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Abstract: Background/Objectives: Large language models (LLMs) show promise in healthcare but
face challenges with hallucinations, particularly in rapidly evolving fields like diabetes management.
Traditional LLM updating methods are resource-intensive, necessitating new approaches for deliver-
ing reliable, current medical information. This study aimed to develop and evaluate a novel retrieval
system to enhance LLM reliability in diabetes management across different languages and guidelines.
Methods: We developed a dual retrieval-augmented generation (RAG) system integrating both Ko-
rean Diabetes Association and American Diabetes Association 2023 guidelines. The system employed
dense retrieval with 11 embedding models (including OpenAI, Upstage, and multilingual models)
and sparse retrieval using BM25 algorithm with language-specific tokenizers. Performance was
evaluated across different top-k values, leading to optimized ensemble retrievers for each guideline.
Results: For dense retrievers, Upstage’s Solar Embedding-1-large and OpenAI’s text-embedding-3-
large showed superior performance for Korean and English guidelines, respectively. Multilingual
models outperformed language-specific models in both cases. For sparse retrievers, the ko_kiwi tok-
enizer demonstrated superior performance for Korean text, while both ko_kiwi and porter_stemmer
showed comparable effectiveness for English text. The ensemble retrievers, combining optimal
dense and sparse configurations, demonstrated enhanced coverage while maintaining precision.
Conclusions: This study presents an effective dual RAG system that enhances LLM reliability in
diabetes management across different languages. The successful implementation with both Korean
and American guidelines demonstrates the system’s cross-regional capability, laying a foundation for
more trustworthy AI-assisted healthcare applications.

Keywords: large language models; retrieval-augmented generation; diabetes management; medical
information retrieval; ensemble retriever

1. Introduction

Large language models (LLMs) have revolutionized natural language processing
and artificial intelligence, demonstrating remarkable capabilities in understanding and
generating human-like text across various domains. Both open-source models, like T5
(Google, Mountain View, CA, USA) [1] and LLAMA (Meta, Menlo Park, CA, USA) [2],
and commercial models, such as ChatGPT (OpenAI, San Francisco, CA, USA) [3] and
Claude (Anthropic, San Francisco, CA, USA) [4], have shown promise in multiple appli-
cations, from creative writing to complex question answering. However, the challenge of
hallucination—the generation of factually incorrect content—remains a significant concern,
particularly in fields requiring high accuracy and reliability like healthcare [5].
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In medical contexts, hallucination refers to the generation of inaccurate medical infor-
mation that could lead to improper clinical decision supports to physician. For example, an
LLM might incorrectly state medication dosages or combine unrelated treatment guidelines,
potentially compromising patient care.

The medical domain’s expansive and dynamic corpus of knowledge presents a chal-
lenge for LLMs to maintain contemporaneity. Several factors contribute to this challenge,
including training on potentially inaccurate or outdated information, the statistical nature
of language model prediction, and the lack of access to external, up-to-date knowledge
bases during inference [6–9]. While various approaches like full-parameter fine-tuning,
parameter-efficient methods (e.g., Prefix-tunning, LoRA, Adapter), and knowledge distil-
lation have been explored [10–13]. These methods require additional training and com-
putational resources, making them resource-intensive and costly [14,15]. This constraint
underscores the necessity for alternative methodologies, such as retrieval-augmented gen-
eration (RAG) systems, to sustain current and reliable AI-assisted medical information
without necessitating frequent model recalibration.

Diabetes management presents an ideal case study for evaluating LLM reliability
due to its complex, multifaceted nature. Guidelines must address various aspects, includ-
ing screening criteria, risk assessment, treatment selection, and monitoring protocols, all
of which require precise interpretation and application. The frequent updates to these
guidelines, driven by new clinical evidence and therapeutic advances, make it particularly
challenging for LLMs to maintain accuracy without external knowledge sources.

Our analysis encompasses both the Korean Diabetes Association’s 2023 Clinical Practice
Guidelines [16] and the American Diabetes Association’s Standards of Care in Diabetes—2023 [17],
representing diverse regional perspectives and approaches. The Korean guidelines introduce sig-
nificant changes such as lowering the recommended age for diabetes screening from 40 to 35 years
and expanding criteria for identifying high-risk individuals. Similarly, the American guidelines
emphasize novel therapeutic approaches, particularly in cardiovascular risk management and
the use of GLP-1 receptor agonists. Both guidelines stress personalized care approaches and
continuous glucose monitoring, highlighting the global convergence in diabetes care standards
while maintaining region-specific considerations.

While single RAG systems employ a retrieval step using either dense or sparse meth-
ods, each approach has inherent limitations. Dense retrievers excel at capturing semantic
relationships but may miss exact keyword matches crucial for medical terminology, while
sparse retrievers effectively find specific terms but often miss conceptually related infor-
mation. For example, when querying about diabetes treatments, a dense retriever might
understand the concept of “glucose management” but miss specific medication names,
while a sparse retriever might find exact medication names but miss related contraindica-
tions [18–21].

