site of patient care. These innovations enhance accessibility, speed, and patient
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engagement [86–88]. PoC sensing technologies are revolutionizing diagnostics by enabling
rapid on-site testing across various medical and environmental monitoring applications.
These innovations leverage microfluidics, nanotechnology, and novel sensing materials to
enhance sensitivity, speed, and user-friendliness [89–91].

The development of biosensors for POCT applications significantly enhances health
assessments at various locations, including bedside, home, and field settings. These
biosensors offer rapid, accurate diagnostics, facilitating timely medical interventions. For
bedside applications, devices like the boronate-affinity enhanced organic electrochemical
transistor patch enable ultrasensitive detection of glycoprotein biomarkers, crucial for
conditions such as heart failure, directly at the bedside (Figure 3) [92]. The developed
bioelectrochemical sensing strategy exhibited a very low LOD of 300 aM in 25 min and
was 1000× times more sensitive than the available commercialized kit tests. They proved
that automatization with microfluidics, microcontrollers, and wireless sensing is possible
and validated the PoC device for heart failure diagnosis. This PoC device showed great
potential for broader glycoprotein detection applications and can be extended to address
the need for sensitive, portable diagnostic tools in resource-limited settings.
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Figure 3. A compact and ultrasensitive bioelectrochemical patch was based on boronate-affinity
amplified organic electrochemical transistors (BAAOECTs) for the POC sensing of glycoproteins. The
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The use of microfluidic chips allows for streamlined testing processes, ensuring quick
results that can inform immediate clinical decisions. For home use, low-cost, portable
biosensors facilitate at-home monitoring of chronic disease biomarkers, empowering pa-
tients to manage their health effectively without laboratory reliance. Innovations, such as
smartphone integration for signal acquisition, enhance usability for non-professionals [93].

In field deployment, nanostructured biosensors enable rapid diagnostics in remote
locations, addressing urgent health needs in underserved areas [94]. Field-effect transistor
(FET)-based biosensors provide continuous monitoring, which is crucial for early disease
detection in various environments [95]. While the advancements in PoC biosensors are
promising, challenges remain in translating these technologies into widespread clinical
use, particularly regarding regulatory approval and integration into existing healthcare sys-
tems [96]. These compact and portable devices facilitate immediate diagnostic capabilities,
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enhancing patient care by providing timely and precise information without centralized
testing facilities.

3.2. AI for Automated Sample Analysis and Diagnostics

AI technologies are revolutionizing automated sample analysis and diagnostics across
various medical fields. These systems enhance diagnostic accuracy and efficiency by
integrating ML and explainable AI (xAI), particularly in complex areas like metabolomics
and microbiology. The combination of AutoML and xAI has shown significant promise in
cancer diagnostics, particularly in metabolomics. For instance, Auto-sklearn achieved an
AUC of 0.97 for renal cell carcinoma (RCC) and 0.85 for ovarian cancer (OC), outperforming
traditional ML methods. Shapley Additive Explanations (SHAP) were utilized to identify
key metabolites, enhancing interpretability and clinical relevance [97,98].

Additionally, AI/ML-driven automated diagnostics streamline clinical resource man-
agement, allowing healthcare professionals to quickly identify diseases and improve patient
outcomes. This technology reduces the time spent on routine tasks, enabling more focus on
complex cases [99]. On the other hand, innovations in AI-controlled microfluidic devices
have improved point-of-care testing reliability. These devices can autonomously manage
fluid dynamics, significantly enhancing the accuracy of immunoassays [100].

3.3. Case Examples of AI-Empowered Point-of-Care Diagnostics

AI-empowered PoC diagnostics are revolutionizing healthcare by significantly im-
proving the accuracy and efficiency of medical testing across various settings. These
advancements utilize AI to aid healthcare providers in swiftly and effectively diagnosing
conditions, especially in emergency and remote environments. Notable examples include
AI-enabled ultrasound diagnostics, where deep learning models like MobileNetV2 and
DarkNet53 achieve over 85% accuracy in interpreting ultrasound scans for conditions such
as pneumothorax and hemothorax [101].