Our proposed dual RAG system addresses these limitations by combining dense
semantic search for conceptual understanding with sparse keyword-based retrieval for
medical guideline details. This approach aims to provide more comprehensive and reliable
responses in complex medical domains, improving the accuracy of AI-assisted health-
care information.

2. Materials and Methods
2.1. Corpus Preprocessing

We utilized two primary data sources: the 2023 Korean Diabetes Association (KDA)
guidelines and the American Diabetes Association (ADA)’s Standards of Care in Diabetes—2023.
The preprocessing was facilitated by AutoRAG (Markr.AI, Seoul, Republic of Korea) [22], an
AutoML tool designed for automatically finding and optimizing RAG pipelines. This
tool was chosen for its efficiency in evaluating various RAG modules and optimizing the
pipeline for our data and use-case.

For each guideline document, we implemented independent preprocessing pipelines
to maintain regional context integrity. To break down the guidelines into manageable
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segments, we set the chunk size to 1000 characters, with an overlap of 200 characters (1/5
of chunk size) between adjacent chunks. This chunk size was chosen to balance between
maintaining sufficient context for complex medical concepts while keeping segments fo-
cused enough for precise retrieval. The overlap helps preserve context at chunk boundaries,
ensuring that related information is not artificially separated.

The resulting corpus was structured into a tabular format with four primary columns
(Table 1): index (a sequential identifier for each chunk), doc_id (a unique identifier for
each document segment), contents (the actual text of the chunk), and metadata (additional
information about the chunk, including creation date and source file details).

Table 1. Three examples of corpus extracted from the Korean Diabetes Association Guidelines.

Index Doc_Id Contents Metadata

9 DOC_UID#9

According to the Diabetes Prevention Study, among
446 subjects newly diagnosed with diabetes and with a body
mass index of 23 kg/m2 or higher, 76.2% had fasting plasma
glucose levels below 126 mg/dL, and 59.2% exceeded only the
2 h plasma glucose criteria after glucose loading. Fasting
plasma glucose and HbA1c were below the criteria. When
fasting plasma glucose was below 100 mg/dL (normal), . . .

‘creation_date’:
‘YYYY-MM-DD’, ‘file_name’:
‘chapter_name.docx’,
‘file_path’: ‘/path/to/file’

25 DOC_UID#25

effectively reduces the failure of glycemic control and achieves.
It was significantly higher than monotherapy. The occurrence of
hypoglycemia was also very mild. The results of the VERIFY
study can be interpreted as showing that early combination
therapy effectively reduces the failure of glycemic control and
achieves glycemic control targets for a longer period. However,
it does not provide evidence on whether glycemic control lower
than HbA1c 6.5% is necessary. Also, whether early combination
therapy can reduce the incidence of complications. . .

‘creation_date’:
‘YYYY-MM-DD’, ‘file_name’:
‘chapter_name.docx’,
‘file_path’: ‘/path/to/file’

306 DOC_UID#306

Generated Questions Index: 0 Answer Diabetes is named for
the excretion of glucose (glycosuria) in urine. In normal
individuals, blood glucose is regulated within a narrow range
so that glucose does not overflow into the urine. The hormone
‘insulin’ secreted by the pancreas plays an important role. When
this insulin is deficient or does not work properly. . .

‘creation_date’:
‘YYYY-MM-DD’, ‘file_name’:
‘chapter_name.docx’,
‘file_path’: ‘/path/to/file’

Korean translated into English.

This structured approach to corpus preprocessing allows for efficient retrieval and con-
text preservation. It forms the foundation for subsequent stages in the AutoRAG pipeline,
including the evaluation of generating question-answer (QA) pairs and the evaluation of
various retriever models.

2.2. Question–Answer Pair Creation

To create a comprehensive QA dataset based on the preprocessed corpus, we em-
ployed ChatGPT-4.o (OpenAI, San Francisco, CA, USA), leveraging its advanced language
understanding and generation capabilities. We implemented a few-shot learning technique
to enhance the quality and relevance of the generated QA pairs. This approach involved
providing ChatGPT-4.o with carefully crafted example QA pairs, which guided the model
in generating contextually appropriate and clinically relevant QA pairs. This method
allowed us to create a dataset that accurately reflected the content and complexity of the
diabetes management guidelines while ensuring a wide coverage of relevant topics.

The generated QA pairs underwent rigorous validation by a panel of medical experts
specializing in diabetes care. Each QA pair was evaluated for clinical accuracy, relevance to
current guidelines, and practical utility in patient care. Only pairs that received unanimous
approval from the expert panel were included in the final dataset. This validation process
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ensured that the QA pairs accurately reflected both the Korean and American diabetes
guidelines while maintaining clinical relevance.

The resulting QA dataset was structured with four main columns: qid (a unique
identifier for each QA pair), retrieval_gt (ground truth document ID for retrieval), query
(the question), and generation_gt (the answer). Table 2 provides an example of the QA
dataset format.