For instance, a novel AI-enabled device was developed for complete blood count (CBC)
analysis, which can run multiple tests simultaneously, including a 3-part differential, using
ML and deep learning for accurate cell classification, achieving high correlation coefficients
with traditional laboratory methods [102]. Additionally, an AI-assisted framework for
lung ultrasound scans aids less experienced clinicians in diagnosing pneumothorax by
employing deep learning models for quality assurance and the lung sliding classification,
achieving over 95% accuracy [103]. In another study, a PoC ultrasound (POCUS) has also
been effectively utilized for diagnosing ventricular septal rupture, demonstrating AI’s
capability to enhance diagnostic accuracy in emergency settings [104]. Furthermore, an
AI-assisted mobile health system has been developed for the rapid detection of β-lactamase,
a key factor in antimicrobial resistance, integrating a paper-based analytical device with a
smartphone AI cloud for real-time error correction and result output [105].

Recently, Bhuyian et al. reported an AI-controlled microfluidic platform that was
developed and operated via an Android smartphone based on an enzyme-linked im-
munosorbent assay (ELISA). Using region-of-interest (ROI) cascading and conditional
activation algorithms, the platform incorporates a bubble trap to prevent false signals
and control reagent movement. It successfully detected Human Cardiac Troponin I (cTnI)
with a detection limit of 0.98 pg/mL, marking a significant step in the use of AI-based
microfluidics for clinical diagnosis [100].

AI-enabled ultrasound diagnostics were involved in a recent study by Hernandez
Torress and co-authors, where they used DL models, like MobileNetV2 and DarkNet53,
to achieve over 85% accuracy in interpreting ultrasound scans for conditions such as
pneumothorax and hemothorax [101]. Furthermore, the AI-assisted framework guides
clinicians through lung ultrasound scans, achieving over 95% accuracy in detecting lung
sliding, which is crucial for diagnosing pneumothorax [103]. In another work, an AI
algorithm (AI-ECG) was applied to single-lead ECGs recorded during stethoscope exams
as a potential PoC screening tool for left ventricular ejection fraction ≤40%. Conducted
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as an observational, prospective, multicenter study, AI-ECG was retrained to interpret
single-lead ECGs from 1050 patients. The AI-ECG showed high performance, especially at
the pulmonary valve position, with an AUROC of 0.85, sensitivity of 84.8%, and specificity
of 69.5%. Combining outputs from two positions improved the area under the receiver
operating characteristic curve to 0.91, sensitivity to 91.9%, and specificity to 80.2%. These
results suggest AI-ECG’s potential for noninvasive, cost-effective PoC screening, enabling
earlier diagnosis and treatment [106].

A supervised ML model was developed for pulmonary hypertension detection using
noninvasive signals (orthogonal voltage gradient and photoplethysmographic) and a
hand-crafted library of 3298 features. The model’s consistent performance across various
demographics and its significant feature importance in conduction, repolarization, and
respiration metrics highlight its potential for early detection and intervention in PoC
diagnostic systems [107].

These key examples highlight the transformative potential of AI in enhancing PoC
diagnostics and addressing challenges in accessibility and accuracy in healthcare delivery.

4. Opportunities and Challenges for AI in Personalized Medicine
4.1. Benefits of AI-Reinforced Wearable Sensors and Point-of-Care Testing

AI-reinforced wearable sensors and POCT offer transformative benefits in healthcare,
significantly enhancing patient outcomes and healthcare efficiency. These advanced tech-
nologies enable continuous, real-time monitoring of vital signs and biochemical markers,
providing critical data for early diagnosis and timely intervention. For instance, AI algo-
rithms can analyze data from wearable sensors to detect anomalies and predict potential
health issues before they become severe, promoting preventive healthcare [108]. This proac-
tive approach reduces hospital admissions and healthcare costs by addressing conditions
early. Moreover, AI integration enhances the accuracy and reliability of wearable sensors by
filtering noise and extracting meaningful patterns from the data [108]. This is particularly
beneficial in managing chronic diseases like diabetes, where continuous glucose monitor-
ing through noninvasive wearable sensors can significantly improve patient comfort and
compliance [109].

AI-driven analytics also facilitate personalized treatment plans by considering in-
dividual patient data, leading to more effective and tailored healthcare solutions [108].
In the context of POCT, AI-powered devices enable rapid and precise diagnostics at the
patient’s location, reducing the need for laboratory visits and expediting treatment de-
cisions [109,110]. This is crucial in emergency scenarios where a timely diagnosis can
be life-saving. Additionally, the integration of AI with wearable sensors and POCT de-
vices supports big data processing and real-time decision-making, enhancing the overall
efficiency of healthcare delivery [108,111].

On the other hand, AI-aided POCT represents a significant advancement in health-
care technology with far-reaching social implications. By integrating AI with portable
diagnostic tools, this innovation has the potential to democratize access to high-quality
healthcare, particularly in remote and underserved areas. The ability to perform advanced
diagnostics on-site allows for early detection of diseases, which is crucial for improving
patient outcomes and reducing the overall burden on healthcare systems [14]. The per-
sonalization of treatment made possible by AI analysis of POCT data can lead to more
effective medical interventions tailored to individual patient needs. This not only improves
the efficacy of treatments but also potentially reduces adverse effects and the use of un-
necessary medications. From an economic perspective, AI-aided POCT offers substantial
cost savings by reducing the need for expensive laboratory tests and frequent hospital
visits, making healthcare more affordable and accessible to a broader population [112].
Furthermore, this technology empowers healthcare providers by offering real-time insights
and decision-making support. This is particularly valuable in resource-limited settings
where specialist knowledge may not be readily available. By augmenting the capabilities of
healthcare workers, AI-aided POCT can help bridge the gap in medical expertise between
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urban and rural areas by facilitating timely diagnostics without the need for extensive
laboratory infrastructure [113,114].

The social impact extends beyond individual patient care. By improving overall
public health through better disease management and prevention, AI-aided POCT can
contribute to increased productivity and quality of life at a community level. It also has
the potential to aid in the rapid response to disease outbreaks and pandemics by enabling
quick, widespread testing and data collection [115].

AI is set to revolutionize POCT in the future by enhancing diagnostic accuracy and
efficiency through advanced data analysis and pattern recognition, which can lead to more
reliable results compared to traditional methods. The integration of AI with electronic
health records will facilitate real-time data sharing, providing healthcare professionals
with critical insights for better patient management. Additionally, AI-driven predictive
models can help in forecasting disease progression, allowing for timely interventions and
personalized treatment plans. As the POCT market continues to grow, the incorporation
of intelligent technologies will not only improve the functionality of testing devices but
also ensure that they remain economically viable and accessible to a broader patient
population [116].

The synergy between AI, wearable sensors, and POCT represents a significant leap
towards a more responsive, personalized, and efficient healthcare system, ultimately im-
proving patient outcomes and quality of life.

4.2. Limitations of Artificial Intelligence in Point-of-Care Testing (POCT) Systems

The integration of AI into POCT systems, while promising for healthcare diagnostics,
faces several significant challenges that limit its full potential. Technical barriers include the
scarcity of high-quality training data, the opacity of AI decision-making processes, and dif-
ficulties in integrating AI with existing healthcare infrastructure. These technical challenges
are compounded by regulatory hurdles, as agencies like the FDA continue developing
frameworks for AI medical devices, and ethical concerns regarding patient privacy, data
security, and algorithmic bias, particularly affecting underrepresented populations. This
section discusses the main limitations that this field still faces in more detail.

4.2.1. Validation and Regulatory Considerations for AI Diagnostics

As AI continues to revolutionize healthcare diagnostics, particularly in wearable
sensors and POCT, ensuring the validity, safety, and regulatory compliance of these tech-
nologies becomes increasingly crucial. This section explores the key considerations and
challenges in validating AI-powered diagnostic tools and navigating the complex regula-
tory landscape. Data quality and representation are essential for AI model development.
Training and validation datasets must be diverse, accurately labeled, and potentially aug-
mented to address class imbalances. Algorithm performance should be evaluated using
appropriate metrics and compared to clinical gold standards. Clinical validation involves
prospective studies, usability testing, and the assessment of impact on patient outcomes.
Continuous monitoring and improvement are necessary to maintain performance and
address potential biases [117]. Regulatory considerations for AI diagnostics include FDA
pathways, EU MDR requirements, data privacy and security, and ethical implications. Ad-
hering to these regulations ensures patient safety and trust in AI-powered tools. Challenges
and future directions include regulatory harmonization, adaptive AI models, real-world
evidence, and interdisciplinary collaboration. By addressing these challenges, stakeholders
can help ensure that AI diagnostic tools are safe, effective, and trustworthy, ultimately
improving patient outcomes and healthcare efficiency.