Table 2. Three examples of question–answer data generated from the extracted corpus data.

Qid Retrieval_Gt Query Generation_Gt

UID#1 [array([
‘DOC_UID#9], dtype = object)]

What tests should women
diagnosed with gestational
diabetes undergo
after childbirth?

Women diagnosed with gestational diabetes
should have a 75 g oral glucose tolerance test
4–12 weeks after delivery to check their glucose
tolerance status. If the test results are normal,
annual diabetes screening should be considered.

UID#2 [array([
‘DOC_UID#25’], dtype = object)]

Why should the HbA1c
target be maintained
below 6.5%?

HbA1c reflects average blood glucose levels over
the past 2–3 months. Maintaining HbA1c
below 6.5% can reduce the risk of complications.
However, the target may be adjusted based on
individual conditions.

UID#3 [array(
[‘DOC_UID#306’], dtype = object)]

Why does urine volume
increase in diabetes?

In diabetes, glucose is excreted in urine. As
glucose draws water with it, urine volume
increases. This results in dehydration, which
causes severe thirst.

2.3. Retriever Evaluation

The retriever evaluation encompassed both sparse and dense retrieval methods.
For dense retrieval, we evaluated multiple models including OpenAI embedding mod-
els (text-embedding-ada-002, text-embedding-3-small, text-embedding-3-large), the Up-
stage embedding model (Solar Embedding-1-large), Korean-specific models (ko-sroberta-
multitask, KoSimCSE-roberta), multilingual models (paraphrase-multilingual-mpnet-base-
v2, paraphrase-multilingual-MiniLM-L12-v2, multilingual-e5-large-instruct), and task-
specific models (kf-deberta-multitask, gte-multilingual-base).

For sparse retrieval, we implemented the BM25 algorithm with two distinct tokenizers:
ko_kiwi tokenizer specifically designed for Korean text processing, and porter_stemmer
tokenizer commonly used for text stemming. We applied both tokenizers to both KDA and
ADA guidelines to evaluate their retrieval performance across different language contexts.
The ko_kiwi tokenizer specializes in Korean morphological analysis and word segmen-
tation, while the porter_stemmer reduces words to their root form. This comparative
approach aimed to assess the effectiveness of different tokenization strategies in retrieving
relevant information from guidelines in different languages.

Our evaluation methodology employed a top-k retrieval approach, with k values set
at 1, 3, 5, 10, and 50. To ensure a thorough assessment of retrieval performance, we utilized
a comprehensive set of evaluation metrics including retrieval f1-score, recall, precision,
mean average precision (MAP), mean reciprocal rank (MRR), and normalized discounted
cumulative gain (NDCG).

These metrics were chosen for their ability to capture different aspects of retrieval
performance, particularly in medical information retrieval where both precision and recall
are crucial. Combining diverse retriever models, varied k values, and comprehensive
metrics allowed us to evaluate retrieval performance thoroughly.

3. Results
3.1. Dense Retriever

Our evaluation of various dense retriever models revealed significant performance
differences across multiple metrics. We tested a range of embedding models, including
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language-specific (e.g., KoSimCSE-roberta, ko-sroberta-multitask), multilingual (e.g., gte-
multilingual-base, multilingual-e5-large-instruct), and general-purpose models (e.g., Ope-
nAI’s text-embedding models, Upstage’s Solar Embedding-1-large) on both KDA and ADA
guidelines. The performance details are tabulated in Table 3 for KDA and Table 4 for
ADA results.

Table 3. Results of quantitative analysis for dense retrievers: Korean Diabetes Association guideline.

Embedding_Model Top_k Execution
Time (s) f1-Score Recall Precision MAP MRR NDCG

ko-sroberta-multitask 1 0.063 0.224 0.224 0.224 0.224 0.224 0.224
openai_embed_3_large 1 0.033 0.265 0.265 0.265 0.265 0.265 0.265
gte-multilingual-base 1 0.093 0.388 0.388 0.388 0.388 0.388 0.388
kf-deberta-multitask 1 0.044 0.224 0.224 0.224 0.224 0.224 0.224
paraphrase-multilingual-mpnet-
base-v2 1 0.061 0.265 0.265 0.265 0.265 0.265 0.265

openai_embed_3_small 1 0.024 0.347 0.347 0.347 0.347 0.347 0.347
paraphrase-multilingual-
MiniLM-L12-v2 1 0.055 0.204 0.204 0.204 0.204 0.204 0.204

multilingual-e5-large-instruct 1 0.088 0.265 0.265 0.265 0.265 0.265 0.265
KoSimCSE-roberta 1 0.022 0.143 0.143 0.143 0.143 0.143 0.143
openai 1 0.022 0.224 0.224 0.224 0.224 0.224 0.224
upstage_embed 1 0.078 0.429 0.429 0.429 0.429 0.429 0.429