4.2.2. Adoption and Implementation Challenges

The adoption and implementation of AI-reinforced wearable sensors and POCT face
several significant challenges. Primarily, these challenges revolve around technology
integration, cost, and data management, which can hinder the potential benefits of these
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innovations in healthcare. AI-enhanced wearable sensors and POCT systems necessitate
seamless integration with existing healthcare infrastructures, including compatibility with
various data formats and communication protocols, which can be complex and resource-
intensive [22]. The development of multi-channel wearable sensors, such as those utilizing
CRISPR/Cas12a for drug detection, showcases innovative solutions but also underscores
the need for robust technological frameworks to support their deployment. POCT often
incurs higher costs per test compared to traditional laboratory testing, limiting its adoption,
especially in resource-limited settings [118]. While the integration of AI in wearable
biosensors aims to reduce costs and improve efficiency, initial investments in technology
and training remain significant barriers [46]. The vast amounts of data generated by AI
and wearable sensors necessitate advanced data management systems. Issues related to
data privacy and security are paramount, as sensitive health information is transmitted
and stored [22].

There is a pressing need for quality management systems and guidelines to ensure
the reliability and accuracy of POCT results [118]. Additionally, wearable sensors must
consistently provide precise and reliable data to be useful in clinical settings, but factors
like sensor placement, user movement, and environmental conditions can affect their
performance [108]. Data privacy and security are critical concerns, as these devices collect
sensitive health information that must be protected from unauthorized access. Integration
with existing healthcare systems also poses a challenge requiring seamless data transfer
and compatibility with various electronic health record systems [24,119].

The use of AI in POCT systems presents several limitations that can hinder its ef-
fectiveness. One significant challenge is the variability in user experience and training,
which can lead to inconsistent results when using AI-driven devices in diverse testing
environments [120]. Additionally, the evaluation protocols for AI systems often lack rigor,
resulting in overestimated performance metrics that do not accurately reflect real-world
applications [121]. Furthermore, the interpretability of AI algorithms remains a critical
issue; clinicians may be hesitant to trust AI recommendations due to the “black-box” nature
of these systems, which complicates their integration into clinical decision-making [122].
Lastly, the need for comprehensive evaluation methods that consider both diagnostic
accuracy and the reasoning structure of AI systems is essential to ensure scalability and reli-
ability in medical contexts. These limitations highlight the need for ongoing improvements
in AI technology and its application in POCT.

The acceptance of AI-reinforced wearable sensors and intelligent POCT faces several
challenges from both patients and medical doctors. Patients express concerns regarding
the safety and reliability of AI technologies, fearing potential threats to their autonomy
and increased healthcare costs, as well as issues related to data security and bias in data
sources [123]. Additionally, the perception that AI may not adequately account for indi-
vidual patient uniqueness contributes to resistance, particularly among those who view
themselves as unique [124].

For medical professionals, the integration of AI into clinical practice requires significant
buy-in, which is often hindered by a lack of understanding of AI’s role and effectiveness in
enhancing patient care [125]. Furthermore, ethical considerations and the potential for security
risks associated with connected devices pose additional barriers to acceptance [125–127].
Addressing these concerns is crucial for fostering trust and promoting the adoption of AI
technologies in healthcare.

To address the challenge concerning gaining trust from both patients and doctors
of these technologies, explainable AI (xAI) has emerged as a key solution, offering trans-
parency and interpretability in AI decision-making processes. xAI plays a pivotal role
in fostering trust and improving diagnostic processes in healthcare settings. By making
AI systems more transparent, xAI bridges the gap between complex algorithms and hu-
man understanding, enhancing confidence in AI-driven insights [128]. This increased
transparency is crucial for the acceptance and effective utilization of AI technologies in
clinical settings, encouraging reliance on these insights while ensuring quality care [129].
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Furthermore, xAI contributes significantly to improving diagnostic accuracy, particularly
in applications such as disease detection and medical imaging, where wearable sensors and
AI are integrated [130]. By addressing concerns about the “black-box” nature of traditional
AI models, xAI enables better adoption and reliability in clinical practice. Moreover, the
development of xAI techniques aims to enhance the interpretability of medical imaging
and other healthcare applications, leading to improved diagnostic accuracy and patient
outcomes [131].

One exemplary application of xAI in healthcare is the HealthxAI framework, which
supports early diagnosis of cognitive decline in elderly individuals. This collaborative
IoT system provides both numerical scores and natural language explanations for de-
tected abnormal behaviors, making AI-driven assessments more accessible to caregivers
and clinicians. By analyzing activities of daily living and locomotion patterns through
smart home sensors, HealthxAI leverages well-known clinical indicators without requiring
manual modeling or labeled datasets of abnormal behaviors. Extensive experiments with
real-world data from 192 senior individuals demonstrated significant correlations between
the system’s predictions and actual diagnoses, while a preliminary user study with clini-
cians showed improved task performance and increased trust in the system due to its xAI
capabilities. xAI plays a pivotal role in making AI-driven healthcare technologies more
understandable and reliable. By providing clear explanations of AI algorithms and their
predictions, xAI contributes to the advancement of POCT and diagnosis, ultimately leading
to better patient outcomes and more efficient healthcare delivery.

In general, to mitigate the challenges presented in this section, several methods can
be employed. Implementing robust data security protocols, such as advanced encryption
and anonymization techniques, can protect patient data and build trust in the system’s
security. Regularly updating and validating AI algorithms can maintain their high accuracy
and reliability, ensuring consistent performance. Providing comprehensive education
and training for both patients and healthcare providers can increase understanding and
trust in the technology, making users more comfortable with its use. Developing user-
centered designs that are intuitive and user-friendly can enhance acceptance and ease of
use, reducing barriers to its adoption [132].. Establishing channels for continuous feedback
from users can improve the system based on real-world experiences, ensuring it meets
patient needs effectively. By overcoming these challenges with targeted mitigation methods,
the successful implementation of AI-reinforced wearable sensors and intelligent POCT can
be significantly enhanced [117].

4.2.3. Ethical Implications of AI in Personalized Medicine

A range of issues should be proactively addressed and managed to reduce and mitigate
the ethical implications of AI in personalized medicine. One of the biggest concerns
is the issue of privacy and data security, as AI systems rely on tremendous amounts
of highly sensitive information about patients to deliver accurate and tailored medical
treatments. There is always a potential for data breaches/leaks or misuse, which raises
fears of stigmatization or discrimination [133,134]. In addition, there is always a risk of
bias in AI algorithms, which is a critical ethical challenge as these models depend on the
way they are trained for ML. This could lead to unequal treatment outcomes that could be
based on gender, race, or socioeconomic status. Another ethical challenge in the use of AI
technology in personalized medicine could include the informed consent of the patients in
the use of these technologies, as many of them may struggle to understand how AI-driven
decisions are made, thus affecting the ability of patients to make well-informed decisions.
Furthermore, the question of accountability in the case of AI model errors or harm is of
high importance, as there is always a chance of errors, thus making it difficult for liability.

Another interesting issue is access and equity, as there will be a risk that AI-driven
personalized medicine could only allow preservation for those who can afford it, thus
introducing more inequalities in healthcare. To strengthen trust in AI technologies and
their implication in wearables and POCT, there should be rigorous validation, regulation,
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and ethical oversight to ensure that these novel systems are accurate, reliable, and aligned
with the patient’s interests. Also, it should be noted that the role of physicians must remain
integral to the decision-making process, ensuring that the technology complements, rather
than replaces, the human effort in the healthcare system.

5. Conclusions

This review discussed the implementation of AI technology in POCT and wearable
sensors, which has witnessed tremendous progress in recent years. This integration of
AI with these tools leads to improvements in continuous health monitoring, real-time
data processing, and rapid diagnostics. AI-empowered POCT devices provide rapid,
accurate, and accessible diagnostics, which are very crucial for resource-limited settings
and real-time decision-making. AI combined with wearable sensors allows for noninvasive
monitoring of physiological health conditions and enhances personalized medicine choices.
Despite the great advances in this field, the successful integration of these technologies
still faces many challenges, including data privacy concerns and the challenges of getting
regulatory approvals, as well as the need for robust AI algorithms that can accurately
interpret highly complicated health data. Moreover, the integration of these new and
advanced tools into the healthcare system requires careful consideration of user acceptance,
cost-effectiveness, and data interoperability. Regardless of these challenges, the potential of
AI-empowered wearable sensors and PoC diagnostics to take the healthcare system into
the future is limitless, offering improved patient outcomes, enhanced effectiveness of data
interpretation, and rapid decision-making. Future research is needed and should focus on
addressing the above-mentioned challenges to ensure the reliability of AI-enabled health
technologies, as well as exploring new pathways and opportunities for their full integration
into personalized medicine.
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