ko-sroberta-multitask 3 0.003 0.204 0.408 0.136 0.197 0.197 0.251
openai_embed_3_large 3 0.028 0.276 0.551 0.184 0.272 0.272 0.343
gte-multilingual-base 3 0.003 0.337 0.673 0.224 0.313 0.313 0.404
kf-deberta-multitask 3 0.003 0.204 0.408 0.136 0.228 0.228 0.273
paraphrase-multilingual-mpnet-
base-v2 3 0.003 0.184 0.367 0.122 0.170 0.170 0.220

openai_embed_3_small 3 0.022 0.296 0.592 0.197 0.299 0.299 0.373
paraphrase-multilingual-
MiniLM-L12-v2 3 0.002 0.143 0.286 0.095 0.129 0.129 0.169

multilingual-e5-large-instruct 3 0.004 0.327 0.653 0.218 0.384 0.384 0.453
KoSimCSE-roberta 3 0.003 0.143 0.286 0.095 0.160 0.160 0.192
openai 3 0.021 0.276 0.551 0.184 0.279 0.279 0.348
upstage_embed 3 0.063 0.378 0.755 0.252 0.367 0.367 0.465

ko-sroberta-multitask 5 0.003 0.156 0.469 0.094 0.137 0.137 0.216
openai_embed_3_large 5 0.026 0.231 0.694 0.139 0.264 0.264 0.367
gte-multilingual-base 5 0.003 0.259 0.776 0.155 0.227 0.227 0.358
kf-deberta-multitask 5 0.004 0.156 0.469 0.094 0.162 0.162 0.236
paraphrase-multilingual-mpnet-
base-v2 5 0.003 0.156 0.469 0.094 0.186 0.186 0.253

openai_embed_3_small 5 0.023 0.231 0.694 0.139 0.222 0.222 0.335
paraphrase-multilingual-
MiniLM-L12-v2 5 0.003 0.136 0.408 0.082 0.146 0.146 0.209

multilingual-e5-large-instruct 5 0.004 0.245 0.735 0.147 0.238 0.238 0.358
KoSimCSE-roberta 5 0.003 0.136 0.408 0.082 0.153 0.153 0.215
openai 5 0.016 0.224 0.673 0.135 0.225 0.225 0.333
upstage_embed 5 0.059 0.279 0.837 0.167 0.229 0.229 0.374

ko-sroberta-multitask 10 0.004 0.093 0.510 0.051 0.070 0.070 0.165
openai_embed_3_large 10 0.028 0.152 0.837 0.084 0.119 0.119 0.276
gte-multilingual-base 10 0.004 0.156 0.857 0.086 0.107 0.107 0.269
kf-deberta-multitask 10 0.004 0.111 0.612 0.061 0.089 0.089 0.204
paraphrase-multilingual-mpnet-
base-v2 10 0.004 0.089 0.490 0.049 0.060 0.060 0.153

openai_embed_3_small 10 0.024 0.152 0.837 0.084 0.142 0.142 0.293
paraphrase-multilingual-
MiniLM-L12-v2 10 0.003 0.085 0.469 0.047 0.071 0.071 0.158

multilingual-e5-large-instruct 10 0.005 0.160 0.878 0.088 0.129 0.129 0.293
KoSimCSE-roberta 10 0.004 0.100 0.551 0.055 0.133 0.133 0.226
openai 10 0.023 0.134 0.735 0.073 0.098 0.098 0.236
upstage_embed 10 0.046 0.167 0.918 0.092 0.130 0.130 0.300
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Table 3. Cont.

Embedding_Model Top_k Execution
Time (s) f1-Score Recall Precision MAP MRR NDCG

ko-sroberta-multitask 50 0.009 0.033 0.837 0.017 0.029 0.029 0.166
openai_embed_3_large 50 0.034 0.039 1.000 0.020 0.022 0.022 0.180
gte-multilingual-base 50 0.008 0.039 1.000 0.020 0.022 0.022 0.179
kf-deberta-multitask 50 0.009 0.034 0.878 0.018 0.026 0.026 0.169
paraphrase-multilingual-mpnet-
base-v2 50 0.008 0.030 0.776 0.016 0.032 0.032 0.157

openai_embed_3_small 50 0.028 0.039 1.000 0.020 0.022 0.022 0.181
paraphrase-multilingual-
MiniLM-L12-v2 50 0.008 0.027 0.694 0.014 0.027 0.027 0.140

multilingual-e5-large-instruct 50 0.009 0.038 0.959 0.019 0.021 0.021 0.172
KoSimCSE-roberta 50 0.008 0.035 0.898 0.018 0.034 0.034 0.182
openai 50 0.027 0.038 0.959 0.019 0.025 0.025 0.179
upstage_embed 50 0.054 0.039 1.000 0.020 0.021 0.021 0.179

Mean average precision (MAP); mean reciprocal rank (MRR); and normalized discounted cumulative
gain (NDCG).

Table 4. Results of quantitative analysis for dense retrievers: American Diabetes
Association guideline.

Embedding_Model Top_k Execution
Time (s) f1-Score Recall Precision MAP MRR NDCG

ko-sroberta-multitask 1 0.003 0.229 0.229 0.229 0.229 0.229 0.229
openai_embed_3_large 1 0.027 0.583 0.583 0.583 0.583 0.583 0.583
gte-multilingual-base 1 0.003 0.563 0.563 0.563 0.563 0.563 0.563
kf-deberta-multitask 1 0.004 0.292 0.292 0.292 0.292 0.292 0.292
paraphrase-multilingual-mpnet-
base-v2 1 0.003 0.313 0.313 0.313 0.313 0.313 0.313

openai_embed_3_small 1 0.032 0.521 0.521 0.521 0.521 0.521 0.521
paraphrase-multilingual-
MiniLM-L12-v2 1 0.002 0.375 0.375 0.375 0.375 0.375 0.375

multilingual-e5-large-instruct 1 0.005 0.521 0.521 0.521 0.521 0.521 0.521
KoSimCSE-roberta 1 0.003 0.188 0.188 0.188 0.188 0.188 0.188
openai 1 0.048 0.563 0.563 0.563 0.563 0.563 0.563
upstage_embed 1 0.074 0.563 0.563 0.563 0.563 0.563 0.563

ko-sroberta-multitask 3 0.003 0.167 0.333 0.111 0.160 0.160 0.203
openai_embed_3_large 3 0.038 0.458 0.917 0.306 0.427 0.427 0.551
gte-multilingual-base 3 0.003 0.417 0.833 0.278 0.340 0.340 0.465
kf-deberta-multitask 3 0.004 0.177 0.354 0.118 0.139 0.139 0.193
paraphrase-multilingual-mpnet-
base-v2 3 0.003 0.250 0.500 0.167 0.240 0.240 0.305

openai_embed_3_small 3 0.029 0.406 0.813 0.271 0.340 0.340 0.460
paraphrase-multilingual-
MiniLM-L12-v2 3 0.003 0.198 0.396 0.132 0.135 0.135 0.201

multilingual-e5-large-instruct 3 0.005 0.406 0.813 0.271 0.361 0.361 0.475
KoSimCSE-roberta 3 0.003 0.188 0.375 0.125 0.198 0.198 0.243
openai 3 0.028 0.385 0.771 0.257 0.323 0.323 0.436
upstage_embed 3 0.081 0.427 0.854 0.285 0.354 0.354 0.481

ko-sroberta-multitask 5 0.003 0.139 0.417 0.083 0.150 0.150 0.213
openai_embed_3_large 5 0.026 0.319 0.958 0.192 0.243 0.243 0.413
gte-multilingual-base 5 0.003 0.299 0.896 0.179 0.235 0.235 0.391
kf-deberta-multitask 5 0.004 0.146 0.438 0.088 0.128 0.128 0.201
paraphrase-multilingual-mpnet-
base-v2 5 0.003 0.201 0.604 0.121 0.168 0.168 0.273

openai_embed_3_small 5 0.028 0.292 0.875 0.175 0.222 0.222 0.377
paraphrase-multilingual-
MiniLM-L12-v2 5 0.003 0.153 0.458 0.092 0.111 0.111 0.193

multilingual-e5-large-instruct 5 0.005 0.292 0.875 0.175 0.236 0.236 0.388
KoSimCSE-roberta 5 0.004 0.132 0.396 0.079 0.112 0.112 0.180
openai 5 0.034 0.292 0.875 0.175 0.243 0.243 0.393
upstage_embed 5 0.074 0.319 0.958 0.192 0.262 0.262 0.427
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Table 4. Cont.

Embedding_Model Top_k Execution
Time (s) f1-Score Recall Precision MAP MRR NDCG

ko-sroberta-multitask 10 0.004 0.087 0.479 0.048 0.075 0.075 0.163
openai_embed_3_large 10 0.025 0.178 0.979 0.098 0.114 0.114 0.299
gte-multilingual-base 10 0.004 0.174 0.958 0.096 0.142 0.142 0.316
kf-deberta-multitask 10 0.004 0.098 0.542 0.054 0.076 0.076 0.178
paraphrase-multilingual-mpnet-
base-v2 10 0.004 0.129 0.708 0.071 0.104 0.104 0.236

openai_embed_3_small 10 0.025 0.174 0.958 0.096 0.137 0.137 0.313
paraphrase-multilingual-
MiniLM-L12-v2 10 0.003 0.110 0.604 0.060 0.099 0.099 0.209

multilingual-e5-large-instruct 10 0.005 0.167 0.917 0.092 0.104 0.104 0.277
KoSimCSE-roberta 10 0.004 0.106 0.583 0.058 0.095 0.095 0.203
openai 10 0.044 0.167 0.917 0.092 0.114 0.114 0.285
upstage_embed 10 0.073 0.182 1.000 0.100 0.114 0.114 0.304

ko-sroberta-multitask 50 0.008 0.033 0.854 0.017 0.027 0.027 0.166
openai_embed_3_large 50 0.033 0.039 1.000 0.020 0.020 0.020 0.177
gte-multilingual-base 50 0.007 0.039 1.000 0.020 0.021 0.021 0.178
kf-deberta-multitask 50 0.008 0.032 0.813 0.016 0.031 0.031 0.165
paraphrase-multilingual-mpnet-
base-v2 50 0.008 0.038 0.958 0.019 0.028 0.028 0.183

openai_embed_3_small 50 0.030 0.039 1.000 0.020 0.021 0.021 0.178
paraphrase-multilingual-
MiniLM-L12-v2 50 0.007 0.038 0.958 0.019 0.031 0.031 0.187

multilingual-e5-large-instruct 50 0.009 0.039 1.000 0.020 0.021 0.021 0.179
KoSimCSE-roberta 50 0.008 0.038 0.958 0.019 0.032 0.032 0.188
openai 50 0.030 0.039 1.000 0.020 0.021 0.021 0.179
upstage_embed 50 0.076 0.039 1.000 0.020 0.020 0.020 0.177

Figures 1 and 2 comprehensively compare the performance metrics for each embed-
ding model, illustrating the distribution of scores for retrieval f1-score, recall, precision,
MAP, MRR, and NDCG.

When averaging across all k values, distinct performance patterns emerged for each
guideline. For the KDA guidelines, the Upstage embedding model (Solar Embedding-1-
large) demonstrated the strongest performance with an f1-score of 0.258, recall of 0.788,
precision of 0.192, MAP and MRR both at 0.235, and NDCG of 0.349. In contrast, for the
ADA guidelines, which generally showed higher metric scores overall, OpenAI’s text-
embedding-3-large achieved superior performance with an f1-score of 0.312, recall of 0.883,
precision of 0.236, MAP and MRR both at 0.273, and NDCG of 0.400.

Cross-guideline analysis revealed several interesting patterns. General-purpose mod-
els showed robust performance across both languages, with Upstage embed and OpenAI
models consistently performing well. Multilingual models, particularly gte-multilingual-
base, demonstrated consistent performance across both Korean and English texts. No-
tably, language-specific models showed relatively lower performance even in Korean text,
suggesting that broader language understanding capabilities may be more beneficial for
medical domain retrieval tasks. Overall performance metrics were consistently higher for
English text retrieval compared to Korean text retrieval.

The analysis of k-value effects revealed distinct patterns between the guidelines. For
ADA guidelines, at k = 10, multiple models achieved recall rates exceeding 0.95, while
KDA guidelines showed more moderate recall rates, with the highest being around 0.92.
In both cases, increasing k values led to higher recall at the cost of precision, resulting in
lower f1-scores.

Execution time analysis showed that language-specific and multilingual models gen-
erally demonstrated faster processing speeds compared to general-purpose models across
both guidelines. The Upstage embed and OpenAI models typically required longer pro-
cessing times, though this trade-off was balanced by their superior retrieval performance.
These execution time patterns remained consistent across different k values, with variations
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in processing time generally correlating with model architecture complexity rather than
guideline language or k-value selection.
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3.2. Sparse Retriever

For our sparse retrieval evaluation, we implemented the BM25 algorithm using
two different tokenizers: ko_kiwi tokenizer specifically designed for Korean text, and
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porter_stemmer for English text. This comparative approach allowed us to evaluate the
effectiveness of tokenization strategies across different languages in our diabetes manage-
ment guidelines.

We evaluated the BM25 algorithm’s performance across different top-k values (1, 3, 5,
10, and 50) for both KDA and ADA guidelines. The results are summarized in Table 5 for
KDA and Table 6 for ADA.

Table 5. Results of quantitative analysis for sparse retriever: Korean Diabetes Association guideline.

Module_Name Tokenizer Top_k Execution
Time F1-Score Recall Precision MAP MRR NDCG

bm25 ko_kiwi 1 1.097 0.306 0.306 0.306 0.306 0.306 0.306
bm25 ko_kiwi 3 1.083 0.224 0.449 0.15 0.371 0.371 0.391
bm25 ko_kiwi 5 1.068 0.177 0.531 0.106 0.39 0.39 0.425
bm25 ko_kiwi 10 1.093 0.115 0.633 0.063 0.405 0.405 0.459
bm25 ko_kiwi 50 1.062 0.038 0.98 0.02 0.425 0.425 0.542

bm25 porter_stemmer 1 0.001 0.245 0.245 0.245 0.245 0.245 0.245
bm25 porter_stemmer 3 0.001 0.214 0.429 0.143 0.327 0.327 0.353
bm25 porter_stemmer 5 0.002 0.184 0.551 0.110 0.355 0.355 0.404
bm25 porter_stemmer 10 0.002 0.126 0.694 0.069 0.375 0.375 0.451
bm25 porter_stemmer 50 0.006 0.035 0.898 0.018 0.386 0.386 0.497

Mean average precision (MAP); mean reciprocal rank (MRR); and normalized discounted cumulative
gain (NDCG).

Table 6. Results of quantitative analysis for sparse retriever: American Diabetes Association guideline.

Module_Name Tokenizer Top_k Execution
Time f1-Score Recall Precision MAP MRR NDCG

bm25 ko_kiwi 1 1.093 0.542 0.542 0.542 0.542 0.542 0.542
bm25 ko_kiwi 3 1.087 0.354 0.708 0.236 0.622 0.622 0.644
bm25 ko_kiwi 5 1.087 0.264 0.792 0.158 0.642 0.642 0.680
bm25 ko_kiwi 10 1.088 0.163 0.896 0.090 0.657 0.657 0.714
bm25 ko_kiwi 50 1.094 0.038 0.979 0.020 0.663 0.663 0.736

bm25 porter_stemmer 1 0.001 0.500 0.500 0.500 0.500 0.500 0.500
bm25 porter_stemmer 3 0.001 0.365 0.729 0.243 0.608 0.608 0.639
bm25 porter_stemmer 5 0.001 0.285 0.854 0.171 0.638 0.638 0.692
bm25 porter_stemmer 10 0.001 0.178 0.979 0.098 0.656 0.656 0.734
bm25 porter_stemmer 50 0.005 0.039 1.000 0.020 0.657 0.657 0.738

Mean average precision (MAP); mean reciprocal rank (MRR); and normalized discounted cumulative
gain (NDCG).

Our analysis revealed distinct patterns between the two guidelines. For KDA guidelines,
the ko_kiwi tokenizer demonstrated superior performance compared to the porter_stemmer
across all metrics. Starting with a higher f1-score of 0.306 compared to porter_stemmer’s
0.245 at k = 1, it consistently maintained better performance as k increased. At k = 50, it
achieved a high recall of 0.98 with better MAP (0.425) and NDCG (0.542) scores compared
to porter_stemmer’s respective scores (0.386 and 0.497), indicating more effective retrieval
of relevant documents for Korean text.

For ADA guidelines, the ko_kiwi tokenizer showed strong performance across metrics,
achieving an f1-score of 0.542 at k = 1, and maintaining competitive performance as k
increased. At k = 10, it achieved a recall of 0.896 while still maintaining reasonable precision.
The porter_stemmer showed comparable performance, particularly in recall metrics at
higher k values, reaching 1.000 at k = 50.

Across both guidelines, we observed consistent trends: as the top-k value increased,
recall, MAP, MRR, and NDCG generally improved, while precision decreased. This trade-
off was reflected in the f1-scores, which typically decreased with higher k values despite
improved recall.
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A notable difference emerged in execution times between tokenizers. The ko_kiwi
tokenizer consistently required around 1.0–1.1 s of processing time across different k values,
while the porter_stemmer was significantly faster, typically requiring only 0.001–0.006 s.
This performance difference suggests a trade-off between processing speed and tokeniza-
tion sophistication, particularly relevant for Korean text processing.

3.3. Ensemble Retriever

Our evaluation revealed distinct performance characteristics between dense and
sparse retrievers across both the KDA and ADA guidelines. For KDA guidelines, the dense
retriever using the Upstage embedding model (Solar Embedding-1-large) demonstrated
superior performance across all metrics at top-k = 3. For ADA guidelines, OpenAI’s text-
embedding-3-large achieved optimal performance at top-k = 1, with consistent scores of
0.563 across all metrics (f1-score, recall, precision, MAP, MRR, and NDCG). The sparse
retriever (BM25) exhibited varying characteristics depending on the tokenizer and guideline
language: for Korean text, the ko_kiwi tokenizer demonstrated superior performance, while
for English text, both ko_kiwi and porter_stemmer tokenizers showed comparable results.

Based on these findings, we developed separate ensemble retrievers optimized for
each guideline. For KDA guidelines, we combined the high-precision dense retriever (Solar
Embedding-1-large, top-k = 3) with the sparse retriever (BM25 with ko_kiwi tokenizer, top-
k = 50). For ADA guidelines, we integrated OpenAI’s text-embedding-3-large (top-k = 1)
with the BM25 retriever (top-k = 10 with porter_stemmer tokenizer).

The ensemble method combines retrieved documents from both approaches, merging
their unique contributions to create a more comprehensive result set. This straightforward
combination strategy leverages the complementary strengths of both retrieval methods:
the precision of dense retrievers and the broad coverage of sparse retrievers.

The ensemble approach demonstrates significant potential for improved overall per-
formance, particularly in recall and ranking quality, while maintaining precision. Although
it introduces some computational overhead, primarily from the ko_kiwi tokenizer process-
ing time in the sparse retriever component, the performance gains justify this trade-off,
especially in critical applications like medical information retrieval where both accuracy
and comprehensiveness are essential.

4. Discussion

This study aimed to enhance the reliability of LLM and minimize hallucinations in
diabetes management through the development of a dual RAG system. Our research
addresses the critical need for accurate and up-to-date information retrieval in medical
applications. The key contributions include the development of a dual RAG directly
combining dense (semantic) and sparse (keyword-based) retrieval, integration of current
medical guidelines, implementation of robust safeguards to minimize hallucinations, and a
comprehensive evaluation framework.

Our findings revealed significant performance differences between dense and sparse
retrieval methods across different language guidelines. For Korean text (KDA guidelines),
the dense retriever using the Upstage embedding model (Solar Embedding-1-large) demon-
strated optimal performance at top-k = 3, while for English text (ADA guidelines), OpenAI’s
text-embedding-3-large achieved the best results at top-k = 1. Notably, multilingual and
general-purpose models outperformed language-specific models in both guidelines, sug-
gesting that broader language understanding capabilities may be more advantageous for
specialized medical domains.

The sparse retriever exhibited distinct characteristics based on the tokenizer choice and
guideline language. The ko_kiwi tokenizer demonstrated superior performance for Korean
text, while both ko_kiwi and porter_stemmer performed comparably for English text.

The trade-off between recall and precision with varying top-k values is particularly sig-
nificant in medical contexts where missing critical information (false negatives) could have
more serious consequences than including some irrelevant information (false positives). For
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instance, when retrieving information about medication contraindications, it is preferable
to retrieve all potentially relevant warnings, even if some are not directly applicable.

However, our study has limitations. While RAG systems offer advantages over
parameter-efficient fine-tuning methods in maintaining contemporaneous information with-
out model retraining, they present different computational trade-offs. Unlike parameter-
efficient fine-tuning approaches that require significant computational resources during the
training phase, RAG systems incur increased computational costs and memory require-
ments during each inference, particularly evident in the processing time differences between
tokenizers in our sparse retrieval implementation. Additionally, the fixed GPU memory
constraints create a trade-off between retrieved context length and input length—as the
size of retrieved documents increases through RAG, the available space for user input
necessarily decreases.

A significant challenge we encountered involves the OCR processing of medical
documents with varying structures and the accurate conversion of tables and figures into
textual format. This transformation process is crucial for maintaining the integrity and
accessibility of medical information but remains technically challenging.

Our research demonstrates potential applicability beyond diabetes management. The
successful implementation with both KDA and ADA guidelines validates the system’s cross-
regional capability and suggests broader applicability. This approach could be extended
to other medical fields with regularly updated guidelines, such as oncology treatment
protocols or cardiology practice standards. The system’s demonstrated ability to effectively
handle guidelines from different regions while maintaining accuracy indicates its potential
for broader geographical implementation.

For successful integration into clinical workflows, implementing dual RAG systems
with on-premise LLMs emerges as a preferred approach. This strategy ensures data privacy,
reduces latency, and maintains compliance with healthcare regulations while providing the
benefits of our dual retrieval system.

Future research directions should explore advanced ensemble techniques for enhanced
retrieval performance, while expanding system capabilities through a multi-layered LLM
architecture. The introduction of interpreter LLMs could facilitate seamless access to inter-
national guidelines across languages, while specialized LLMs managing distinct guideline
domains would maintain expertise in their respective areas. A coordinating agent LLM
could then synthesize comprehensive medical solutions by integrating insights across these
specialized components. This architectural approach would preserve both contemporaneity
and accuracy across diverse medical topics while enabling broader geographical reach.
Comprehensive evaluation across expanded medical domains and diverse clinical datasets
would validate the system’s scalability and real-world applicability.

In conclusion, this study demonstrates the potential of advanced retrieval methods,
particularly our ensemble approach, to enhance the reliability of LLMs in specialized
medical domains. By minimizing hallucinations and improving the accuracy of information
retrieval, we contribute to ongoing efforts to make AI-assisted healthcare more trustworthy
and effective. Our work paves the way for future advancements in applying LLMs to
complex and critical fields such as medicine, where accuracy and reliability are paramount.

5. Conclusions

This study presents a dual RAG system that enhances the accuracy of LLMs in dia-
betes management by combining dense retrievers (Solar Embedding-1-large, OpenAI’s
text-embedding-3-large) with sparse BM25 retrieval. Our evaluation across Korean and
American diabetes guidelines demonstrated that this ensemble approach effectively re-
duces hallucinations while maintaining high retrieval performance. The system’s successful
implementation across different languages and guidelines, particularly its strong perfor-
mance with general-purpose models in specialized medical domains, demonstrates its
potential for broader healthcare applications. This work lays a foundation for more trust-
worthy AI-assisted healthcare, offering a practical approach to enhancing clinical decision
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support while maintaining the contemporaneity of medical knowledge without frequent
model retraining.
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